Все записи автора Леонович Владимир

Экспериментальное опровержение постулатов ТО Эйнштейна

        

Законы логики просты, конкретны и бескомпромиссны.

Логика не ошибается. Однако все ложные и ошибочные теории используют одни и те же логические приемы, которые используют и истинные теории.

Дело в том, что, если установлена ошибочность какого-либо безупречного по стилю логического построения, то причина ошибки всегда находится в исходных посылках: постулатах и произвольных предположениях исходной теории.

Логика констатирует – всякая теория, даже многократно проверенная опытным путем, может быть опровергнута или ограничена в применении на основании одного отрицательного эксперимента.

Теория относительности Эйнштейна (ТО) не имеет границ применяемости. Это значит, что любой отрицательный эксперимент опровергает всю теорию.

Экспериментальных данных, опровергающих ТО, вполне достаточно. Однако ТО продолжает диктовать свои установки.

Дело в том, что ТО никогда не была теорией в строгом смысле этого слова. ТО — это учение, взятое на вооружение определенной частью общества для достижения своих корыстных целей.

Истинные теории вырастают (формируются) из гипотез, после тщательной их проверки, и в первую очередь — на отсутствие в них внутренних противоречий.

Учение Эйнштейна всё пронизано противоречиями (парадоксами), о которых всем всё известно. Кроме того, все множественные экспериментальные подтверждения этого учения являются при ближайшем рассмотрении косвенными и лукавыми, а при еще более тщательном анализе — оказываются ложными.

 

Ставшие всемирно известными эксперименты Майкельсона — Морли были задуманы как рабочее подтверждение существования абсолютной и неподвижной пространственной среды, называемой в то время эфиром. Оппонентов не было. Более того, все единодушно считали, что результат эксперимента предсказуем, и должен продемонстрировать правоту сформировавшейся парадигмы, еще раз измерив, по новой методике, линейную скорость вращения Земли.

Все были так уверены в существовании неподвижного эфира, и в том эффекте, который он оказывает на характеристики распространения света, что явная неудача опыта ошеломила научное сообщество. Огорчение было таким шокирующим, что адекватная оценка результатов эксперимента не была произведена.

Действительно, ожидаемого эффекта исследователи не получили, но и аргументов в пользу отсутствия эфира тоже не было, т.к. небольшой эфирный ветер все-таки был зафиксирован. Но этот факт не нашел места в обобщенной оценке опытов.

Когда же появились конкретные персоны, заинтересованные в отсутствии эфира, то они очень ловко воспользовались создавшейся ситуацией, представив эксперименты Майкельсона – Морли как доказательство отсутствия эфира. Агрессивное меньшинство всегда активнее и изворотливее безалаберно почивающего большинства.

Развернувшаяся затем дискуссия вскрыла недостатки эксперимента Майкельсона – Морли, но было уже поздно. Исправить положение могли только новые опыты, которые не использовали бы отраженный (возвращающийся) луч. Но исполнителей почему-то долго не находилось.

Первым человеком, осуществившим такой эксперимент, оказался Стефан Маринов. В 1973 г. он определил величину эфирного ветра для Солнца, равной 130 км/с. В 1976 г. он уточнил скорость Солнца относительно пространства, определив её как 300 км/с. В 1979 г. им был получен результат 360 км/с.

Поскольку методом астрономических наблюдений установлено, что линейная скорость Солнца по галактической орбите равна 220÷240 км/с, то скорость, определенная Мариновым методом лабораторных измерений, являлась векторной суммой скорости Солнца по галактической орбите и средней скорости самой Галактики относительно неподвижного физического вакуума, т.е. эфира.

Маринов определил погрешность своих измерений как ±10 км/с, что очень сомнительно. Похоже, он не учитывал ошибку, вносимую лазером.

Таким образом, если Галактика движется в пространстве параллельно своей плоскости, то её скорость относительно пространства находится в области значений от 130 до 590 км/с.

Аппроксимируя ряд: скорость обращения спутников вокруг Земли ≈ 10 км/с, скорость вокруг Солнца ≈30 км/с, скорость вокруг Галактики ≈230 км/с, — мы должны ожидать скорость самой Галактики в области значений 1000 км/с.

Для признания и утверждения результатов оспариваемого эксперимента, научный метод требует независимого повторения эксперимента другим исполнителем, в другом месте и с другой аппаратурой.

Хотя такие независимые измерения были произведены уже в 1975г., Маринову не суждено было узнать о них, и вообще, дождаться признания своих достижений. Он погиб 15 июля 1997 г. при загадочных обстоятельствах, выпав из окна университетской библиотеки.

Маринов не был рядовым противником ТО. Будучи директором Института Фундаментальной Физики в Австрии, он обладал административным ресурсом, достаточным для победы в борьбе за торжество истины – и значит, был очень опасен.

 

А необходимый, независимый эксперимент был произведен в Казахстане уже в 1975г., группой молодых и талантливых выпускников Алма-Атинского электротехникума радиосвязи. Инициативным руководителем молодых энтузиастов был Глушко В.П.

Метрологические характеристики установки Глушко намного превосходили соответствующие характеристики установки Маринова.

Эксперимент Глушко показал, что Земля с Солнцем движется в направлении, соответствующему астрономической долготе α = 12h ± 1h (от границы созвездий Водолея и Рыбы в сторону границы созвездий Льва и Девы), со средней скоростью 700 км/с.

Таким образом, была доказана несостоятельность принципа относительности Эйнштейна, утверждающего невозможность лабораторного измерения собственной скорости в пространстве.

Однако опубликовать результаты своих исследований коллектив техникума, под руководством Глушко В.П., не мог, т.к. критика ТО Эйнштейна запрещена особыми распоряжениями Президиума РАН. А эксперименты Глушко не критиковали ТО, они опровергали её основы. Вот, и не узнал Стефан Маринов об успехе своих незнакомых соратников, обеспечивших и его, личный, успех.

Передовой общественной мысли повезло, что инквизиторская система РАН не уследила за деятельностью молодого научного коллектива незаметного техникума. Иначе, эти опыты были бы прикрыты в зародыше.

В апреле 2015 года результаты эксперимента группы Глушко, наконец, были опубликованы в Интернете, по адресу:

http://www.sciteclibrary.ru/rus/catalog/pages/14819.html .

Более того, Глушко опубликовал в Интернет статью «Замалчиваемые результаты опытов Майкельсона и Миллера», которую можно найти по адресу   http://redshift0.narod.ru/Rus/Stationary/References/Glushko_3.pdf .

Эта статья доказывает, что теория опыта Майкельсона существенно отличается от первоначально заявленной идеи Майкельсона, и согласно этой теории и по результатам опубликованных данных опыта Миллера,  вычислена абсолютная скорость нашей планеты, равная  1000 км/с.

 

Казалось бы, теперь истина должна восторжествовать.

Всё, может быть, так бы и было, если бы проведенные Мариновым и Глушко опыты опровергали научную теорию, пусть и ошибочную. Но перед нами не ошибочная теория, а социальное явление – сознательное искажение общественного мировоззрения, целью которого является дискредитация материалистической философии.

С позиций материализма, ТО Эйнштейна изначально является несостоятельной. Обоснованием чего служит один из самых главных постулатов Эйнштейна, который, однако, не включен им в состав исходных. Это безоговорочное признание безразмерных вещественных точек, из которых состоит всё вещество Вселенной.

Этот постулат (произвольное предположение) позволяет всей Вселенной сжаться в одну точку, которая опять останется безразмерной. Исчезнуть, сохранив массу и энергию, вот что позволяет Вселенной постулат Эйнштейна по умолчанию.

Как следствие этого постулата появился электрон, способный неограниченно увеличивать свою массу, по мере приближения своей скорости к скорости света. Причем, релятивистский электрон при этом отвечает на ничтожные приращения скорости чудовищными по величине приращениями массы. Сам электрон при этом фактически исчезает, по той причине, что его продольный размер стремится к нулю, в то время, как поперечные размеры остаются неизменными. Плотность массы электрона в этом процессе стремится к бесконечности второго порядка (бесконечная масса в нулевом объеме).

В ложь все верят, если ложь чудовищна.

Ни один из противников ТО не возмутился  мистическим  поведением электрона, предписывемым ему ТО. А это значит, что  мистический релятивизм, в современном его представлении, достиг своей цели – всё научное сообщество зомбировано, и готово к строительству Вифлеемской башни в образе надстроек к Большому Взрыву. Не надейтесь, что «теория» БВ уже закончена. Читайте Библию.

Как утверждал Ленин, прогресс развивается по спирали, и кверху. Кверху-то кверху, вот только спираль, похоже, не вертикальна. И научная мысль на данном этапе находится в глубочайшем упадке. Где вы, философы-материалисты?

Молодежь лишена необходимых учебников, и находится под огромным давлением антинаучной, всеобъемлющей рекламы ТО. На днях мой пятилетний внук спросил, гений ли Эйнштейн. И я растерялся. Скажешь, что нет – и рискуешь сделать ребенка изгоем… . Внук ушел, не дождавшись ответа. Но если он спросит еще раз, то отвечу ему, что — да, Эйнштейн гений, но только в сказке, которую сам выдумал.

Математические джунгли ТО непреодолимы не только для молодежи, но и для маститых ученых. А странное поведение Ландау, освятившего это лукавое учение, ещё только ждет своего исторического расследования.

Выход из создавшейся ситуации известен – это народное просвещение.

Просвещение, в котором каждый участвует лично, не уповая на коррумпированное государство.

Прочтите статью Глушко В. «Опыт по измерению абсолютной скорости движения Земли», а также статью Маринова С. «Экспериментальные нарушения принципов относительности, эквивалентности и сохранения энергии», Институт Фундаментальной Физики, г. Грац, Австрия, (адрес: http://www.bourabai.kz/marinov/fmr.htm) , и поделитесь ими с друзьями и знакомыми через вашу почту в Интернете. Это так просто: всего лишь кликнуть маркером по сервисной экранной клавише «Переслать» или «Поделиться», когда у Вас открыто сопроводительное письмо.

Читайте также об опытах Фан Лиангджао [1], выполнившего три эксперимента на линейном ускорителе Шанхайского института прикладной физики, в которых Фан Лиангджао продемонстрировал отсутствие релятивистского увеличения массы у релятивистских электронов.

Опыты Фан Лиангджао прокомментированы в работе Гришаева А.А. «Линейный ускоритель: очевидные свидетельства об отсутствии релятивистского роста энергии», http://newfiz.narod.ru/linac.htm.

О ложности эйнштейновского принципа эквивалентности массы инерции и массы гравитации читайте статью Леоновича В.Н. «Принципа эквивалентности масс не существует», http://www.proza.ru/2014/04/22/2054.

 

Ссылки.

 

  1. Liangzao Fan. Three experiments challenging Einstein’s relativistic mechanics and traditional electromagnetic acceleration theory. Серия «Проблемы исследования Вселенной», Вып. 34. Труды Конгресса-2010 «Фундаментальные проблемы естествознания и техники», Часть III, стр.5-16. С-Пб., 2010. Также доступна на http://ivanik3.narod.ru/TO/DiHUALiangzaoFAN/3LiangzaoFAN.doc

 

 

Леонович Владимир, Нижний Новгород, сентябрь 2016 г.

Источник энергии Солнца. Информация к размышлению.

 

Леонович Владимир

Источник энергии Солнца.

(Редакция 3)

Ключевые слова: дефект массы, синтез гелия, расщепление гелия, источник энергии Солнца.

Аннотация. Приведено обоснование ошибочности общепринятой модели Солнца. Представлен альтернативный источник солнечной энергии, в качестве которого рассмотрена реакция расщепления гелия; гелия, который синтезирован в центральном теле Галактики, одновременно с остальными тяжелыми элементами.

Глоссарий.

Коварный стереотип — неосознаваемый стереотип, представляющий ошибочное решение части исследуемой проблемы.  Например, квантовое мировоззрение не допускает существования полей с бесконечной протяженностью, которые отвечают требованиям неразрывности. Однако и математики, и физики продолжают молча пользоваться этими неприемлемым представлением.

Конфайнмент – полевое (дистанционное) силовое воздействие на объект, реализующее принцип нелинейного увеличения силы притяжения при попытке увеличения расстояния до объекта, и противодействующего этому увеличению. Бытовой (не полевой) аналог: причальный канат.

Металлы  в астрономии – элементы таблицы Менделеева, которые тяжелее гелия.

Официальная наука – свод научной информации, представленной в учебниках, пособиях и справочниках, утвержденных к изданию РАН.

Температура – энерго-кинетическая характеристика динамически равновесного хаотического движения субатомных частиц, составляющих вещественную систему; температура объекта измеряется обязательно в собственной ИСО объекта.

Эффект «защелки» — одна из форм проявления конфайнмента; устройство или эффект, служащие для удержания системы в заданном состоянии, противодействуя предельным усилиям, направленным на изменение состояния системы; управление защелкой при этом требует минимальных усилий.

 

Обсуждение любой проблемы полезно начинать с выявления коварных стереотипов мышления, относящихся к обозначенной проблеме. Здесь ссылки на коварные стереотипы будут даваться по мере необходимости.

Отметим слабое место в научной методологии. Никто не возражает против утверждения об удивительной гармоничности окружающего мира. Но автор не нашел ни одного случая применения этого положения в качестве инструмента научного анализа. Попробуем восполнить этот пробел.

В Википедии материализм определяется как устаревающая философская концепция. Российская АН молча признает эту новую точку зрения, что выражается в поддержке РАН мистического учения о Большом взрыве. Согласно этому учению, в эволюции Вселенной был момент, когда Вселенная была равномерно заполнена горячей нуклонно-электронной плазмой. До этого момента, который можно условно назвать стартовым для нашей Вселенной, Вселенная объявлена инфляционной, т.е. подчиняющейся законам, придуманным авторами из команды Хокинга. А после этого, стартового, момента Вселенная стала объектом, подчиняющимся законам диалектической логики с квантовыми исключениями, допускающими, когда это требуется, логику мистицизма.

Согласно официальной науке современное состояние Вселенной представляет результат эволюционного усложнения и укрупнения составляющих элементов Вселенной. Стартовый момент горячей Вселенной – это реверанс пылевой концепции, которая предшествовала учению о Большом Взрыве. Существующая модель эволюции звезд и галактик сталкивается с рядом непреодолимых противоречий, например, происхождением и распределением тяжелого вещества в Солнечной системе, однако гипотеза эволюции звезд подается официальной наукой как фундаментальная теория, зомбируя целые поколения ученых.

Не вызывает никаких сомнений, что все тяжелые элементы вещества Вселенной сформированы в процессе синтеза этих элементов из нуклонной плазмы.  Исходя из этого положения, корифеи науки составили картину мира, которой пользуется официальная наука. Освежим эту картину с использованием новых знаний, неизвестных в свое время авторитетным первопроходцам.

Все ядра атомов конструктивно являются ажурными, но компактными напряженными системами, в которых нуклоны находятся в строго определенных позициях. Перестановка нуклонов местами (изомерия) является редчайшим исключением из правил, и приводит к изменению физико-химических свойств элемента. Так что, конструкция любого атома рассматриваемого элемента является пространственно идентичной другим атомам этого элемента. А это значит, что пространственная конструкция любого атомного ядра заложена в конструкции составляющих нуклонов и электронов, а также заложена в гармонии мира. Этого корифеи-первопроходцы знать не могли, а без этого знания их модель просто не может быть верной.

Капельная модель ядер атомов – абсурдна.

Протоны при сборке ядра атома явно были сжаты огромными стационарными силами, и зафиксированы в этом сжатом, и единственно возможном состоянии за счет этого  природного эффекта, над которым человечество еще размышляет. Этот эффект (или явление) тем более был  неизвестен первопроходцам, но с их подачи преподносится нам со школы как установленная истина; и преподносится в облике короткодействующих, специализированных ядерных сил.

Таким образом, научному сообществу исподволь навязывается авторитарная идея о существовании специфических ядерных короткодействующих сил, обладающих сферической симметрией. Подвох этого очень сомнительного положения в том, что абсолютная (и совершенно обоснованная) уверенность в существовании удерживающих сил, исподволь переносится на характеристику сферической симметрии этих сил. Упоминание о сферичности часто даже опускается, как само собой разумеющееся положение. Перед нами коварный стереотип, направивший развитие науки в ложное русло.

Сферическая симметрия ядерных сил, воспринимаемая нами как самое естественное явление, влечет множество неразрешимых проблем, на которые официальная наука закрывает глаза. Симметрия сил удержания не может обеспечить пространственной идентичности ядерной конфигурации атомов.

В силу своей несостоятельности, гипотеза симметричного сильного взаимодействия не доведена до логического завершения, она заканчивается фактически многоточием. А вернее, она заканчивается моментом захвата нуклонов ядерными силами. Что происходит дальше – замалчивается.

Как следствие, инженерам приходится ориентироваться на противоестественное утверждение Эддингтона, что единственным источником энергии протозвезд может быть только реакция синтеза гелия. Эддингтон был уверен, что дефект массы для гелия положителен. Эддингтон рассуждал следующим образом.

Сжимая нуклоны в ядро атома, мы (или природа) сообщаем ядру дополнительную энергию, которая эквивалентна некоторой прибавочной массе. Тогда еще не было известно, что дефект массы всегда отрицателен. Так сформировался еще один коварный стереотип.

Биографическая справка: «Эддингтон  придерживался принципа дополнительности рационально-научного и мистико-религиозного познания. То, что он был естествоиспытателем, не мешало ему быть религиозным мистиком». Эддингтон счел возможным не учитывать преломление лучей света в солнечной атмосфере, полностью приписав это отклонение гравитационному притяжению. Правда, об истинных размерах солнечной атмосферы он тоже не догадывался.

Короткодействующие ядерные силы гипотетически постулируются официальной наукой как потенциальные, и это их качество провоцирует мысль, что они могут быть при некоторых условиях источником энергии. Но эти «необходимые» условия, при ближайшем рассмотрении, оказываются невозможными ни в условиях Земли, ни в условиях Солнца. Силы, с такими свойствами, не могут сформировать реальное, с заданной конфигурацией, ядро атома, и не вписываются в гармонию Вселенной. Их просто нет.

Продемонстрируем неосуществимость процесса синтеза, инициируемого достаточно высокой температурой, и происходящего якобы с выделением энергии, на качественном примере, справедливом для любого элемента таблицы Менделеева.

Отвлечемся от рассмотрения хитроумных многоходовых ядерных превращений, предлагаемых официальными теоретиками. Рассмотрим только суть процесса, а значит, рассмотрим невероятнейший, счастливый случай.  Два протона, движущиеся с равными по величине скоростями, попадают с разных сторон в неподвижный нейтрон – и останавливаются, погасив свою кинетическую энергию до нуля. Повторим, ситуация самая невероятная, но она отражает все энергетические соотношения при ядерном синтезе гелия в составе стандартных звезд.

Сразу возникает попутный вопрос: сформируется ли в этот момент дефект массы ядра?

По Эйнштейну, начальное состояние нашей системы уже обладает положительным дефектом, за счет начальной скорости протонов, которая вызывает увеличение их массы. Значит, при сборе трех нуклонов в малой области будущего ядра, с учетом законов сохранения, дефект массы должен быть положителен или, по крайней мере, равен нулю. А практика свидетельствует, что дефект отрицателен. Отложим этот парадокс  до поры, взяв вопрос на заметку.

Дополним нашу модель внутриядерными силами, сначала в официальной интерпретации. Это значит, что на каком-то ничтожном расстоянии между нуклонами, возникнут гигантские силы притяжения, со сферической симметрией. Почему они гигантские? Потому что эти силы, преодолевая силы Кулона, должны на ничтожном пути, соизмеримым с размерами атомного ядра, сообщить протонам энергию, превосходящую энергию предварительного разгона протонов. Каким будет превышение, таким будет наш ожидаемый выигрыш в энергии.

Что же получается?  На подлете к нейтрону наши протоны испытывают взаимное торможение, и могут излучать фотоны, но об этом никаких сведений нет. Попав же в поле ядерных сил, протоны приобретают огромное ускорение. Но излучать уже не должны. Исход этого ускорения известен. Три нуклона должны сформировать  неподвижный изотоп-3 гелия. Но какие же силы остановят протоны, если на них действуют гигантские ядерные силы? И в какой форме мы получим ту огромную энергию, которую мечтаем добыть? У нас только одно решение. После гигантского ускорения на ничтожном пути, неизбежно должно последовать еще более гигантское ускорение торможения, которое и остановит нуклоны. Но об этом отрицательном ускорении в официальной теории нет ни слова. Вот, именно в момент этого торможения и может (должна) выделиться вся нужная человечеству энергия. У нас опять нет вариантов. Это должна быть энергия излучения в форме небывало гигантского гамма-кванта.

Итак, совершенно очевидно, что модель синтеза гелия, сопровождаемого выделением огромной энергии, явно не продумана до логического завершения. А, будучи достроенной нами на скорую руку, выглядит совершенно абсурдно, т.к. синтез гелия при температурном преодолении кулоновского барьера  является событием невероятным. Тем более этот синтез невероятен, для реализации взрывного варианта.

Однако у природы есть еще один вариант синтеза тяжелого вещества. Это синтез вещества в стиснутом состоянии нуклонов, в условиях, так называемых, нейтронных звезд. При этом астрофизики, разрабатывая гипотезы нейтронных звезд, делают вид, будто не замечают, что всякая нейтронная звезда, по учению Эйнштейна, неизбежно должна стать черной дырой. Это противоречие между КТ и ТО не единственное. Таких противоречий множество, и все они откладываются официальной наукой в долгий ящик, до момента создания Теории Великого Объединения, над которой бьются лучшие умы РАН.

Существуют ли нейтронные звезды — доподлинно неизвестно. А вот центральные ядра галактик с аналогичными свойствами существуют с очевидностью, т.е. наблюдаются. И формы наблюдаемых галактик хорошо согласуются с предполагаемым процессом последовательного выброса звезд из подобных образований. Образование же галактик из облачных конгломератов с формированием форм наблюдаемых астрономами реальных галактик согласуется плохо и вызывает массу сомнений.

Концепция формирования галактик выбросами нейтронных образований разрабатывается Бюраканской школой астрофизиков, созданной академиком Амбарцумяном.

В отличие от классической концепции, Бюраканская модель в физическом и математическом плане проработана не так подробно. Амбарцумян считал, что математическая проработка пока  преждевременна.  Однако в Бюроканском варианте синтез всех тяжелых элементов, а также гелия, является энергетически затратным, и осуществляется за счет энергии гравитации в центральном теле галактик.

Вернемся к дефекту массы.
Сближая нуклоны в ядра атомов силами гравитации, природа сопровождает данный процесс уменьшением тяжести формируемого ядра на величину «дефекта массы». В обобщенном виде это явление в природе проявляется следующим образом.

Напряженные системы весят легче, чем россыпь сборки – это экспериментальный факт (в отношении атомов).

Прогноз: сжатая пружина (или растянутая) весит меньше по сравнению с ненапряженной этой же пружиной. Горячее тело весит легче холодного. Быстрый протон весит меньше неподвижного. Большое тело весит меньше суммы масс частиц, его составляющих.

Но нейтронный объект (звезда) в центре Галактики – это и есть огромное галактическое ядро нуклонов с огромным дефектом массы. Дефект массы должен быть большим не только по величине, но и в относительном выражении к массе суммы нуклонов ядра, которое (отношение), предположительно, должно зависеть от общей массы нелинейно, по аналогии с фактором Лоренца. Сблизившиеся нуклоны в нейтронном ядре не падают в бессмысленную и бесполезную Черную дыру, а заняты делом: формируют тяжелые элементы, которые, сформировав электронные оболочки, значительно увеличиваются в объеме – и выбрасываются в виде звезд из ядра Галактики [3]. Именно так рождаются звезды, именно это имел в виду Гамов, говоря о горячем рождении звезд и галактик (а не Вселенной), именно это предполагали Амбарцумян и Арп Хэлтон — выдающиеся астрофизики современности. По их мнению, галактики сформированы выбросами из галактических ядер, а вовсе не сжатием сверх гигантских облаков пыли. При этом их позиция не отрицает возможности пылевого происхождения некоторых (редких) звезд, например, бурых (или коричневых) карликов.

Чтобы терминологически обособиться от официального представления о ядерных силах, назовем силы, удерживающие нуклоны в компактном ядре, силами удержания. Эти силы, создающие эффект «защелки», нам доподлинно не известны, но гипотетически — они на самом виду.

Вот мнение одного выдающегося ученого, российского академика А.А. Тяпкина, об идее другого выдающегося, американского ученого.

«…Я могу сослаться лишь на гипотезу крупного теоретика, лауреата нобелевской премии за 1965 год Юлиана Швингера. Он в 1969 г. [2] высказал весьма неожиданное предположение о том, что магнитные заряды, которые безуспешно пытались обнаружить, на самом деле в виде дипольных моментов входят в основу любого вещества; они принимаются нами за особые коротко действующие ядерные силы, необычно большие по величине. Отметим, что эта удивительно красивая и смелая гипотеза прежде всего отвечает симметрии электрического и магнитного взаимодействия, заложенной в уравнениях Дж.Максвелла, а значительная величина магнитного заряда по сравнению с электрическим зарядом, как это было показано еще в 1931 году П. Дираком, непосредственно следует из законов квантования этих зарядов. Коротко действующими же эти магнитные силы оказываются в силу того, что в веществе они существуют только в виде сильно связанных магнитных диполей. Эта почти забытая физиками идея Ю. Швингера не только красивая, но и удивительно рациональная в своей основе, поскольку сводит ядерные силы к магнитным.»

Не будем повторять здесь параметры стандартной солнечной модели (ССМ), они хорошо известны, и приведены в соответствующих справочниках. Будем на них только ссылаться по мере изложения материала.

ССМ производит впечатление незыблемой модели, в которой не хватает лишь нескольких штрихов, связанных с тем, что мы не знаем, как конкретно ведет себя вещество внутри Солнца.

Однако присмотримся внимательнее – и окажется, что наша уверенность всего лишь результат нашего стереотипа мышления, основанного на внушенной нам с детства концепции происхождения Вселенной из гигантского облака космической пыли. А первое поколение звезд в этой модели вообще должно формироваться из облака чистого водорода, т.к. пыли еще не было.

Приняв эту концепцию, мы вынуждены признать, что все элементы, включая гелий, образованы в процессе реакции естественного, т.е. не требующего сторонней энергии, синтеза. Однако логика и здравый смысл (практическая интуиция) подсказывают, что все реакции синтеза являются энергетически затратными. Об этом свидетельствует универсальная конструкция атомных ядер. Об этом свидетельствует и практика ядерной энергетики, философски осмысленной.

Обратим внимание на количество полуфантастических предположений, необходимых для реализации официальной модели. Каждый сам без особого труда обнаружит такие постулаты.

Если эта модель верна, то Природа, в качестве соавтора этой идеи, не вызывает восхищения. Но ведь ССМ это не творение природы, а решение наших теоретиков. Посмотрим, есть ли другие варианты.

Сейчас в официальной науке действует два взаимоисключающих положения, применяемых в  разных, но смежных, научных приложениях. Первую концепцию ядерных симметричных сил мы уже рассмотрели. Вторая концепция используется в Стандартной Модели квантовой теории поля. В этой модели теоретики отказались от сферически симметричных ядерных сил. Для удержания частиц в границах заданной локализованной конструкции ядра они ввели, так называемый, принцип конфайнмента.

С конфайментом, все проблемы, связанные с характеристикой «гигантские ускорения», просто не возникают. Всё становится очень естественным. Но при этом исчезает возможность приобретения и выделения энергии синтеза, на которую уповает ССМ, т.к. силы конфайнмента (защелки) работы не совершают. Разработчики СМ у себя потенциальные ядерные силы устранили, а поделиться новой идеей с разработчиками ССМ «забыли». Вот, те и продолжают «пилить гирю» в поисках ядерной энергии синтеза.

Пилят. Но не все. Ученые США, агрессивно работающие на приоритет США, уже давно осознали всеобщее заблуждение, и хранят это знание как ноу-хау. Узкий круг посвященных ученых США ведет скрытные разработки, маскируемые под холодный ядерный синтез. При этом, похоже, соответствующие службы США, исподволь стимулируют часть наших академиков, борющихся с идеей холодного синтеза как с лженаукой, чтобы энтузиасты не докопались до сути ведущихся в США разработок. В США уже ведется промышленная разработка ядерного ракетного двигателя для полета на Марс. Заявлено используемое реактивное вещество, это водород. Только при расщеплении гелия не требуется строить ускоритель атомов водорода, а движитель ожидается относительно легким.

Конфайнмент, как безликий принцип, придуман теоретиками СМ, как возможный выход из создавшегося тупика. Как он работает в ядерной физике, никто не знает. Это незнание в кругу квантовых теоретиков давно стало нормой. В быту конфайнмент давно реализован как причальный канат, как вертушок или крючок на калитке.

Какова же истинная природа реально наблюдаемого конфайнмента в ядре атома? Ведь протоны в ядре действительно сидят прочно.

Если допустить, что Швингер прав, то придется признать, что конфайнмент реализуется спиновыми взаимодействиями. В этом случае процесс синтеза, как источник энергии, неприемлем  в принципе.

Но как же быть с генераторами тепла на холодном ядерном синтезе? Ведь генератор Росси работает. Дело в том, что в генераторах ХЯС идет не синтез ядер, а перестройка структуры ядер в плане минимизации их внутренней энергии; изменение их конструкций, реализованных в процессе первичного синтеза, и оказавшихся не оптимальными.
Если на Солнце идет не реакция синтеза гелия, то значит, на Солнце идет какая-то другая реакция, которая, исходя из скудости выбора, может быть только ядерным расщеплением гелия. Ведь, конструкция ядра гелия принципиально не отличается от конструкции ядер, с помощью расщепления которых мы до сих пор добывали энергию из урана.

Но откуда тогда на Солнце гелий? Вот вопрос, который естественным образом отменяет пылевую теорию, а заодно и учение о Большом Взрыве.

И гелий, и все другие тяжелые элементы могут быть синтезированы за счет гравитационной энергии в центральном теле (ядре) Галактики, имеющем структуру, описанную астрофизиками как структура нейтронной звезды. Только в условиях нейтронных образований (ядер), где плотность нуклонов близка к их плотности в ядрах атомов (около 10^10 кг/см·куб, плотность же солнечного ядра равна 0,15 кг/см·куб), возможен естественный синтез тяжелых элементов, который идет с поглощением энергии.

Так, какой же должна быть модель Солнца в случае ядерного расщепления гелия как основного источника энергии Солнца?

Создавая альтернативную модель Солнца, мы должны учесть все новые достижения науки. А в новые достижения входит факт установления температуры солнечной короны, превышающей 1,5 млн. град. К.  Эта температура никак не увязывается с официальной ССМ.

Рассмотрим процессы, которые должны сопровождать и обуславливать реакцию расщепления гелия в качестве источника энергии Солнца.

Заметим сразу, что кроме активной реакции расщепления гелия на Солнце в этом случае возможна ещё одна сопутствующая активная реакция – реакция водородного горения. Это реакция экзотермического синтеза молекулярного водорода, а он составляет основу фотосферы (ССМ).

Фотосфера – это тонкий (300÷500 м) переходный слой от жидкого состояния вещества Солнца (светящегося) в газообразное (прозрачное), обладающее температурой 5700 град. К.

Для ядерного расщепления гелия, в качестве основной активной реакции на Солнце, самым естественным является поверхностный процесс. Основная масса Солнца в этом случае выступает в роли запаса топлива, находящегося в условиях термостата с температурой около 6 тыс. град. Топливом служит смесь гелия и водорода, с добавками разнообразных металлов, т.е. более тяжелых элементов. От количества топлива (массы звезды) и вариаций его состава, т.е. от процентного содержания водорода и гелия, а также составляющих примесей, зависит, видимо, реализуемый тип звезды.

Поверхностную реакцию расщепления гелия на Солнце можно рассматривать, как комбинацию стабильного процесса космического «тления», сопровождаемого возмущениями-флуктуациями, вызываемыми самыми разными причинами.

Судя по описанию произведенных учеными наблюдений, самой сложной и динамичной является структура фотосферы Солнца. Видимо, эта структура в образе гранул и спикул и является активным слоем, в котором реализуется реакция расщепления. Именно с фотосферы скачком поднимается температура поверхности Солнца от 6 до 10 тыс. град. К и растет затем постепенно до 1,5 млн. град. К, и выше.

Механизм процесса расщепления гелия, видимо, не отличается примитивной простотой. Оставим раскрытие тонкостей этого техпроцесса специалистам. Сами же сосредоточимся на его внешних проявлениях, подтверждающих или опровергающих предположение о гелии как источнике энергии Солнца.

Гелий расщепляется либо на нуклоны и электроны, либо на атомарный водород, либо на то и другое вместе. Специальной исследовательской программой установлено, что у поверхности Солнца протоны (солнечный ветер) условно разделены (по энергии) на два потока: часть протонов имеет скорость, превышающую 800 км/с, а другая часть имеет скорость менее 400 км/с. Вторая космическая скорость для Солнца, на его поверхности, равна 617 км/с. Кроме того, приводятся данные, что на расстоянии земной орбиты зафиксирована скорость солнечного ветра, равная 400 км/с и выше. Очевидно, что протоны, выброшенные с поверхности Солнца со скоростью менее 400 км/с, до орбиты Земли не долетают, и возвращаются на Солнце.

Быстрые нуклоны, превышающие вторую космическую скорость, покидают Солнечную систему. Более медленные – формируют, так называемое, солнечное гало. Ещё более медленные протоны, возвращаются с почти стартовой скоростью на поверхность Солнца, и, сталкиваясь с частью быстрых протонов встречного солнечного ветра, вызывают эпизодические повышения температуры хромосферы до миллионов градусов.

Поясним последнее предположение. Дело в том, что в строгом определении температуры, акцентируется, что это характеристика энергии именно хаотического движения частиц, реализующего распределение относительных скоростей частиц по формуле Максвелла. Таким образом, пока быстрый поток нуклонов не столкнулся с каким-либо объектом и не приобрел хаотического характера движения, он является быстрым, но холодным объектом. Два потока солнечного ветра (прямой и обратный), сталкиваясь в области короны, поднимают её температуру до миллиона градусов и выше.

Замедлившиеся в процессе своего жизненного цикла протоны, в конце концов, захватывают электроны и становятся атомарным водородом, который вступает сам с собой в реакцию синтеза молекулярного водорода (водородное горение). Конденсат молекулярного водорода осаждается на поверхности Солнца, подпитывая фотосферу и частично экранируя излучение гелия из активного слоя. Но это экранирование происходит только в режиме «спокойного солнца». Излучение гелия становится более доступным наблюдению в момент выброса протуберанцев, т.е. в моменты возмущения стабильного тлеющего процесса.

Мощные возмущения приводят к выбросом жидкого приповерхностного вещества Солнца в прозрачную хромосферу, которая в нижних слоях состоит в основном из молекулярного водорода. Эти выбросы — так называемые, протуберанцы. Жидким веществом протуберанцев является смесь атомарного водорода и частично ионизированного гелия. Состав протуберанцев установлен методом спектроскопии и подтверждается характером поведения вещества протуберанцев в среде хромосферы.

Хромосфера Солнца является прозрачной газовой средой с достаточно высокой плотностью, близкой к плотности конденсации. А жидкие выбросы протуберанцев состоят из атомарного водорода с примесью гелия; удельный вес этой жидкости (или тумана) равен удельному весу нижней хромосферы. (На Земле аналогом этого явления является шаровая молния, см. [4]). Поэтому сформировавшиеся ионизированные выбросы (протуберанцы), висят как облака, в хромосфере по нескольку дней, медленно истощаясь. Создается впечатление, создаваемое нашим бытовым стереотипом, что волокна протуберанцев обгорают, и их «угли» осыпаются на поверхность Солнца. Можно предположить, что это «выгорает» атомарный водород, который, превратившись в молекулярный газообразный водород, смешивается с хромосферой, а оставшийся, более тяжелый гелий действительно падает на Солнце, в фотосферу.

Если выброс происходит в зоне формирования сильного магнитного поля, то ионизированное вещество протуберанца захватывается магнитным полем и движется по его силовым линиям, образуя светящиеся арки, которые тоже сохраняют свою форму (плавают в атмосфере Солнца) по нескольку дней, см. фото 1.

 

Фото 1. Протуберанец на Солнце

Термоядерная ССМ благодаря своей неестественности очень сложна, и требует большого количества произвольных допущений. На основе этой модели разработана сложная гипотеза жизненных циклов звезд. В этой гипотезе так много произвольных и вздорных допущений, что гипотеза не оспаривается лишь на том основании, что других, менее вздорных вариантов, не просматривается. А начинается всё с нелепости термоядерной ССМ.

Поражает всеобщая уверенность, что ядерная реакция синтеза гелия является экзотермической, хотя все исследованные экзотермические ядерные реакции являются реакциями расщепления.

Известно бесспорное правило дефекта массы. Его суть в том, что сумма веса всех составляющих элементов атомного ядра, взятых по отдельности, всегда больше веса целого ядра в сборе. Правило традиционно формулируется по отношению к массе, но измеряется всегда вес.

Это правило не знает исключений, т.к. это не правило, а фундаментальный закон.

Всякая напряженная конструкция теряет в весе в соответствии с формулой дефекта массы, т.е. чем больше внутренняя (запасенная) энергия, тем легче становится система. Это экспериментальный факт, который не устроил Эйнштейна в плане знака.

∆E = ∆m·C

Интерпретация знака дефекта массы была дана Эддингтоном – не самым лучшим физиком, но лучшим другом Эйнштейна. Это он выдал преломление лучей света в атмосфере Солнца за притяжение фотонов. Это он (видимо с подачи Эйнштейна) предложил следующее обоснование дефекта массы: преодолевая силы Кулона, природа тратит энергию на формирование ядра атома, т.е. сообщает ядру энергию, которая превращается в массу, и тем самым должна увеличивать вес ядра. Конечно, чтобы в ложь поверили все, надо чтобы ложь была чудовищной. Но перед нами даже не ложь. Перед нами, белое, т.е. дефект, убыль, называют черным, т.е. наваром, прибылью – и все верят. Это уже зомбирование.

Таким образом, сам дефект ∆m определяется энергией, которая была потрачена на создание напряженной конструкции (системы). Только такую, запасенную, энергию и можно добывать при помощи ядерных превращений, приводящих к изменению дефекта массы. А в теле, не имеющем потенциальной внутренней энергии, никакой другой энергии нет, и его дефект массы равен нулю.

Сообщив телу некоторую энергию (в любой форме) мы уменьшаем свои возможности по дальнейшей передаче энергии этому телу, т.к. энергоемкость любого тела ограничена величиной

E = m·C^2.

Такая интерпретация делает ориентацию разработчиков ИТЭР на таблицу 1 неосмотрительной. Результаты, представленные в таблице 1, интерпретируются современными теоретиками совершенно невероятным образом. Почему-то два элемента с одинаковой удельной связью, например Ca и Zn, но находящиеся по разные стороны от железа, синтезируются с разными энергетическими эффектами: один – с выделением энергии, а другой – с её поглощением. Это следствие натяжки в угоду Эйнштейну, а еще авторитету, указавшему на синтез гелия, как источник выделения энергии.

Таблица 1.

Это странно, но все поверили постулату Эйнштейна об эквивалентности массы и энергии – и никогда не подвергали его тщательной проверке, хотя факты свидетельствуют, что аннигилирует, не масса, а только заряды. Задумаемся, почему дефицит всегда восстанавливается при возврате тел в исходное состояние? Да потому, что физическая сущность тел, количественно характеризуемая массой, никогда не меняется, если от тела ничего не отбавили, если оно сохраняет все свои видовые свойства, т.е. сохраняет свою сущностную целостность.

Но дефицит массы, измеряемый разницей веса одних и тех же частиц в разных условиях, тем не менее, наблюдается. Из этого и следует, что гравитационное взаимодействие зависит от состояния вещества, а сама масса не зависит. Движущееся тело притягивается слабее неподвижного, такого же тела. Таким образом, принципа эквивалентности масс тоже не существует. Вернее, он справедлив лишь как частное равенство массы инерции и массы гравитации при нулевой энергии тела. В этом легко убедиться по параметрам полей удержания релятивистских частиц на круговых орбитах в современных ускорителях. В этом уже убедились, и вновь объявили массу инвариантной. Но имеющей мистическую способность бесконечно увеличивать свою энергию с приближением её скорости к скорости света.

При новом подходе, дефицит массы гелия свидетельствует о запасенной в ядре гелия энергии, которую можно извлечь, если расщепить ядро с помощью внешней энергии, которая меньше запасенной энергии (эффект защелки). Всё очень естественно.

Таким образом, на основании проведенного анализа собранных научных фактов можно утверждать, что на Солнце идет ядерная реакция расщепления гелия.

Успехи космонавтики позволили получить дополнительные данные, способные помочь оценить адекватность анализируемых моделей Солнца. В  XXI веке произведено достаточно много съемок сближений комет с поверхностью Солнца, иногда заканчивающихся их столкновением. Эффекты, наблюдаемые во время этих сближений оказались весьма неожиданными, способными сыграть решающую роль при выборе адекватной модели Солнца.

В объективы телескопов NASA, выведенных на круговые орбиты к Солнцу, попадают в основном небольшие околосолнечные кометы, носящие имя открывшего их немецкого астронома XIX века Генриха Крейца. Сейчас в каталогах зафиксировано более тысячи подобных комет.

Но иногда на солнце падают и кометы-пришельцы. Одна из таких комет попала в объектив телескопа в августе 2016 года. Размер этой кометы был сопоставим с размером Земли.

Съемки процесса сближений комет с Солнцем выявили удивительное, повторяющееся явление. Ядерный процесс, происходящий на Солнца, оказался чувствительным к приближению комет, а именно: кометы действуют на него, как катализатор, т.е. ядерный процесс, идущий на Солнце, интенсивно активизируется при приближении кометы. Причем, он активизируется не со стороны приближающейся кометы, а где-то с обратной стороны Солнца, что явилось неожиданным и очень полезным нюансом, требующим тщательного изучения в плане использования аналогичного явления в условиях Земли.

Избранные кадры столкновения кометы в августе 2016 года приведены на фото 2 ÷ 5. На всех фотографиях лучистая повторяющаяся засветка это эффект, называемый короной Фраунгофера, не имеющей отношения к интересующим нас коронарным выбросам массы.

2                      3                        4                       5

Фото 2÷5. Двухдневное сближение крупной кометы с Солнцем в августе 2016 года

Бурный выброс на Солнце (см. фото 5) такой большой интенсивности — явление достаточно редкое. Падение кометы на Солнце — ещё более редкое явление. Одновременное попадание в кадр двух независимых и редких событий является событием редчайшим. Но все наблюдаемые сближения комет с Солнцем сопровождаются мощными выбросами. Возникает уверенность, что эти события не случайны.

Фото 6÷10. Опасное сближение кометы с Солнцем в январе 2002 года

Но именно в случайности этих «совпадений» пытаются убедить нас комментаторы НАСА. Зачем американцы в фильме с августовской кометой 2016 года удалили кадры с финальным выбросом от непосредственного удара кометы? А первоначально фильм был опубликован полностью. Дело в том, что этот выброс, очень похожий на выброс антипода, длился всего пару часов, и затух почти синхронно со своим антиподом. Но выброс-антипод не был взрывом, этот выброс развивался, усиливаясь синхронно с приближением кометы, почти двое суток. На кадре 2 виден начальный момент его возникновения, он обведен черным кругом. Комета в этот момент еще очень далеко от Солнца, и её проекция на кадре в этот момент как бы удаляется от Солнца, хотя комета на самом деле приближается. С этого момента реакция Солнца монотонно усиливается с приближением кометы, и обрывается сразу после столкновения. Взаимосвязь двух событий – очевидна, и очевидно намерение скрыть её.

Как бы ни старались американцы убедить нас, что бурная реакция Солнца с обратной стороны от кометы не связана с приближением кометы, съемки других столкновений подтверждают их прямую  зависимость.  Особенно показательно в этом плане сближение кометы с Солнцем, без последующего столкновения, произошедшее в январе 2002 года, см. фото 6÷10.

В этот раз реакция Солнца на обратной стороне началась где-то за 40 ч. Но когда голова кометы миновала пиригелий, и позицию головы занял хвост кометы, Солнце прореагировало большим выбросом в сторону хвоста кометы. Когда же комета удалилась на 17 ч, и её хвост успел развернуться, то Солнце ответило выбросом с противоположной стороны. Всё сходится на том, что наведенный положительный заряд увеличивает интенсивность распада гелия, а наведенный отрицательный заряд или не влияет на интенсивность распада, или ослабляет её.

Логично предположить, что кометы при подлете к Солнцу сильно ионизируются, и представляют собой ярко выраженный диполь с отрицательно заряженным хвостом. В момент приближения кометы к Солнцу, с ближней его стороны, возникает область с наведенным отрицательным зарядом, который, видимо, не влияет на реакцию расщепления. Ни на одном кадре сближения кометы с Солнцем, кроме фото №8 с январской кометой 2002 года, автор не смог обнаружить упреждающей, встречной реакции Солнца в зоне предстоящего падения. В зоне столкновения Солнце реагирует мощным выбросом только собственно на столкновение с кометой.

С противоположной же от кометы стороны Солнца индуцируется положительный заряд, который действует уже как катализатор, и приводит к бурному усилению реакции расщепления гелия. В ситуации с январской кометой 2002 года Солнце в перигее прореагировало со стороны кометы. Это была реакция на отрицательно заряженный хвост кометы, не успевший развернуться из-за малого времени пребывания в перигее, и пролетевший также близко, как и голова кометы. После удаления кометы, зона бурной реакции Солнца сместилась на противоположную от кометы сторону (фото №9).

Обнаруженные признаки могут помочь установить тип действующей реакции, т.е. определить какие факторы приводят гелий в состояние, при котором «защелка», удерживающая протоны в ядре, становится более слабой и податливой для внешнего воздействия. При такой интерпретации мы должны предположить тензорный характер сил, реализующих «защелку». Тензорным характером обладают магнитные силы. Это обстоятельство вновь обращает нас к идее нобелевского лауреата Швингера.

Вывод очевиден. На поверхности Солнца идет активная, мощная реакция, которая, видимо, и обеспечивает температуру поверхности Солнца порядка  миллиона градусов, и которая чувствительна определенным образом к пролетающим кометам.

Нет необходимости доказывать, что обнаруживающая себя реакция Солнца на кометы не может быть процессом синтеза гелия, т.к. очень мала температура, и недостаточна необходимая плотность вещества. Кроме того, предположить, что пролет кометы может влиять на термоядерную реакцию синтеза, идущую в центре Солнца, совершенно невозможно, т.к. массы комет ничтожны по сравнению с Солнцем, а возмущения электромагнитной природы преодолевают солнечную область лучевого переноса в течение миллиона лет, см. ССМ. Остается единственно возможный в данной ситуации вариант – мы наблюдаем инициированное усиление ядерного расщепления гелия.

Конкретные параметры реакции и условия происходящего процесса предстоит установить.

Высокой чувствительностью процесса, идущего на Солнце, к некоторым физическим процессам (и не только к пролету комет), можно объяснить образование темных пятен на Солнце.

Как известно, особенностью горячих (теплых) вращающихся жидких тел является их способность формировать слоистые широтные течения, характеризуемые разной скоростью углового вращения. Вторичным эффектом данной особенности является образование квазиустойчивых вихрей между этими слоями. Такие вихри наблюдаются на Юпитере. След бывших водяных вихрей остался на Европе, спутнике Юпитера.

Аналогичные вихри должны образовываться и на Солнце. Однако вершины этих вихрей, подходящих к поверхности Солнца, могут разрушаться (размазываться) активным слоем – и мы их не наблюдаем. Эти вихри, присутствуя в подложке активного слоя, своим зарядом и магнитным полем влияют на интенсивность процесса расщепления гелия. Это влияние и обнаруживается в формате темных пятен. Таким образом, в предлагаемой версии, солнечные пятна находятся над солнечными вихрями.

Похоже, к этому мнению уже склоняются все астрофизики. Только, почему-то они считают причину вихрей неизвестной. А ведь, пятна образуются именно в зоне оптимальной для образования межслоевых вихрей. И когда солнечные пятна начинают смещаться к экватору, это значит, сужается экваториальный поток. Эти закономерности поведения потоков необходимо исследовать, чтобы понять солнечную динамику и цикличность, от которых они зависят. Похоже, при колебании температуры поверхности Солнца, градиент относительных скоростей широтных потоков меняет знак, а вместе с ним меняется направление вращения вихрей.

То обстоятельство, что место, в котором происходит спровоцированный кометой выброс вещества Солнца, производит впечатление непредсказуемого, тоже связано с темными пятнами на Солнце. При наличии на Солнце скрытых вихрей, именно в ближайшем пятне к точке антипода кометы может происходить выброс, инициируемый кометой.

К сожалению, автор не успел скопировать достаточное количество кадров зафиксированных сближений комет с Солнцем, для большей наглядности демонстрации. Агентство НАСА удалило большую часть фильмов на данную тему, и заменило их подбором фотографий или фрагментами этих фильмов, сопроводив их комментариями, маскирующими и заведомо искажающими именно признаки ядерного процесса на поверхности Солнца.

Прокомментируем эту ситуацию на примере августовской кометы 2016 года.

Не странно ли, что фильм заканчивается моментом ухода кометы за экран объектива. А ведь, при первых публикациях момент столкновения и последующий выброс были представлены. Что же от нас скрывают  американцы? А скрывают они ложь нового, появившегося комментария о том, что мощный выброс с противоположной стороны является случайным совпадением.

Дело в том, что удаленный НАСА фрагмент с реакцией, вызванной ударом кометы о поверхность Солнца, отображал выброс, который, возникнув, продолжил развиваться синхронно с бурным выбросом на обратной стороне Солнца, и оба выброса закончились практически одновременно, что отвечает представлению об исчезновении общей причины возмущения.

В Интернете был опубликован еще более наглядный фильм с прохождением кометы близко от Солнца, произошедшем в феврале 2015 года. Но этот фильм НАСА уже удалило целиком.

Отслеживаемые автором публикации НАСА в Интернете дают основания считать, что в США давно знают о невозможности синтеза гелия, сопровождаемого выделением энергии. Видимо, поэтому США отказались от участия в проекте ИТЭР. А удаление съемок столкновений комет с Солнцем, связано с запоздалой реакцией охранных служб США на не замеченный своевременно эффект.

 

Можно понять сомнения эрудированного читателя, который, ознакомившись с предлагаемым альтернативным вариантом модели Солнца, вспомнит множество косвенных обстоятельств, не согласующихся со сделанным здесь заключением. Однако не спешите с поспешными выводами.

В гармоничном мире всякая ошибочная концепция должна непременно обнаружиться в процессе научного прогресса. Вот, она и обнаружилась.

Однако сложившаяся в настоящее время ситуация усугубилась тем, что вскрытая ошибка не является единичной, и к тому же имеет фундаментальный характер. На основе этой ошибки совершены последующие смежные ошибки, сформировавшие системную, ошибочную парадигму. Эта ошибочная парадигма сама себя поддерживает подпорками-натяжками со всех сторон. Такую конструкцию трудно  опровергнуть на основании разбора одной спорной ситуации.

К тому же читатель должен понимать, что перед ним не научная работа, требующая проведения всевозможных экспертиз и приведения убедительных доказательств и расчетов, это всего лишь отчет, построенный на анализе опубликованных экспериментальных фактов, обнаруженных другими учеными и исследователями.

Автор не проводил никаких самостоятельных изысканий, а только сопоставлял факты, полученные профессиональными исследователями, с представленными интерпретациями разрозненных профессионалов-специалистов. Автор пытался выявить устаревшие, содержащие неточности, стереотипы мышления исследователей, манкирующих философским, обобщающим анализом.

Вскрытое заблуждение совершено без злого умысла. Однако обреченное на неудачу строительство ИТЭР и отечественных ТОКАМАК-ов, ориентированных на реакцию синтеза гелия, идет полным ходом. Лучшим способом спасти потраченные средства и не отстать от США является своевременная переориентация проектов ТОКАМАК и ИТЭР с синтеза гелия на его расщепление, или расщепление другого, более подходящего вещества по сравнению с гелием, но тоже обладающего свойством управляемой защелки, и более доступного.

 

Источники информации

1 Физическая энциклопедия. Интернет.

2 Швингер Ю. Магнитная модель материи, //УФН, 1971, Т. 103, С.355.

3 Леонович В.Н., Происхождение солнечной системы на основе квантовой парадигмы. Интернет: http://www.sciteclibrary.ru/rus/catalog/pages/11553.html .

4 Леонович В.Н., Природа шаровой молнии. Интернет: www.proza.ru/2009/09/28/936 .

5 Леонович В.Н., Концепция физической модели квантовой гравитации. Интернет:     http://www.sciteclibrary.ru/rus/catalog/pages/10168.html .

6 Столкновение Солнца с кометами. Видео НАСА. Интернет.

7 Леонович В.Н., Концепция физической модели квантовой гравитации. Интернет.
https://www.youtube.com/watch?v=KMIrHoigEiM

8 Столкновение Солнца с кометами. Интернет. Ютуб.

9 Лучков Б.И., Природа и источники энергии звезд.  http://nuclphys.sinp.msu.ru/mirrors/2001_5.pdf.

 

 

 

Контакты с автором:

Email: vleonovich@yandex.ru

Моб. тел. 8-910-129-9059

 

Теория относительности. Информация к размышлению.Часть 3. Кривизна пространства

 

Теория Относительности

Информация к размышлению

Часть 3

Кривизна пространства

 

Судя по названию, и на основании исторических фактов, геометрия зародилась как инструментарий по измерению земельных участков различной формы и конфигурации.

Абстрактная сущность этого инструментария так естественна, что долгое время не вызывала удивления и не привлекала к себе внимания. Однако, чем больше мыслители задумывались о сути бытия, тем чаще им приходилось сталкиваться с проблемами законов геометрии.

Когда проблемы сделались такими явными, что не замечать их стало невозможно, то они были решены на основе уже сложившихся, не совсем верных представлений о геометрии, которая незаметно и не обоснованно превратилась из просто инструментария в науку о пространстве.

Между тем, к этому времени в физике сложилось два понятия кривизны: кривизна тел и кривизна пространства.

Кривизна тел описывается аналитической евклидовой геометрией, со своим математическим аппаратом.

Кривизна пространства – понятие физико-философское, и зависит от исходных постулатов, положенных в основу физико-философских представлений о реальном мировом пространстве или о придуманном, не реальном пространстве.

Как следствие, кривизна пространства не имеет своего специализированного математического аппарата. Однако это обстоятельство никому не мешает пользоваться аппаратом классической геометрии в качестве универсального инструмента, хотя это приводит к всевозможным ошибкам и заблуждениям.

 

Геометрия оперирует точками, линиями, плоскостями, объемами и фигурами. Все манипуляции классической геометрии производятся в трехмерной системе координат с помощью трех прямолинейных осей, связанных с реальным пространством. Вот здесь и начинаются проблемы геометрии, вознамерившейся стать наукой о физическом пространстве.

Дело в том, что геометрия тяготеет к абстракции. А реальное пространство материально. Геометрия пространства начинается с физики. Более конкретно – с философии физики. Еще более конкретно – с принципа причинности, по которому, ни какой объект Вселенной не может изменить своего кинетического состояния без реальной на то причины.

Признак причины – это сторонняя сила, действующая на объект. Нет сторонних сил – нет изменения кинетического состояния объекта.

Последнее утверждение — всего лишь перефразировка принципа причинности для частного случая.

Объект, которому придали конкретный импульс, приобретает дополнительную постоянную скорость, и сохраняет суммарную скорость сколь угодно долго, двигаясь по прямой линии, т.е. не изменяя не только величину скорости, но и её направление.

Вот, только что, мы на основании принципа причинности, сформулировали определение прямой линии, и определили её физический смысл.

Пространство, способное реализовать прямолинейное движение, называется тоже прямолинейным.

Таким образом, получается, что прямолинейным пространством является пространство, в котором реализуется инерционное движение в трактовке Ньютона.

Всякое другое (не прямолинейное пространство) можно рассматривать как криволинейное.

То, что прямая линия является наикратчайшей – это так и есть, но это необходимо еще обосновать и доказать.

Рассмотрим один из геометрических тестов на кривизну пространства.

Если кривизна пространства постоянна, то луч света или любое тело, посланные в некотором направлении, вернутся в точку отправки с противоположной стороны. Это одна из аксиом криволинейного пространства.

Спрашивается, если одновременно послать два луча в противоположные стороны, то совпадут ли их траектории движения.

Ответ кажется очевидным, а именно, — траектории должны совпадать. Однако попробуйте изобразить эту ситуацию на листе бумаги для двухмерного пространства.  Постройте первую круговую траекторию, а затем постройте встречную методом постепенного поворота первой траектории на 180 градусов, скажем по 30 градусов за шаг. Когда исследователь дойдет до противоположного направления, то он убедится, что траектории не совпадают радикально.

Таким образом, лучи света, посланные в противоположные стороны, нигде не встретятся, кроме точки отправки. Геометрия такого пространства должна быть еще более экзотична, чем все известные неевклидовы геометрии.

Если кому-то хочется верить, что такие пространства возможны, и что мы живем в таком пространстве, то вольному воля. Попытайтесь сформулировать постулат, на основе которого можно было бы доказать возможность замкнутых криволинейных пространств.

 

Современная классическая геометрия, называемая евклидовой, вовсе не является той геометрией, которую задумал Евклид. Это обстоятельство является следствием того, что классическая геометрия построена вовсе не на постулатах Евклида, она построена на аксиоматике Гильберта.

Закладывая основы своей геометрии, Евклид имел в виду натургеометрию. Об этом свидетельствует его первый постулат-определение точки, которое он приводит. «Точка это то, что не имеет частей». Обратим внимание на то, что точка в определении Евклида однозначно предметна. Это не безразмерное геометрическое место, которое пусто по смыслу косвенного классического определения безразмерной точки.

Определение точки Евклидом соответствует материальному кванту пространства в современном понимании.

А если так, то материальная точка должна иметь размер.

Осознание и признание этого обстоятельства должно бы привести к созданию совершенно иных, квантовых геометрии, вскрывающих множество, пока не раскрытых, тайн природы. Однако автор может предложить только свою концепцию аксиоматики квантовой геометрии, см. Интернет, Леонович В., «Концепция физической модели квантовой гравитации». Квантовых геометрий в научной литературе не опубликовано.

После определения предметной точки, самым естественным определением линии будет следующее: линия – это неразрывная последовательность точек, в которой каждая точка соприкасается не более чем с двумя соседними точками.

Современная геометрия, сформированная на аксиоматике Гильберта, своими внутренними средствами не может определить изначальные понятия точки и прямой линии.

Определяя линию как длину без ширины,  Евклид вносил в свою аксиоматику с предметной точкой, либо очевидное противоречие, либо явную неполноту,- выбор зависит от того, что иметь в виду под отсутствием ширины.

Гильберт устраняет данное противоречие, отказываясь от определения точки, предложенного Евклидом, но взамен он не предложил ничего другого, сознательно сохранив тем самым очевидную неполноту уже своей аксиоматики.

Две цитаты из Википедии.

«В современной аксиоматике евклидовой геометрии точка является первичным понятием, задаваемым лишь перечнем его свойств — аксиомами».

«В геометрии, топологии и близких разделах математики то́чкой называют абстрактный объект в пространстве, не имеющий никаких измеримых характеристик (нульмерный объект). Точка является одним из фундаментальных понятий в математике».

Отказавшись от определения точки, Гильберт также поступил и с определением прямой линии. В дополнение к этому, Гильберт переформулировал пятый постулат Евклида, который лишь косвенно определял параллельность прямых линий. Гильберт же придал этому постулату математическую конкретность.

Сравним.

По Евклиду: «5. И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные эти две прямые неограниченно встретятся с той стороны, где углы меньше двух прямых».

Пятый постулат Евклида считается эквивалентным постулату Гильберта: «Через данную точку, вне данной прямой, можно провести на плоскости не более

одной прямой, не пересекающей данную, то есть не более одной прямой, параллельной данной».

Из постулата Евклида, единственность параллельной прямой вовсе не следует, это положение нуждается у него в дополнительном доказательстве.

Постулат же Гильберта строг и категоричен. Он явно свидетельствует, что Гильберт не воспринял идею Евклида создать геометрию реального пространства.

Аксиоматика и геометрия Гильберта, которой дали название геометрии Евклида, описывает идеализированное пространство, состоящее из безразмерных точек.

Совершенно очевидно, что безразмерные точки принципиально не могут сформировать неразрывное геометрическое пространство. Это изначальное противоречие классической геометрии тихо замалчивается официальной наукой.

Отсутствие определения прямой линии в аксиоматике Гильберта, при обращении к криволинейным пространствам, вызвало путаницу в трактовке свойств этих абстрактных пространств.

Понятие безразмерной точки, которое фактически использует Гильберт, приводит при преобразованиях инверсии к очевидным противоречиям, которые всем известны, но всеми признаются за норму.

Как известно, инверсия переводит каждую точку внутренней области окружности в её внешнюю область, и обратно, в соответствии с формулой

Rвнутр*Rвнеш = Rо* Rо, где Rо – радиус заданной окружности.

Преобразование инверсии позволяет утверждать, что количество точек внешней области точно равно количеству точек внутренней области заданной окружности. Это странное обстоятельство принимается всеми в молчаливом предположении, что плотность точек во внутренней области бесконечно больше плотности точек во внешней области.

Однако выбор положения заданной окружности произволен. Из чего следует, что плотность точек в выделенной области должна быть равна плотности точек по всей плоскости.

Получаем очевидное противоречие.

 

Вспомним ситуацию с излучением черного тела. Там тоже использование шкалы с безразмерными точками приводило к несоответствию теоретических построений с экспериментальными данными. Выход был найден в обращении к реальному квантовому пространству.

 

Если ввести очень естественное положение, по которому считать не корректным любое математическое или логическое построение, в промежуточных рассуждениях которого используется обращение к параметрам с бесконечной величиной, то из математики и геометрии исчезнут многие загадочные явления, превратившись в изначально не корректные. Однако в этом случае в классической геометрии Евклида придется отказаться от безоглядного применения операции инверсии, если не приняты специальные меры или оговорки. И это не единственное следствие.

 

Стоит нам применить инверсию к реальному квантовому пространству, как все парадоксы, связанные с плотностью безразмерных точек исчезнут. Но вскроется важное обстоятельство: при операции инверсии точки внутренней области данной окружности не покрывают все точки внешней области.

Гильберт, своим вмешательством, превратил попытку Евклида создать геометрию реального пространства, в создание абстрактной, идеализированной, не квантовой геометрии с претензией на материальную самодостаточность, чем надолго приостановил развитие квантовой геометрии.

 

Нельзя обсуждать проблемы пространства, не определив его структуру.

А поскольку единомыслия по поводу мирового пространства не наблюдается, то рассуждения о пространстве следует начинать не только с определений и постулатов, но и с глоссария.

Начнем с пространства, в котором мы существуем, с пространства Вселенной. Это пространство, прежде всего: реально, материально и трехмерно. Можно было бы добавить, что структура мирового пространства является квантовой. Однако практическая политика РАН не позволяет этого сделать, т.к. одновременно и официально признаются две, якобы фундаментальные теории: квантовая теория и теория относительности Эйнштейна,- в которых использованы разные представления о структуре пространства.

В учении Эйнштейна пространство формируется вещественной материей, состоящей из безразмерных точечных объектов (безразмерный физический объект — по существу абсурдное понятие), которые не должны занимать никакого объема, и из физической пустоты — эфира. Понятие эфира Эйнштейн не стал определять с требуемой подробностью, но счел необходимым упредить идею всевозможных, так называемых пролетных пространств, типа поля-пространства Хиггса, отвергнув их.

По Эйнштейну: «…общая теория относительности наделяет пространство физическими свойствами; таким образом, в этом смысле эфир существует… Однако этот эфир нельзя представить себе состоящим из прослеживаемых  во времени частей; таким свойством обладает только весомая материя; точно так же к нему нельзя применять понятие движения».  Конец цитаты.

В квантовой же теории, по умолчанию, предполагается квантовая структура пространства, хотя квант пространства  в современной теории до сих пор не обозначен.

Логично, что в учении Эйнштейна в качестве опорной геометрии, используется геометрия Евклида в интерпретации Гильберта, т.е. идеализированная геометрия.

И совершенно не логично, что и в квантовой теории используется та же геометрия, с безразмерной точкой.

Вследствие этого квантовые теоретики зациклились на одном, универсальном кванте, на кванте действия, который ко всему не является материальным объектом, что способствует формированию мистических наклонностей в квантовой физике.

 

По современным представлениям реальное пространство сформировано если не из квантов, то из элементарных частиц. С некоторых пор, а именно с момента воцарения Стандартной модели, физики этой коллаборации приравняли понятие квант и понятие элементарная частица, чем внесли в науку дополнительную, искусственную путаницу. Тем не менее, и квант, и частица – обязательно трехмерны. В реальном пространстве нет, и не может быть одномерных и двумерных объектов, это всего лишь абстракция. Реальный кирпич без высоты или без ширины – это фразеологический нонсенс, т.к. в любом варианте объекта нет. Однако, в рамках принятых условностей, можно проекцию куба называть кубом без толщины. Только зачем?

Геометрия Евклида одновременно оперирует как трехмерным абстрактным пространством, принимаемым традиционно за объектное пространство, так и одномерным и двумерным абстрактными пространствами. Этим создается ситуация, провоцирующая мысль, что мерность любой геометрии не связана с мерностью реальных объектов.

Таким образом, возникает соблазн не ограничивать многомерность всевозможных геометрий, и применять в них экстраполяцию математического аппарата геометрии Евклида-Гильберта, распространяя его формализм, чисто условно, на все придуманные геометрические оси, дополнительные к трем реально существующим.

Этот прием пока безотказно действует в отношении метрики пространств. Но все остальные теоремы и аксиомы необходимо доказывать конкретно, чего однако не делается.

 

Но вернемся к предмету нашего обсуждения, т.е. к предполагаемой кривизне реального пространства.

Что значит криволинейное пространство, и каковы практические критерии его кривизны?

Следуя установкам теоретиков кривых пространств, согласимся условно, что наикратчайшая линия между двумя точками будет являться некоторой кривой, но тем не менее, конкретной линией, которая называется геодезической.

Предположим, что мы находимся в криволинейном пространстве, в котором некоторая область практически линейна.  Находясь в рамках некоторой ИСО, будем перемещаться из точки А в точку Б по кратчайшему пути, измеряя при этом расстояние от А до Б. Проделаем эту операцию, находясь в разных областях нашего комбинированного пространства.

Теоретики кривых пространств утверждают, что наши измерения ничем не будут отличаться друг от друга, в какой бы части пространства мы ни находились. Таким образом, находясь в существенно криволинейной области и имея жесткий образец прямолинейного отрезка (длинный металлический штырь) мы не обнаружим кривизны пространства даже вращая наш штырь вокруг оси. Мы не только не обнаружим признаков кривизны, мы не обнаружим усилий, необходимых для изгибания стержня в разные стороны. Это значит, что в представлении данных теоретиков кривизна пространства деформирует твердые тела без затрат энергии. Альтернативный вариант с затратой энергии не выдерживает никакой критики.

Свободный гироскоп, ось которого ориентирована по геодезической линии, будет отслеживать эту линию или ей параллельную.

Луч света тоже будет распространяться по геодезической линии.

К тому же, движение по геодезической линии не вызывает центробежной силы. Это очень важно.

Все эти свойства, связанные с представлением о криволинейном пространстве, наводят на мысль о невозможности существования таких реальных пространств с явно мистическими свойствами.

Эти свойства, являясь совершенно  противоестественными, не вызывают тем не менее адекватного протеста научного сообщества, т.к. никто не настаивает на их значимости в практической деятельности. Это обстоятельство снижает бдительность по противодействию абсурдным исходным положениям о кривизне реального пространства, и позволяет им жить в умах фанатов.

 

Линейное пространство не является, как может показаться, частным случаем криволинейного пространства.

Физическим смыслом линейного пространства является полная индиферентность пространства по отношению к инерционному движению вещества. Линейность пространства является следствием невмешательства пространства, как среды, в инерциальное движение вещества. А криволинейное пространство предполагает это вмешательство, причем утверждается, что это вмешательство реализуется без всякого взаимодействия. Но тем самым нарушается принцип причинности. Таким образом, криволинейных пространств, конкурирующих с реальным пространством, не существует.

“Нет ни чего позорнее для ищущего истину, чем мнение, будто что-либо может произойти без причины”. Цицерон

Кривизна пространства, между тем, в представлении авторов, не является скрытым параметром; её якобы можно обнаружить многими способами, но все они сопряжены с огромными трудностями метрологического свойства. Самый простой и наглядный способ – это измерение суммы углов треугольника. В криволинейном пространстве эта сумма не равна 180 градусам. Отклонение тем больше, чем больше стороны треугольника.

Лобачевский не считал свои изыскания имеющими отношение к реальному пространству, и, говоря о возможности проверки кривизны реального пространства астрономическими методами, видимо, имел в виду подтверждение линейности Вселенной.

До настоящего времени вопрос о кривизне реального пространства остается открытым. Дело в том, что до сих пор нет ни малейшей определенности в вопросе о физической структуре пространства.

Однако, не смотря на это обстоятельство, некоторые частные аспекты явления кривизны пространства могут служить критериями при обсуждении свойств конкретных,   придуманных пространств.

Например, мы мыслим вслед за Эйнштейном, что кривизна пространства может изменяться локально, в зависимости от плотности массы в данной области пространства. Представим, как это должно выглядеть с учетом обобщенных представлений о кривизне пространства.

Пусть достаточно большая область пространства является плоской. Прокалибруем её параллельными линиями, а затем внесем в центр этой области малое массивное тело. Исходя из представлений Эйнштейна, область пространства около этого тела искривится.

Возникает вопрос, почувствуется ли это искривление в дальней области нашего пространства? Общепринятый ответ – не почувствуется, т.е. параллельные линии при приближении к массивному телу искривляются некоторым образом, а при удалении от тела в противоположном направлении их параллельность восстанавливается. Другие мнения в публикуемой литературе отсутствуют.

Однако такая интерпретация кривизны пространства прямо противоречит тому практическому критерию, который уже используется для доказательства локального искривления пространства. Речь об искривлении луча света около массивного тела. Дело в том, из двух параллельных лучей света ближний луч искривится значительно, а второй, достаточно отдаленный луч, практически не отклонится. Очевидно, что после прохождения лучами массивного тела параллельность лучей не восстановится. А это значит, что предполагаемое искривление траекторий лучей света около массивных тел не имеет отношения к искривлению пространства. Этот факт всем известен, но упорно всеми причастными и заинтересованными лицами игнорируется.

А это уже потворство лженауке.

Наши неподвижные параллельные линии в плоском пространстве можно описать математически. Теперь попробуйте найти такое преобразование пространства, которое делало бы параллельные линии пересекающимися. Такое преобразование невозможно без нарушения неразрывности пространства. Чтобы обеспечить пересечение параллельных линий при их деформации, надо нарушить неизвестную нам структуру пространства. Это обстоятельство заметили некоторые из апологетов кривизны пространства. Вот фрагмент из популярной статьи в Интернете, комментирующий это обстоятельство. Цитата.

«В геометрии Лобачевского принимается следующая аксиома:

Через точку, не лежащую на данной прямой, проходят, по крайней мере, две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её.

Широко распространено заблуждение, что в геометрии Лобачевского параллельные прямые пересекаются». Конец цитаты.

В геометрии Лобачевского параллельные может и не пересекаются, а вот в его аксиоме пересекаются. Причем утверждение «по крайней мере, две прямые» фактически означает, что число таких прямых равно бесконечности.

А что можно сказать по этому поводу про точку, лежащую на данной прямой. Можно ли через неё провести две прямые, не пресекающие и не совпадающие с данной прямой?

Множество предшественников Лобачевского пыталось доказать пятый постулат Евклида на основе четырех предыдущих. Доказательств было представлено несколько, времени и сил на них потрачено неимоверно много. Но всегда находилась логическая ловушка, замаскированная терминологически, которая аннулировала все доказательства.

Теория Лобачевского гораздо сложнее и гораздо более громоздка по сравнению с теми доказательствами. Если хорошенько поискать, то возможно и в ней найдется такая ловушка – и тогда все изыскания в области криволинейных пространств окажутся воздушным замком.

Большинство проблем, возникших при попытках совместить идеализированные геометрии с натуральной геометрией, вызваны отсутствием предположений по поводу структуры пространства. Теоретики квантовой механики сдали свои позиции в угоду квантовой теории поля. А квантовая теория поля, будучи частной по своей сути, но не признающей этого своего качества, оказалась в естественном тупике, т.к. если квантовая теория поля обратится к структуре пространства, то неизбежно разрушит ту, эфемерную, чисто энергетическую структуру, которая выдается за верх совершенства.

 

Давно известны результаты теоретического исследования расширения изотропного пространства. Известно, что такое расширение для достаточно большой Вселенной невозможно. Но академики, утверждая и поощряя теорию Большого взрыва, об этом молчат. Поэтому напомним это обоснование.

Предположим для наглядности, что вся Вселенная равномерно заполнена водородом и изотропно расширяется так, что соседние атомы удаляются друг от друга в данный момент со скоростью V, и при этом сами не изменяются в размерах. Это условие изотропного расширения выглядит совершенно безобидно, но это коварная безобидность.

Рассматривая только два соседних атома, можно утверждать, что скорость расширения постоянна во все времена и равна V.

Однако, если рассмотреть два не соседних атома, а разделенных несколькими промежуточными атомами, то выяснится, что относительная скорость удаления атомов  тем больше, чем больше промежуточных атомов находится между заданными двумя контрольными атомами, и эта скорость ничем не ограничена. Вместе с относительной скоростью атомов неограниченно растет их кинетическая энергия.

Анализ ситуации приводит к однозначному выводу: постановка начальных условий некорректна. Таким образом, достаточно большое по объему реальное пространство не может изотропно расширяться, тем более это недопустимо для бесконечного пространства.

 

Ещё древние мыслители догадались, что пространство не может быть пустым.

Пространство вмещает в себя: вещество в форме тел, вещество в форме сред, всевозможные поля, а еще вмещает загадочную, не вещественную материальную среду, которую условно назвали эфиром.

Можно ли из эфирного пространства выделить его конкретную часть для последующего исследования? На первый взгляд – можно. Для этого необходимо создать вещественный, замкнутый, прочный, непроницаемый объект, содержащий интересующий нас объем в виде полости. Затем удалить из полости все предметы и все вещественные среды. С удалением полей получается заминка. Оказывается, часть полей можно удалить, часть полей можно только ослабить, а часть полей удалить принципиально невозможно, например, гравитационное поле. Получается, что при перемещении нашей полости в окружающем пространстве, внутри неё всё время меняется материальная среда с поддерживаемым ею гравитационным полем.

Таким образом, по отношению к веществу материальное пространство эфир является субстанцией всепроникающей, а вовсе не обтекающей.

Это обстоятельство уже учтено разработчиками Стандартной модели. Бозон Хиггса, в качестве кванта, формирующего непрерывную безмассовую среду, наделен авторами свойством всепроницаемости.

Это свойство существенным образом влияет на наше представление о кривизне пространства. Действительно, каким образом всепроникающее пространство будет искривлять твердые тела сообразно кривым геодезическим линиям?

По желанию исследователя, в вводимом понятии кривизны пространства может быть учтено влияние любых полей, но это мероприятие лишь усложняет модель, не решая проблем кривизны.

Первый закон Ньютона сознательно устраняет всякое влияние полей требованием отсутствия внешних сил. Закон констатирует прямолинейное движение тел по инерции, не указывая причину этого явления.

Вводя понятие кривизны пространства, мы вносим дополнительное разделение функций для инерции, приписывая свойство прямолинейного движения линейному пространству, а не телу. Чем и воспользовался Хиггс. Правомерно это или нет – еще не исследовано.

 

Итак, еще раз, чем отличается линейное пространство от криволинейного.

Получив произвольный импульс движения в линейном пространстве, тело начинает равномерно перемещаться по прямолинейной траектории, совпадающей с лучом света.

Получив произвольный импульс движения в криволинейном пространстве, тело начинает равномерно перемещаться по криволинейной геодезической линии, тоже совпадающей с траекторией луча света, т.е. для наблюдателя прямолинейно. Казалось бы, исследователь вновь попал в западню галилеева трюма. Однако есть небольшой нюанс, который в случае линейного пространства просто не заметен. Дело в том, что в истинно криволинейном пространстве траектория движения по инерции не зависит от скорости тела, т.е. от его инициирующего импульса. А присовокупленная к кривизне пространства гравитационная кривизна в ТО этим свойством не обладает.

Таким образом, даже если бы кривизна пространства Эйнштейна существовала реально, то математический аппарат её отличался бы от аппарата ТО Эйнштейна.

Деформируя пространство в угоду прихотям кривизны, необходимо отслеживать реальные возможности квантового исполнения пространства. И здесь без свойств собственно пространственных квантов никак не обойтись.

Однако в ТО Эйнштейна квантов нет, там материя представлена в безразмерно точечном исполнении, что позволяет конечной Вселенной сжаться в одну безразмерную точку, т.е. в ничто. Писать такую откровенную глупость, даже от лица последователей Эйнштейна, стыдно, но приходится. К тому же, бесконечной Вселенной сжаться в точку всё равно не удастся, по причине бесконечности времени процесса.

Сам Эйнштейн писал: «Как мы должны представить себе предмет, состоящий из МТ (материальных точек, Л.В. ), и какие силы нужно предполагать действующими между ними? Если механика претендует на полное описание предмета, то этот вопрос необходимо ставить». Конец цитаты.

Учение Эйнштейна, в предъявленном изложении, к решению этого вопроса не приспособлено.

 

Терминология, используемая в науке, развивается стихийно. Следствием этого является наличие в научной терминологии всевозможных смысловых несоответствий, многозначности терминов и даже косноязычья.

Понятие пространство претерпело множество определений.

Настало время определиться. Уже все согласны, что пространство – это физическая сущность.

Пространство, в определенном аспекте, описывается геометрией. Но геометрия не содержит пространства. В геометрии есть только точки, линии, плоскости, объемы и неподвижные фигуры.

Нельзя говорить, что пространство пронизывает все объекты Вселенной. Это образное выражение, которое призвано акцентировать некоторое свойство материи, но акцентируя, мы тем самым искажаем реальную, комплексную суть пространства.

Гораздо правильнее, считать, что все объекты Вселенной являются возмущениями материи, которая не заполняет Вселенную, а её составляет.

Однако термин «возмущение» несет ненужную эмоциональную окраску.

Из любого объема Вселенной можно мысленно удалить материю, но только мысленно. Эта мысленная операция, которая реально не осуществима, приводит к формированию образа пустого пространства. И поскольку образ существует, то его необходимо определить и отделить от понятия свободного материального пространства.

Идеализированный образ пустого пространства можно назвать геометрическим пространством. Не следует лишь забывать постоянно употреблять это очень важное прилагательное – геометрическое или абстрактное.

В  геометрии нет не только материального пространства, в ней нет движения.

Все временные геометрические графики – это специализированные геометрические приемы, всего лишь специализированный инструментарий, предполагающий при своем применении использование определенных методик с привлечением времени.

Геометрий может быть множество. А реальное пространство только одно.

Если реальное пространство от области к области не изотропно, то допустимо рассматривать частные, не линейные подпространства. Но для этого необходимо доказать или поверить, что пространство неизотропно.

Все свойства пространства определяются свойствами пространственных квантов, и наоборот.

Физический смысл линейности пространства состоит в том, что материальное пространство не взаимодействует с объектами, движущимися по инерции. Это свойство, в рамках геометрического формализма, интерпретируется как прямолинейность движения по инерции.

Пытливый исследователь имеет право усомниться: так ли это на самом деле. И если окажется, что это не так, то следовательно наше пространство можно определить как криволинейное.

В реальном криволинейном пространстве реальное вещество при инерциальном движении должно перемещаться с постоянной скоростью, не сохраняя при этом направление движения, следуя заданной кривизне пространства и не нарушая при этом законы сохранения энергии и импульса, т.е. без приложения сторонних сил.

Изменяя направление движения объекта, мы неизбежно должны определить, как мы изменяем при этом момент количества движения. Нельзя замкнуть пространство, не нарушив закон сохранения момента.

Получается, что в любом случае криволинейное пространство может быть реализовано только за счет нарушения принципа причинности. Здесь с продолжателями Лобачевского спорить уже бесполезно. Если их пространство способно спонтанно (беспричинно) порождать всевозможные флуктуации, например, в форме электрон-позитронных пар, которые якобы моментально исчезают в горниле аннигиляции, коварно оставляя во Вселенной свою неуничтожимую энергию, что заставляет Вселенную беспричинно либо разогреваться, либо расширяться. При таком подходе видимо и криволинейное пространство тоже возможно.

При  введении новой геометрии нельзя огульно использовать ранее доказанные теоремы. Инструментарий одной геометрии не применим в рамках другой геометрии. Здесь многие изобретатели новых геометрий, в том числе и Эйнштейн, пользуются одним обманным приемом. Они предлагают выделить малый объем в рамках своих геометрий, и утверждают, что в этом объеме справедлив весь инструментарий линейного пространства, относящийся к дифференциальному исчислению. И, похоже, в этом смысле они правы.

Однако дифференциальное исчисление на практике совершенно бесполезно без интегрального исчисления. А интегральное исчисление для каждой геометрии является уникальным. Например, в сферической геометрии вообще нет прямых линий, хотя в дифференциальном исчислении сферической геометрии их можно использовать.

 

Попробуем разобраться, какими же особыми качествами  обладает четырехмерное, абстрактное пространство-временя (массив) Эйнштейна.

Во-первых, геометрия Минковского-Эйнштейна это вовсе не геометрия, а массив, т.к. содержит более трех координат. Таким образом, геометрия Минковского-Эйнштейна  это экстраполяция аппарата трехмерного геометрического массива для четырехмерного, не геометрического, массива.

Если теперь в четырехмерном массиве Эйнштейна взять сечение по координате tC, то получим объемную фотографию Вселенной в момент t1. В момент t2 будет следующая фотография. Замечательное, завораживающее свойство. Вот, только как его реализовать?

Если теперь взять сечение по другой координате, то что же получится? Координата tC уже не будет определена, а вместе с нею не будут определены и все другие координаты, которые в жизни продолжают зависеть от времени, не обращая внимания на то, что время отменено Эйнштейном. Получается полный абсурд. Но этот абсурд для большинства людей остается незаметным, т.к. люди категорически не желают всерьез воспринимать этот вздор. В жизни, если мы фиксируем какую-то координату тела, мы автоматически, подсознательно фиксируем время в процессе движения, как нашего тела, так и всего окружения. Рассматривая, например, пулю в верхней точке её траектории, мы не можем допустить, чтобы цель продолжала движение.

У Эйнштейна этот прием мышления не предусмотрен, т.е. запрещен по умолчанию, но мы этим пренебрегаем, расширяя возможности учения Эйнштейна, делая тем самым мертворожденное учение таким живучим.

Таким образом, времени в пространственных координатах уравнений Эйнштейна формально нет. Вернее, Эйнштейн хочет всех уверить, что его там нет. Но время, как чертик из шкатулки, возникает в результирующих уравнениях, после их неправомерного интегрирования. Поняв это, можно бы сказать, что фокус не удался.

Но академики рукоплещут.

А что делать скучающему обывателю?

Нижний Новгород, июнь 2016 г.

Бозон Хиггса. Информация к размышлению

 

Ключевые слова: поле Хиггса, бозон Хиггса, механизм Хиггса, конфайнмент.

 

Конец XIX и начало XX века ознаменовались технологическим бумом, иными словами – бумом изобретательства.

В процессе технического прорыва было выявлено множество принципиально новых природных эффектов и явлений, из которых не все были до конца понятными.

Одним из самых загадочных эффектов представлялся обнаруженный дефект массы.

Когда была открыта аннигиляция, то самым революционным выводом из этого события, с учетом эффекта дефекта массы, был вывод о возможности прямого преобразования вещества в энергию. И не дожидаясь исследования этих явлений в полном объеме, было постулировано, что любую частицу можно превратить в квант энергии соответствующей величины. И обратно. Более того, развивая эту идею, была создана квантовая теория поля, в которой вещество в форме жесткого кванта с неизменными параметрами, вообще не рассматривается. Вещественные частицы в этой теории являются сгустками энергии.

С философских позиций, процесс аннигиляции не вызывает непосредственного протеста, но тем не менее, все-таки настораживает. Аннигиляция напоминает процесс горения, самого обычного явления в природе. При горении происходит преобразование вещества, сопровождаемое выделением энергии и  необратимым уничтожением огромного количества информации. Эта устойчивая связь горения с исчезновением информации, почему-то не стала объектом любопытства в современной науке.

Процесс горения, как правило, не обратим.

Возникает естественный вопрос: обратима ли аннигиляция?

Процесс, обратный аннигиляции,– процесс создания вещества из энергии,– с философских позиций представляется весьма сомнительным, и требующим всесторонней проверки и обоснования.

Действительно, всякое массивное вещество несет в себе определенную, внешнюю и внутреннюю информацию, и обладает различными физическими свойствами, которые обеспечиваются сложными природными процессами, гармонично  встроенными в природные взаимодействия.

Каким образом, например, механизм гравитации возникнет из возмущенного, мало  информативного физического вакуума, т.е. из электромагнитных квантов или из других переносчиков энергии, остается неясным и весьма сомнительным.

С момента признания взаимной инверсии вещества и энергии, официальной науке пришлось расширить определение энергии, известное ранее как способность совершать работу. В связи с этим произошло нечто невообразимое. Новый подход потребовал новых допущений, некоторые из которых не согласовываются с прежними философскими выводами. Мешающие законы философии отменили методом пренебрежения, что вообще очень странно. Теперь главенствующее положение в науке занимает всемогущий принцип инфляции.

Смысл инфляционного принципа очень прост –  отказ от всех неугодных законов природы и введение новых, потребных авторам. Красочным примером применения принципа инфляции является теория Большого Взрыва.

 

В науке наступило торжество мистики. Ведущие академики РАН при закладке подмосковного коллайдера ВИКА бравировали намерениями воссоздать состояние вещества на каждой доле первых микросекунд после Большого Взрыва. И всё это они намерены узнать с помощью бозона Хиггса.

 

С тех пор, как наука перестала быть рыцарским и бескорыстным служением в поиске истины и превратилась из хобби в средство существования, т.е. стала заработком, к науке уже нельзя подходить со старыми мерками. Научный продукт стал товаром, а производители и распространители этого товара стали обычными рыночными дельцами, подверженными всем порокам рыночных отношений.

 

Методика анализа результатов столкновения релятивистских частиц в современных коллайдерах несет элемент гадания на кофейной гуще. Ошибиться легко. Еще легче ввести в заблуждение независимого эксперта.

 

Принимая во внимание изложенные выше обстоятельства, попытаемся получить представление о бозоне Хиггса не только на основе научной и справочной информации, а также с учетом, так называемого, человеческого фактора, т.е. максимально приближенное к реальности представление.

 

Начнем анализ собственно со Стандартной модели, в рамках которой и возникла идея бозона Хиггса.

Догадки ученых о том, что нуклоны не являются истинно элементарными частицами, блестяще подтвердились уже при первых бомбардировках неподвижных мишеней релятивистскими протонами. В результате были получены первые частицы, которые можно определить как осколочные по отношению к нуклонам. Когда же были построены современные коллайдеры, количество таких,- осколочных,- частиц начало быстро расти.

Когда количество объектов деления протона перевалило за сотню (а сейчас их уже более 400 шт.), возникло желание выделить из них истинно элементарные частицы, т.е. те, которые уже ни на что не делятся.

Кроме эффекта расщепления нуклонов при столкновении, учеными предполагается возможность образования неизвестных элементарных частиц путем энергетической инверсии, т.е. прямым формированием частиц из гамма-квантов.

 

Считается, что попытка выделить элементарные частицы удалась. Кропотливый анализ огромного количества результатов столкновения разных релятивистских объектов, позволил создать гипотетические образы искомых элементарных частиц, и на их основе разработать Стандартную модель. Все эти элементарные частицы приведены в описании Стандартной модели. Не будем её переписывать.

Теперь, казалось бы, с помощью этой Модели можно создать таблицу, отдаленное подобие таблицы Менделеева. В этой таблице можно было бы классифицировать все, а их более 400, известные  осколочные частицы. И еще множество ячеек этой таблицы должны остаться не заполненными. Для каждой заполненной ячейки можно привести комбинацию элементарных частиц, образующих данную частицу.

Однако никто не спешит создавать такую таблицу, видимо, она не очень нужна. Дело в том, что подавляющее большинство осколков являются короткоживущими и в свою очередь распадающимися. Кроме того, некоторые элементарные частицы, похоже, не могут существовать обособленно, т.е. в чистом виде в природе не существуют.

Так или иначе, Стандартную модель представили обществу без сводной таблицы осколочных элементов. Авторы ограничились описанием 61 избранной частицы.

 

Авторы Стандартной модели довольно давно ведут одностороннюю дискуссию, т.е. сами с собою, о завершенности своей теории, представляя её научной общественности как самую успешную из всех подобных теорий. Завершающим штрихом фундаментальной Стандартной модели было назначено экспериментальное обнаружение бозона Хиггса, этот факт должен послужить беспрекословным обоснованием теории.

Таким образом, фактор мотивации для обнаружения бозона Хиггса достаточно значимый.

Как же возникла идея экзотичного бозона Хиггса?

Самым естественным образом. Всякая законченная модель должна позволять оценивать свою полноту и границы своей применимости.

Питер Хиггс на первых этапах разработки обратил внимание на неполноту Модели в плане охвата существующих природных сил. Действительно, на тот момент в Модели отсутствовала сила инерции.

Следуя логике Стандартной модели, в которой все взаимодействия реализуются специализированными частицами, Хиггс постулировал существование ещё одной такой частицы, ответственной за формирование инертной массы вещественных объектов Вселенной.

Вот, именно этот момент — связь взаимодействия с наличием специализированной частицы, подается как теоретическая неизбежность существования бозона Хиггса, которая якобы следует из Стандартной модели.

Ничего подобного из Стандартной модели конечно не следует. Из самых общих соображений, никак не связанных со Стандартной моделью, следует, что в природе действует некий механизм, реализующий силу инерции – вот и всё. Если теперь принять, что этот механизм реализуется частицей, то это и будет якобы следствием Стандартной модели. Этого предположения оказалось вполне достаточно, чтобы с помощью дополнительных, уже целевых предположений создать гипотетический образ – модель полевого бозона Хиггса.

В этом месте требуется пояснение. Дело в том, что бозон, задуманный Хиггсом, и тот, который триумфально обнаружили в ЦЕРНе, совсем не одно и то же.

Так вот, чтобы не способствовать искусно создаваемой путанице, будем называть бозон, изначально задуманный Хиггсом, полевым бозоном, а обнаруженный в ЦЕРНе – просто бозоном Хиггса или тяжелым бозоном Хиггса.

Примеряя эту гипотетическую частицу к необычным функциям инерции, ученые пришли к выводу, что частица должна образовывать непрерывное поле, т.е. занимать всё пространство, а не взаимодействовать избирательно с отдельной вещественной частицей. В этом случае однозначно не существуют локализованные источники полевых бозонов.

А из всего этого следует, что полевой бозон должен формировать не дискретное поле, а непрерывную среду, которая и создает образ фиктивных масс частиц. Вот здесь и становится понятной аналогия с ветром и парусами. Действительно, ветер никак не входит в конструкцию парусника, но определяет тягу парусов в зависимости от их площади и конструкции.

Чем дальше приспосабливали полевой бозон Хиггса под необычные свойства инерции, тем экзотичнее он становился.

Вот этот процесс мысленной подгонки параметров бозона под известные свойства силы инерции и преподносится под флагом «из теории следует». На самом деле не из теории, а из опыта. Казалось бы, какая разница как сформулировать? Однако разница огромная.

Теоретический вывод предполагает логически обоснованный прогноз, который требует экспериментального подтверждения.

Подбор свойств полевого бозона Хиггса под проявления инерции — к теоретическим выводам отношения не имеет. Гипотетический подбор – он и есть гипотетический подбор по интуиции на основании практического опыта.

Идея была понятна – необходимо придумать частицу, которая реализовала бы все известные проявления инерции. Но аналога не было. Пришлось фантазировать. Называть эти фантазии авторов следствием теории не корректно. Но спекуляции с присвоением всяким идеям статуса теории стали уже повсеместными. За теории платят охотнее и больше.

Если идея неверна, то в процессе её подгонки под реальные факты неизбежно возникают непреодолимые трудности. И они начались. Чтобы их преодолеть пришлось обратиться к помощи реликтовой инфляции.

Авторы инфляционного принципа, создав учение о Большом Взрыве, поспешили объявить инфляцию ушедшей в безвозвратное прошлое. Смысл их заявления понятен, но уловка не удалась. Джин уже выпущен из кувшина.

Вот и для преодоления возникших противоречий в процессе подгонки свойств полевого бозона Хиггса под существующие реалии, пришлось ввести локальное, спонтанное нарушение природного закона, закона сохранения массы. А чтобы это нарушение не раздражало научную, и не научную, общественность, его закамуфлировали под нарушение симметрии, потому что кому какое дело до нарушения какой-то симметрии. Симметрии нарушаются сплошь и рядом.

Симметрия – это изначально геометрическое понятие, приспособленное с некоторых пор математиками для своих самых разнообразных нужд, — и ставшее излишне модным.

Сейчас, в самом общем смысле симметрия означает инвариантность структуры объекта относительно некоторых его преобразований (Википедия).

Найденные, описывающие природу уравнения часто не меняются, если проделать над ними определенные операции. Когда это происходит, говорят, что уравнения обладают симметрией.

Пример: Система обладает калибровочной симметрией, если ее существенные свойства остаются неизменными при изменении уровня, масштаба или значения некоторой физической величины. Так в физике работа зависит от разности высот, а не от абсолютной высоты; напряжение — от разности потенциалов, а не от их абсолютных величин и др.

Всякий закон сохранения можно заявить законом сохранения симметрии. Но эта классификация принижает статус закона сохранения, т.к. этот прием предполагает, что  суть закона является следствием симметрии, что в корне не верно, но именно в этом пытаются всех убедить авторы «фундаментальных» симметрий.

Всякая стабильность может быть рассмотрена как локальный инвариант, и после этого может быть представлена в терминах симметрии.

Ссылки на симметрию совершенно недопустимы, если при этом не указываются преобразования, относительно которых рассматривается симметрия. А такие ссылки, без указания соответствующих преобразований, приводятся очень часто.

 

Таким образом, все характеристики и параметры полевого бозона Хиггса, которые будут представлены ниже, это плод фантазии авторов. Хотелось бы, чтобы эти фантазии,  были в рамках практических наработок, а также в рамках самых общих философских ограничений. Но в данном случае это условие не выполняется.

Учитывая все изложенные обстоятельства, будем анализировать предоставляемую информацию о бозоне Хиггса с предвзятым недоверием.

«Подвергай всё сомнению».

 

Вот, как начинается одна из обзорных статей в Интернете, популяризирующих идею Хиггса.

Цитата. «Бозон Хиггса – элементарная частица, природу которой очень сложно постичь без предварительной подготовки и понимания основных физических и астрономических законов Вселенной». Конец цитаты.

Переведем с русского на русский.

«Знакомясь с информацией о бозоне Хиггса, не пытайтесь проверять её, всё равно ничего не поймете. Доверяйте выводам специалистов-популяризаторов». Конец перевода.

Имея дело с намеренной фальсификацией, не имеет  смысла анализировать лукавые обоснования авторов. Несостоятельность заумных, необоснованных математических формул обычно можно выявить на основе здравого смысла, опирающегося на общеизвестные достижения философии, и с помощью простейшего анализа для особых точек.

Отличительной чертой философского подхода является то, что философия рассматривает все законы природы взаимосвязано с всеобщей вселенской гармонией. Именно по этой причине многие философские положения имеют ограничительный характер. Ученых, обладающих узким кругозором, эта особенность раздражает, и они помыкают ограничениями философии, порождая этим абсурдные идеи, в угоду своим примитивным представлениям.

 

Итак, что нам сообщает Стандартная модель о бозоне Хиггса в официальных справочниках и в статьях многочисленных продолжателей Хиггса.

 

Информация из Википедии.

«Бозо́н Хи́ггса, Хи́ггсовский бозо́н, хиггсо́н (англ. Higgs boson) — элементарная частица (бозон), квант поля Хиггса, с необходимостью возникающая в Стандартной модели физики элементарных частиц вследствие хиггсовского механизма спонтанного нарушения электрослабой симметрии. В рамках этой модели отвечает за инертную массу элементарных частиц. По построению хиггсовский бозон является скалярной частицей, то есть обладает нулевым спином». Конец цитаты.

Чтобы не отвлекать читателя на обращение к справочникам, сообщим, что под мудреным названием «хиггсовский  механизм спонтанного нарушения электрослабой симметрии» подразумевается непреодолимая без бозона Хиггса в рамках Стандартной Модели ситуация, в которой бозон Хиггса наделяет всевозможные частицы массами так хитроумно, что переносчик электромагнитного взаимодействия фотон остается безмассовым, и может перемещаться на какие угодно расстояния, в то время как переносчик слабого взаимодействия реализуется массивными частицами, что ограничивает радиус этого взаимодействия субъядерными масштабами. Таким образом, при помощи бозона Хиггса реализуется нарушение электрослабой симметрии, делающее электромагнитное и слабое взаимодействие настолько непохожими друг на друга.

Это о полевом бозоне Хиггса.

Теперь информация из сайта Элементы.

«4 июля 2012 года на специальном семинаре в ЦЕРНе было объявлено об открытии хиггсовского бозона на Большом адронном коллайдере. Эта частица — отголосок нарушения электрослабой симметрии — кардинального преобразования нашей Вселенной, случившегося в эпоху ее «горячей юности» — была предсказана теоретиками еще полвека назад». Конец цитаты. Это уже о тяжелом, уникальном бозоне Хиггса.

А вот, что сообщает Тим Барклоу, экспериментальный физик из команды ATLAS, который работает в Национальной ускорительной лаборатории SLAC Стэндфордского университета, см. [Ленту новостей из Элементов].

«Идея Хиггса состояла в том, что Вселенная погружена в невидимое поле, подобное магнитному. Каждая частица ощущает это поле — теперь известное как поле Хиггса, — но в разной степени. Если частица может свободно перемещаться в этом поле с минимальным взаимодействием, значит, она имеет минимальную массу. Альтернативно, если частица будет взаимодействовать с полем Хиггса в значительной степени, то у нее более высокая масса». Конец цитаты. Это уже о полевом бозоне Хиггса.

Невидимое поле – это, видимо, издержка перевода, похоже, Барклоу имел в виду неведомое поле.

Приостановимся на этом, и попытаемся осознать, что же нам предлагается в образе бозона Хиггса.

Приведенные свойства полевого бозона Хиггса это постулируемые ожидания. А что же обнаружили в ЦЕРНе? Обнаружили некоторое событие, которое достаточно стабильно повторяется при некоторой конкретной энергии столкновения протонов (125 ГэВ), и сопровождается излучением двух противонаправленных, якобы гамма-квантов. Почему якобы? А потому, что нам не сообщают, могут ли  использованные датчики отличить гамма-квант от релятивистской частицы. Кроме того, для элементарной частицы, каковой должен быть бозон Хиггса, допустимо превращаться в гамма-кванты только в результате полной аннигиляции. Однако об аннигиляции речи не идет, т.к. нет антибозона (пока нет). Кроме того, тяжелый бозон Хиггса имеет возможность распадаться на два Z-бозона с последующим распадом на четыре лептона (на электроны или мюоны), как повезет.

О каком распаде может идти речь, если все частицы Стандартной модели принципиально являются элементарными, т.е. не распадающимися. Почему при энергии столкновения протонов в 125 ГэВ, и только при этой энергии, происходит материализация одного вещественного бозона Хиггса, спрашивать неприлично, т.к. квантовая теория причинно-следственными связями не занимается, теория просто описывает конечный результат происходящего.

Цитата. «Мне кажется весьма вероятным, что когда-нибудь в будущем появится улучшенная квантовая механика, в которой будет содержаться возврат к причинности… П. Дирак» Конец цитаты. Это мечта-надежда одного из основоположников квантовой теории. Такая теория еще не появилась, а существующая теория уже пытается объявить себя фундаментальной, т.е. непререкаемой и вечной.

Итак, интенсивность взаимодействия поля Хиггса с каждым вещественным объектом Вселенной определяет величину инертной массы объекта, но этой массы в объектах нет. Таким образом, интенсивность взаимодействия с полем Хиггса является мерой фиктивной массы инерции, т.е. перед нами своеобразная имитация.

Вещественные частицы проявляют свои инерционные свойства в любой точке пространства и в любое время. Это означает, что поле Хиггса непрерывно заполняет всё пространство и стабильно во времени. Получается, что, либо поле Хиггса само по себе является физическим вакуумом, либо поле Хиггса является одним из проявлений физического вакуума. Об этом в Стандартной модели — ни слова.

Полевой бозон Хиггса, как все безмассовые бозоны, перемещается в пространстве со скоростью света. Пока речь идет об одном бозоне, это свойство проблем как бы не вызывает. Но вопрос возникает к полю Хиггса. В каком направлении движется каждый бозон поля. Авторы нам сообщают, что поле (среда) Хиггса характеризуется полем скоростей. Очень интересно, как распределены эти скорости по направлению. Нет оснований для выделения какого-либо одного из направлений. Значит, бозоны среды движутся во всех направлениях изотропно. Тогда возникает следующий вопрос – сколько же в пространстве направлений. Если направления не квантовать, то их неограниченное количество. Однако Стандартная модель это модель квантовая. Вот только квант телесного угла в Стандартной модели до сих пор не определен. Как только квант станет известным, количество направлений тоже будет известно, и это будет фундаментальная константа.

Но как среда, состоящая из бозонов, может двигаться сразу во всех направлениях со скоростью света? Об этом можно было бы спросить у Кумина А.М., т.к. он занимается разработкой (придумыванием) именно таких сред, но авторы Стандартной модели, похоже, с ним не консультировались.

К тому же, Кумин пытается сформировать с помощью своих бозонов фиктивное поле гравитации, а вовсе не инерции, и у него, как он заявляет, нечто похожее получается [4]. Однако авторы Стандартной модели к этому еще не подошли.

Несмотря на отсутствие у фиктивной массы внешних полей, для формирования фиктивных масс с помощью бозонов, в составе вещественных частиц должен быть некий материальный признак, определяющий интенсивность взаимодействия с бозонной средой. И судя по тому, что нам известно о свойствах двух видов массы (гравитационной и инертной), которые эквивалентны, общий признак у них должен быть. Вот, этот общий признак массы в вещественных частицах, авторов бозона Хиггса, видимо, и не устраивает.

Действительно, если есть материальный признак, определяющий интенсивность взаимодействия с бозоном Хиггса, то чем он отличается от признака массы гравитации, или массы вообще. Получается, что информация об инертной массе частицы заложена в каждой частице. А сама сила инерции всегда совпадает с направлением ускорения тела. А куда направлено ускорение? В рамках ОТО, с которой Стандартную модель стремятся объединить, это сделать невозможно, т.к. поле бозонов Хиггса в этом плане не отличается от фотонных бозонов, которые относительно любого тела движутся с постоянной скоростью света, т.е. их относительное ускорение всегда равно нулю.

Если же бозонное пространство принять неподвижным, то в Стандартной модели оно должно иметь конкретную массу. По этой причине авторы Стандартной модели не обсуждают проблемы неподвижного пространства. Для них такого жуткого пространства просто не существует.

 

Вернемся к полю скоростей. Получается, что в каждой точке пространства, свободного или занятого любой вещественной частицей, находится огромное множество полевых бозонов Хиггса, движущихся во всех направлениях и не взаимодействующих друг с другом, но взаимодействующих определенным образом с каждой вещественной частицей.

Вещественные частицы, по Хиггсу, не имеют инертной массы, но, по умолчанию, имеют массу гравитации. А т.к. инертная масса всегда точно равна массе гравитации, которая зависит от относительной скорости объектов, то получается, что поле Хиггса взаимодействует именно с носителем гравитации. Как пишут идеологи хиггсовской теории, это взаимодействие напоминает функционирование парусов. Вот, только непонятно, как бозоны Хиггса угадывают величину ускорения гравитационной массы, на которую реагируют, ведь скорость бозонов Хиггса относительно любого вещественного объекта постоянна и равна скорости света в любом направлении.

Однако Стандартная модель ответит на все вопросы, которые есть и которые появятся позже. Для этого у неё в резерве имеется могучий инструмент — принцип инфляции.

 

Но обратимся к тяжелому бозону Хиггса. Из [3], накануне экспериментального открытия бозона Хиггса, от Майкла Пескина, физика-теоретика SLAC, узнаем.

Цитата.

«Теория предсказывает, что “жизнь” бозона Хиггса слишком коротка, чтобы ее возможно было зарегистрировать инструментами БАКа, но физики думают, что они могут подтвердить ее существование, если смогут определить частицы, в которые он распадается».

Это высказывание дополняет официальный представитель коллаборации CMS (коллектива ученых, работающих на детекторе CMS) Джо Инкандела.

Цитата.

«Согласно теоретическим предсказаниям, бозон Хиггса распадается сразу же после рождения на разные частицы. Одним из способов («каналов») такого распада может быть распад на два Z-бозона, четыре лептона (электрона или мюона), на два гамма-кванта. Поэтому в экспериментах регистрируются частицы — продукты распада бозона Хиггса, и уже по ним восстанавливается картина того, что произошло». Конец цитаты.

Почему перечисленные в цитате частицы являются результатом распада именно бозона Хиггса, а не тех протонов, которые сталкиваются? И как их отличить?- нам не сообщают.

Читатель должен понимать, что при наблюдении огромного количества протонных столкновений, любую устойчивую комбинацию вторичных частиц можно объявить распадом любой промежуточной, короткоживущей частицы, в том числе и ранее не известной.

Итак, что же мы узнали про бозон Хиггса. Оказывается, полевой бозон существует всегда и везде, образуя скалярное поле-среду. При этом «жизнь» тяжелого бозона Хиггса неимоверно коротка, так что и зарегистрировать эту массивную частицу практически нельзя. О прошлом существовании бозона можно судить лишь по результатам его распада на другие бозоны, лептоны, гамма-кванты. Однако бозон Хиггса заявлен как истинно элементарная частица Стандартной модели. Здесь, видимо, приходится ожидать от авторов извинения за оговорку. Позже нам сообщат, что Бозон Хиггса не распадается, а превращается (инверсирует) в энергию, а энергия уже может превращаться (снова инверсировать) во что угодно, в фейерверк частиц.

Несколько слов о нарушении симметрии в рамках Стандартной модели. Дело в том, что в Стандартной модели бозоны являются переносчиками энергии, обеспечивающими реализацию взаимодействий. Традиционно переносчики энергии являются безмассовыми частицами. Однако для реализации внутриядерных сил в формате конфайнмента пришлось ввести калибровочные Z-бозоны, обладающие массой, что собственно и является волевым нарушением симметрии, которую пытаются выдать за спонтанную.

Вот здесь надо отдать должное Питреру Хиггсу за смекалку и изобретательность.

«Хиггс был очень проницателен, когда обнаружил, что при объединении калибровочной теории с моделью спонтанного нарушения симметрии две проблемы решаются очень красиво. Хиггс нашел брешь в формализме теоремы Голдстоуна, исключающей возможность нарушения симметрии: эта теорема (как показал Хиггс, Л.В.) неприменима при рассмотрении локальной калибровочной симметрии» [7].

Конфайнмент это такая конструкция идей, которая создает эффект, при котором напряженность поля растет пропорционально расстоянию между точечными источниками напряженности. Так, два нуклона в ядре атома притягиваются тем сильнее, чем больше расстояние между ними. Это происходит до достижения определенного расстояния между нуклонами, после превышения которого притяжение исчезает. Этот процесс и есть проявление конмайнмента.

Для реализации внутриядерных сил у полевых бозонов Хиггса возникла дополнительная задача (функция) по обеспечению этого нарушения симметрии. Ведь фотоны и глюоны, как типичные бозоны, должны оставаться безмассовыми, а вот Z-бозоны должны приобрести массу.  Вот Хиггс с этой задачей и справился, а формальные приемы, которые применил Хиггс, назвали механизмом Андерсона-Хиггса. А в литературе эту ситуацию упоминают как спонтанное нарушение симметрии, что производит наукообразное и завораживающее впечатление.

Вообще, выше приведена лишь малая часть удивительных свойств полевого бозона Хиггса. Вот, более полный их перечень. Цитата [6].

«Бозон Хиггса имеет множество уникальных свойств, позволивших получить ему еще одно название – частица Бога. Открытый квант обладает цветным и электрическими зарядами, а его спин по факту равняется нулю. Это означает, что он не имеет квантового вращения.  К тому же, бозон полноценно участвует в гравитационных реакциях и склонен к распаду на пары из b-кварка и b-антикварка, фотонов, электронов и позитронов в сочетании с нейтрино. Однако параметры этих процессов по ширине не превышают 17 мегаэлектроновольт (МэВ). Помимо вышеперечисленных характеристик частица Хиггса способна распадаться на лептоны и W-бозоны». Конец цитаты.

В цитате явно смешаны свойства двух бозонов Хиггса.

И ещё одно уникальное свойство поля Хиггса — его напряженность всюду отлична от нуля. Что это означает, никто не сообщает. Однако эффект очень легко доказывается от противного. Если напряженность поля где-то будет равна нулю, то в этой области все тела лишатся массы инерции, а это недопустимо.

Чтобы на этом эффекте нельзя было построить вечный двигатель, пришлось ввести искусственную симметрию так называемого «бутылочного донышка», которая по сути является нарушением нулевой симметрии энергии.

Суть надуманной симметрии бутылочного донышка в том, что энергия поля имеет минимум при некоторой, не равной нулю, напряженности поля Хиггса. Здесь к здравому смыслу лучше не обращаться, всё равно, как обещано, ничего не поймете.

Но, если есть напряженность, то значит, есть и энергия. Таким образом, поле Хиггса – это напряженная среда. Вновь приходим к соблазну зачерпнуть из безмерного океана энергии.

Теория поля Хиггса не стоит на месте. Стандартная Модель пересматривается с позиций суперсимметрии. Приведем небольшой фрагмент из работы В.В.Дворцевого.

«Результат исследования физических свойств поля Хиггса, показал: поле Хиггса — это особый вид материи, лежащей в основе всего материального мира — Вселенной.
Поле Хиггса — идеальная сплошная среда, скалярное поле потенциальной энергии, пространственно-временной континуум, представляет собой механическую систему с бесконечным числом внутренних степеней свободы, описываемую скалярным полем плотности потенциальной энергии и векторным полем скоростей.

Основными частицами скалярного поля Хиггса являются: отрицательный двойной бозон Хиггса, положительный двойной бозон Хиггса и нейтральный Z- бозон, объединяющий их!»

И далее. «Локальные фазовые возмущения плотности поля Хиггса, в сверхмалых объёмах идеальной сплошной среды характеризующиеся большой массой покоя в связи с малой амплитудой колебания фазы потенциальной энергии, так и остаются локальными скалярными возмущениями поля Хиггса. Этим объясняется конфайнмент кварков.
Вся бесконечная Вселенная в целом — это уникальная тройная неразрывная структура, состоящая из отрицательного двойного бозона Хиггса, положительного двойного бозона Хиггса и нейтральной поверхности раздела фаз скалярного поля потенциальной энергии.
Вселенная в целом представляет собой отрицательный двойной бозон Хиггса [0-], внутренним пространством которого является положительный скалярный бозон Хиггса [0+], положительный двойной бозон Хиггса [0-] и поверхности раздела фаз [Uw] поля потенциальной энергии». Конец цитаты.

Дворцевому В.В.  вторит Джо Инкандел, по словам которого, бозон Хиггса это бозон фундаментальный.

Цитата.

«Согласно Стандартной модели, в момент рождения Вселенной после Большого взрыва частицы приобрели массу под действием Хиггсовского поля, сформированного бозонами Хиггса. Без этого поля не могло бы произойти образование атомов, а частицы, не имеющие массу, просто разлетелись бы по космическому пространству. Согласно теории, неуловимые бозоны Хиггса существуют везде. Через поле Хиггса, заполняющее пространство Вселенной, проходят абсолютно все частицы, из которых строятся атомы, молекулы, ткани и целые живые организмы». Конец цитаты.

Теория не позволяет точно установить массу бозона, поэтому для его обнаружения ученые прибегли к методу эксперимента.

Смотрите, как много всего известно о неуловимом бозоне Хиггса. Откуда столько информации? Ответ очевидный – ученые думают, и думают профессионально, вот и придумали. Но не всё пока гладко. Кое-что не стыкуется. Но это явление временное. Вот построят российский коллайдер ВИКА – и всё отшлифуют. Главное, есть эффективный инструмент – Стандартная модель. И есть заинтересованные люди, которые обеспечивают финансирование проекта.

Следуя стандартной логике развития науки, при открытии нового явления (или процесса) – объект открытия активно исследуется. На основании экспериментальных данных создается физическая гипотеза и, желательно, математическая модель. На их основании делается научный прогноз. Прогноз проверяется целевыми экспериментами, и в случае подтверждения прогноза, гипотеза переходит в ранг теории.

Ситуация с бозоном Хиггса не укладывается в стандартную логику. Дело в том, что инертная масса, как явление и понятие, известна очень давно. Никаких новых сведений о массе инерции в последнее время не появлялось. Однако появилась новая разработка — Стандартная модель, вот она-то и стала инициатором нового осмысления старых данных о массе инерции. Освежим эти данные.

Понятие инертной массы определено первым законом Ньютона, который по своей сути является леммой принципа причинности.

В результате проверки первого закона Ньютона было установлено, что все вещественные объекты оказывают действенное сопротивление любым попыткам изменить кинетическое состояние объекта. Интенсивность этого сопротивления (противодействия) всегда строго пропорционально количеству вещества, содержащемуся в объекте.

На основании этих данных было принято соглашение об измерении количества вещества мерой с названием масса. При этом, если два тела разной природы оказывают равное противодействие одним и тем же внешним усилиям, то считается, что массы инерции этих тел равны межу собой. Дальнейшие исследования показали, что масса инерции является инвариантом замкнутой системы. Это положение отражено в законе Ломоносова – законе сохранения массы. На этом можно было бы закончить, если бы не учение Эйнштейна –Теория Относительности (ТО).

Эйнштейн присовокупил к известным свойствам массы инерции дополнительные свойства. По ТО масса инерции данного тела зависит от скорости этого тела относительно другого тела, на котором находится наблюдатель. В это утверждение трудно поверить. Ведь, получается, что при сообщении телу кинетической энергии часть этой безликой энергии превращается в конкретное вещество: в кварки, в электроны, в позитроны, в протоны и прочее. А затем, при торможении. Эта энергия возвращается без потерь. Очень смелая, наивная идея. Но никто, ни разу её не проверил!  Произведены лишь проверки для гравитационного взаимодействия при бытовых скоростях.

Можно принять создавшуюся ситуацию, в надежде на её исправление в будущем. Но оказывается, что это невозможно. Дело в том, что под скоростью тела Эйнштейн понимал скорость тела относительно наблюдателя.  Трюк, который никто не хочет замечать. А всё просто. Наблюдатель сообщает пробному телу конкретную энергию, т.е. ускоряет пробное тело. Тело приобретает конкретную скорость и якобы увеличивает свою реальную массу. Затем, наблюдатель догоняет пробное тело и исследует его – и что он узнает в результате своих измерений? Масса тела не изменилась.

Итак, в соответствии с классическими представлениями, а также в соответствии с представлениями ТО, масса инерции и масса гравитации являются свойством конкретного тела. А что предлагает Хиггс?

В представлении Хиггса за массу всех вещественных тел становится ответственной среда, составленная из полевых бозонов Хигса. Получается, что масса тел не является физической сущностью, а является характеристикой процесса, как давление или вязкость.

Известно, что среда для реализации такой функции должна быть неподвижной. Но все бозоны в Стандартной модели перемещаются со скоростью света.

Инерция в любом представлении: и как физическая сущность, и как фиктивная имитация, — должна проявлять свои свойства непременно в зависимости от изменения скорости, измеряемого относительно квантов неподвижного пространства — в этом суть понятия инерция.

Обилие свойств и параметров бозона Хиггса, которые нам сообщают авторы Стандартной модели, априори являются домыслами, не смотря на то, что вся информация сопровождается словами «на основании теории». По этому поводу возникает сторонний вопрос: почему о бозоне поля Кулона, вообще, ничего не сообщается. Здесь авторы Стандартной модели прикрылись лаконичным сообщением, что электромагнитное взаимодействие реализуется фотонами. Однако неподвижный заряд не излучает фотоны, хотя поле Кулона у такого заряда существует.

И вопрос по поводу бозона Хиггса. Почему при энергичном столкновении двух протонов, приводящем к их разрушению, иногда, на одно мгновение, должен возникать массивный, мгновенно исчезающий бозон Хиггса. Зачем? Зачем природе понадобилось на мизерные доли секунды в редчайшие моменты лобового столкновения релятивистских протонов овеществлять бозон Хиггса.

Ответов, как минимум, два.

Во-первых, для реализации экзотических фантазий, необходимых и используемых на разных этапах Большого Взрыва.

И во-вторых, и это видимо самое главное, для того, чтобы быть обнаруженным человечеством уже после инфляционного этапа Большого Взрыва.

В своем интервью по поводу обнаружения бозона Хиггса Валерий Тельнов (профессор ИЯФ СО РАН) поделился откровением:  «Дирекция ЦЕРНа уже отрабатывала с физиками вариант, что говорить налогоплательщикам, если хиггсовского бозона не будет обнаружено (или вообще ничего на LHC не откроют). Хиггсовский механизм — это только один из возможных вариантов, были и другие».

А теперь поставим себя на место исследователей. Предположим, что нам удалось зафиксировать некоторое событие, которое проявляется как небольшой резонанс на фоне рутинных двухфотонных событий. Как доказать, что этот резонанс вызван распадом бозона Хиггса? А вот, если резонанс сначала предсказать, и затем обнаружить, то это совсем другое дело.

Вспомним, как драматично развивались события при поиске бозона. Накануне решающих экспериментов в области энергии 125 ГэВ в Интернете появился комментарий: или бозон Хиггса будет найден в предстоящем эксперименте, или этот бозон вообще не существует.

«Трудно не увлечься этими результатами», сказал директор по исследованиям ЦЕРН Сержио Бертолуччи.  «Мы в прошлом году заявили, что в 2012 году будет либо найден новый бозон Хиггса, как частица, либо исключено существование бозона Хиггса Стандартной модели».

 

На фоне откровения Тельнова возникает вопрос: зачем заинтересованным исследователям ставить себя в угол категоричным заявлением — или найдем сейчас, или этот бозон вообще не существует?

Ничего себе — не существует! Да ради этой находки построили коллайдер.

А не было никакого угла, т.к. не было варианта — не найти. Всё уже было «найдено» и подсчитано, а вот достаточной убедительности доказательства действительно не было. Вот и был разыгран спектакль с якобы теоретическим предсказанием двойного исхода, и, последовавшего, счастливого завершения. Спектакль — мелодрама.

Питер Хиггс, пытаясь решить серьезнейшую научную проблему, предложил идею сомнительного бозонного поля. Для доказательства своей идеи придумал предсказание о практически не существующем тяжелом бозоне. И вот, этот бозон обнаружили! Идея о бозонном поле доказана! Надо исследовать это поле.

Но о перспективах этого исследования — никаких публикаций.

Все хотят исследовать свойства и разновидности тяжелого и никчемного бозона Хиггса.

Закон рынка – все туда, где можно заработать.

Обобщим разрозненную информацию.

Итак, бозон Хиггса это стабильная элементарная (неделимая) частица, которая неразрывно и многократно заполняет всё пространство Вселенной. Многократность в данном случае означает, что в каждой квантовой точке пространства постоянно должно находиться N однотипных полевых бозонов, которые изотропно распространяются со скоростью света во все  стороны. Такое полевое образование называется континуумом.

Описанное поле Хиггса принципиально невозможно обнаружить в штучном, квантовом проявлении, т.к. оно проявляет себя всегда и везде как универсальная среда, в которой существует вещество любого типа.

Авторы идеи, в такой откровенно-безнадежной формулировке, этого не оглашают, но этот обобщенный вывод непосредственно и однозначно следует из их постулатов.

Среда, образованная изотропным континуумом релятивистских полей, по мнению авторов должна имитировать (т.е. действенно создавать видимость) инертную массу, которой на самом деле не существует, а существует лишь наше субъективное, но вполне адекватное представление об этой фиктивной массе, как о массе реальной.

Однако надежды авторов в этом плане неосуществимы. Исходя из ОТО, поле Хиггса вообще не может реагировать ни на скорость вещественных частиц, ни на её изменение, т.к. эта скорость относительно бозонов всегда является константой С. Естественно, поле Хиггса не может реагировать и на изменение скорости частиц, т.е. реагировать на ускорение. Но эта реакция и есть основное свойство инерции. Получается, что поле Хиггса в принципе не способно имитировать массу инерции вещества.

А если бы имитация оказалась успешной, то что делать со знаменитой формулой Эйнштейна E=mC^2. Пришлось бы полю Хиггса имитировать и энергию.

Авторы идеи данного обстоятельства, видимо, не заметили.

Идея поля, заявленного Хиггсом, скорее примитивна, чем гениальна. Чего не скажешь об уже знаменитой частице Хиггса, которую якобы обнаружили в ЦЕРНе.

Классический физик, следуя установленным законам природы, опробовав идею бозонного поля, быстро убедится в её никчемности, и отбракует.

Физик новой формации, вооруженный инфляционным инструментом, лишен такой возможности; он должен решить проблему, деформируя старые и придумывая новые, не известные ранее законы природы.

Приходиться поражаться гениальности Хиггса, которой догадался о существовании частицы, которая ни каким образом в природе себя не проявляет, но может быть получена в уникальных условиях и рассматриваться как доказательство существования полевого бозона Хиггса. Более того, для этой частицы трудно придумать какое-нибудь занятие в природе — так трудно, что до сих пор не придумали. Ведь, массу инерции вещественных частиц эмулирует (создает-имитирует) поле-среда безмассовых бозонов Хиггса, а в ЦЕРНе обнаружили какое-то чудо-юдо весом около 135 протонов.

В этом вопросе (о якобы гениальной догадке Хиггса) завесу приподнимает статья из Интернета о механизме Андерсона-Хиггса.

Цитата из Физической энциклопедии.

«Когда статья Хиггса, описывающая модель, была в первый раз послана в Physical Review Letters, она была отклонена, очевидно, из-за отсутствия предсказания каких-либо новых эффектов, которые было бы возможно наблюдать в экспериментах. Тогда он добавил предложение в конец статьи, в котором упоминал о том, что предполагается существование нового или новых массивных скалярных бозонов, которых не достает для полного представления о симметрии. Это и есть бозоны Хиггса». Конец цитаты.

Уловка удалась – статью издали.

А чтобы несуществующую частицу не стали искать, ведь тогда никто не знал, что она существует, теоретики для тяжелой частицы Хиггса отвели такую короткую жизнь, что обнаружить и зафиксировать тяжелый бозон практически невозможно. Практически, частица не существует. Существует только спонтанный процесс нарушения надуманной симметрии.

 

Еще одна цитата из той же статьи.

«Вакуумное ожидаемое значение хиггсовского поля нарушает локальную SU(2) Х U(1) калибровочную симметрию (величины, подчиняющиеся закону сохранения: слабый изоспин и слабый гиперзаряд), создавая электромагнитную U(1) симметрию (величины, подчиняющиеся закону сохранения: электрический заряд). Из-за этого эффекта три калибровочных бозона (W и Z бозоны) получают массу и продольную степень поляризации. Четвертая степень поляризации хиггсовского поля, которое, являясь SU(2)-дублетом, состоит из двух комплексных = 4 действительных полей, и есть бозон Хиггса».

Из ЦЕРНа сообщили, что в результате спонтанного нарушения локальной симметрии, происходящей при лобовом столкновении двух релятивистских протонов, стабильно образуется массивная, ранее не известная, частица с весом около 135 протонов. На лицо нарушение закона сохранения массы.

 

В промежуточных взаимодействиях, рассматриваемых Хиггсом, присутствует взаимодействие бозонов с бозонами. До сих пор такого взаимодействия в природе не наблюдалось.

О самом изученном бозоне под названием фотон в этом плане известно, что заставить фотоны взаимодействовать между собой пока не удалось.

Однако массивный бозон Хиггса может образоваться в результате объединения двух безмассовых глюонов. Любопытно было бы узнать, как тяжелый бозон Хиггса, взаимодействуя с постоянным полем Хиггса, приобретает массу инерции.

Чтобы в рамках Стандартной модели всё получалось, как происходит в природе, никак не обойтись без конфайнмента. Вот Хиггс и придумал, как решить сразу две проблемы в рамках одного ухищрения. Разбираться в его придумке не имеет смысла. Ну, как можно разобраться в механизме спонтанного нарушения какой-то локальной симметрии. Симметрия имеет свою логику. Нарушение симметрии логики не имеет. Спонтанный – значит самопроизвольный и по неизвестной причине. Под термином «механизм Хиггса» подразумеваются формальные математические преобразования. Термин механизм призван вызвать ассоциацию этих преобразований с некими природными процессами, о которых никто не имеет ни малейшего представления. Механизм Хиггса правильнее было бы назвать манипуляциями Хиггса, но уже поздно.

Непонятно, почему при столкновении протонов образуется только один бозон, а не два. Протонов ведь два. Куда полетит одиночный бозон? Из условия симметрии, а правильнее — из закона сохранения импульса, бозон должен овеществиться практически неподвижным.

Непонятно, каким образом энергия бозона связана с энергией столкнувшихся протонов, является ли эта энергия дополнительной к уже имевшейся энергии протонов, т.е. является ли эта энергия долгожданной добычей из гипотетической кладовой энергии вакуума.

Любая критика порождений инфляционного принципа — абсолютно бессмысленна, абсурд не подлежит критике. Инфляционный продукт должен существовать, потому что имеет спрос и сбыт, т.к. нужен публике, жаждущей развлечений.

Испытывая явное недоверие к противоречивой информации, поступающей от  заинтересованных исследователей ЦЕРНа, хотелось бы узнать, какие меры приняты для фильтрации информационного шума при проведении экспериментов. А шум возможен следующий.

Вакуум в такой огромной установке не может быть идеальным. Почему бы ни сообщить общественности остаточную плотность атмосферы, выраженную в штуках остаточных молекул на сантиметр кубический. И продемонстрировать, какое событие происходит, например, при столкновении протона с молекулой водорода, и какое при столкновении с ядром атома железа. Ведь, как только начинаются события столкновений, стенки камеры начинают испытывать воздействие жесткого излучения, в результате которого непременно происходит испарение (возгонка) стенок камеры. Таким образом, становится возможным столкновение протонов с атомами металлов, из которых изготовлена камера, например с атомами железа [5].

Создается впечатление, что при высоком административном ранге проведения экспериментов, найти независимых экспертов чрезвычайно трудно. Сложность проверки  результатов эксперимента позволяет ввести общественность в заблуждение.

Что за событие уверенно фиксируется в момент якобы возникновения бозона Хиггса? Это два гамма кванта, излученных в противоположные стороны поперек пучка. Резонанс этого события приходится на энергию столкновения, равную 125 ГэВ. Почему это событие отождествляется с распадом бозона Хиггса? А потому, что другого варианта никто не предложил.

Лекомцев не в счет, он независимый исследователь – человек с улицы, не из коллаборации. Кто с ним будет считаться.

Массивный бозон Хиггса придуман для того, чтобы быть обнаруженным – и его обнаружили. И его будут обнаруживать до тех пор, пока квантовая теория не откажется от инфляционного принципа – принципа вседозволенности.

Вот пророческое высказывание одного из основателей квантовой теории.

«Мне кажется весьма вероятным, что когда-нибудь в будущем появится улучшенная квантовая механика, в которой будет содержаться возврат к причинности… Но такой возврат может стать возможным лишь ценой отказа от какой-нибудь другой фундаментальной идеи, которую сейчас мы безоговорочно принимаем. Если мы собираемся возродить причинность, то нам придется заплатить за это, и сейчас мы можем лишь гадать, какая идея должна быть принесена в жертву».

П. Дирак.

Процитировано по Кумину А.М. [4].

 

Так или иначе, но любой вещественный объект по идее Хиггса постоянно находится во взаимодействии с полем Хиггса, и именно таким образом формирует свою инертную массу, которая должна подчиняться релятивистскому закону увеличения массы до бесконечного значения при условии приближения относительной скорости объекта к скорости света, измеренной обязательно относительно наблюдателя.

Как поле Хиггса реализует эти требования, пока неизвестно.

Кроме того, формируемое значение инертной массы всегда должно быть точно равно значению гравитационной массы, за которую ответственны гравитоны поля притяжения.

 

Все поля в Стандартной Модели реализуются специализированными элементарными частицами, а именно бозонами. Все силовые поля до появления поля Хиггса носили дискретный характер, т.е. частицы (кванты) среду не реализовывали.  Особенность поля Хиггса требует наличия распространяющейся среды, состоящей из специализированных частиц, которая уже является неразрывной. Под этой средой в Стандартной модели подразумевается физический вакуум.

Физический вакуум естественным образом должен быть универсальной средой для всех частиц Стандартной Модели. Следовательно, физический вакуум является неотъемлемой частью Модели. Но о вакууме в Стандартной модели нет ни слова.

Возникает естественный вопрос: как массивный бозон Хиггса взаимодействует с полем Хиггса, чтобы приобрести свою массу.

 

Бозон Хиггса получается очень замысловатой частицей, и творческое воображение Хиггса здесь ни при чем. Достаточно одной стартовой идеи – и все несообразные свойства частицы возникают сами собой, если идея являлась несуразной. Это является следствием качества идеи.

Частицу первоначально назвали частицей чёрта, но редактор журнала не пропустил это название, вот и назвали бозон Хиггса частицей Бога.

 

 

Механизм Хиггса пока не имеет конкретного, строгого описания. Это естественно. Как можно строго описать то, что никому не известно. Но сермяжная правда в механизме Хиггса есть. Эта правда в том, что как бы вы ни старались с помощью бозона Хиггса корректно обеспечить всё вещество инертной массой, адекватной с природой, – вы непременно придете к неразрешимому противоречию, которое и должны объявить спонтанным нарушением симметрии.

Сейчас, когда определены почти все параметры тяжелой частицы Хиггса, которую упорно называют бозоном (бозоны — это безмассовые объекты, по определению), строительство БАК, предпринятое именно ради поиска бозона, кажется нелепым. Однако усилия и средства потрачены не напрасно. Уже сейчас полученных сопутствующих данных достаточно, чтобы осознать и доказать нелепость ТО, и многих следствий этого учения.

Не беда, что пока эти данные скрываются от общественности. Ни что не вечно.

Не вечны и укрыватели.

 

 

 

ИСТОЧНИКИ

 

  1. Большой адронный коллайдер. Лента новостей. Интернет.
  2. Обзорная статья. Интернет: http://www.km.ru/nauka/2012/07/04/issledovaniya-rossiiskikh-i-zarubezhnykh-uchenykh/naiden-bozon-khiggsa-bez-chastits
3.                          Иванов Игорь. Новые данные ATLAS по хиггсовскому бозону: интрига сохраняется. Интернет.
  1. Кумин А.М. Гипотеза об ипостаси. Интернет.
  2. Лекомцев В.А. Бозон Хиггса – недостижимый предел физики элементарных частиц. Интернет.
  3. Дворцевой В.В. Физика атомного ядра и элементарных частиц. Настоящая история Вселенной – результат исследования физических свойств поля Хиггса. Интернет.
  4. Гордон Кейн, Суперсимметрия. От бозона Хиггса к новой физике. Интернет.
  5. Обзорная статья: Физики изучили проблему идентификации бозона Хиггса. Интернет.
  6. Тельнов Валерий, Интервью о бозоне Хиггса. Интернет

 

 

Теория Относительности Информация к размышлению Часть 2. Относительная скорость

Каждый понимает, что всякая скорость является относительной.

Пока не указан объект, относительно которого измерена скорость, значение скорости остается не определенным.

Имея дело со скоростью в бытовых ситуациях, каждый непроизвольно соотносит скорость любого объекта с некоторой обобщенной средой, с окружающим физическим пространством. Иногда человек оценивает скорость объекта относительно себя.

Кроме субъективных оценок относительной скорости, существуют объективные её характеристики. От относительной скорости непосредственно зависят параметры многих физических процессов, как локального свойства, так и не локального, например: траектории движения планет, звезд и галактик.

В наше бытовое понимание относительной скорости двух объектов, так или иначе, всё время вмешивается восприятие скорости тел относительно некоторого посредника, окружающей среды. Это вмешательство всегда происходит непроизвольно, практически подсознательно. Так или иначе, но в быту мы пользуемся двойным стандартом по отношению к относительной скорости, и этот двойной стандарт никогда не приводит к конфликтным ситуациям.

Эйнштейну, в его  Теории Относительности (ТО) удалось вызвать такой конфликт.

В ТО Эйнштейна среда отсутствует принципиально. Это значит, что в ТО нет, и не может быть, скорости относительно среды, есть только скорость относительно отдельных объектов. Относительно пустоты скорости быть не может. Но на уровне самообмана её можно представить (и представляют), подменяя идеальную геометрическую пустоту эфемерной идеальной средой.

Отсутствие неподвижной среды в ТО создает проблему при трактовке скорости по инерции. Действительно, при отсутствии внешних воздействий каждое тело сохраняет свое состояние, что, кроме прочего, означает сохранение равномерного, прямолинейного движения.

А каковы критерии этого равномерного, прямолинейного движения в пустоте? Критериев нет. В этих условиях всякое мероприятие, требующее знания величины и направления скорости, должно начинаться с создания искусственной среды, которая в ТО безлико называется инерционной системой отсчета (ИСО). Например, горизонтальные рельсовые пути можно считать специализированной средой движения поездов.

В классической механике скорость по инерции, если не указан конкретный объект отсчета — это скорость относительно неподвижного пространства, которое может быть представлено подходящей неподвижной средой, например, воздухом, эфиром, физическим вакуумом.

А как эта проблема решается в ТО? Чтобы задать скорость избранного тела, в ТО непременно должно рассматриваться еще одно, дополнительное тело – тело, несущее ИСО наблюдателя. Это тело в силу первого постулата Эйнштейна может рассматриваться как неподвижное. Получается, что одиночное тело не может быть объектом ТО, по определению.

 

А два основных постулата Эйнштейна следующие.

  1. Законы, по которым изменяются состояния физических систем, не зависят от того, к которой из двух координатных систем, движущихся относительно друг друга равномерно и прямолинейно, эти изменения состояния относятся.
  2. Каждый луч света движется в «покоящейся» системе координат с определённой скоростью V, независимо от того, испускается ли этот луч света покоящимся или движущимся телом» (Собр. научных трудов, т. 1, М., 1965, с. 10)

 

Оба постулата сформулированы весьма расплывчато, и требуют дополняющего толкования. Чего только стоит наделение ИСО термином покоящейся, взятым в кавычки. Но Эйнштейн своими постулатами, смутно похожими на истину, не пользуется. Он пользуется так называемыми леммами, т.е. вспомогательными теоремами, призванными приблизить суть исходных постулатов к существу решаемых проблем. Однако леммы Эйнштейна оказались более странными, чем исходные постулаты.

Первую лемму он позаимствовал у Галилея, объявив невозможность установить лабораторными методами скорость изолированной лабораторной ИСО.

А вторая лемма фактически является вторым постулатом, дополненным еще одним  инвариантом скорости света, по которому скорость света не зависит не только от скорости излучателя, что естественно, а еще не зависит и от скорости приемника, что совсем не естественно.

Наблюдатель в ТО наделен абсолютной свободой перемещения, понимаемого как телепортация. Кроме этого, наблюдатель наделен магической способностью – всякая ИСО, куда перемещается наблюдатель, становится неподвижной.

 

Рассмотрим типовую для ТО систему, состоящую из двух тел. Для её анализа в ТО есть всего две возможности: можно признать неподвижным тело №1, а можно – тело №2.

Вот откуда возникла потребность Эйнштейна в равноправии всех ИСО. По Эйнштейну, любой процесс можно рассматривать из множества ИСО, одна из которых неподвижна относительно процесса, и при этом процесс ни чуть не изменится, т.е. в природе ничего не произойдет в связи с перемещением наблюдателя. Так оно и есть. Это общеизвестный принцип пассивного наблюдателя.

Однако это утверждение не имеет отношения к прогнозам, которые будут произведены с использованием результатов измерений, произведенных в движущихся ИСО. Прогнозы тоже являются принадлежностью реального бытия, и в этом смысле ИСО не могут считаться равноправными, если дают разные прогнозы развития одного и того же процесса.

Кроме того, Эйнштейн мимоходом, не акцентируя данного события, связал ИСО процесса с ИСО наблюдателя, сохранив условие независимости исследуемого процесса от вольных перемещений наблюдателя, т.е. получилось, что от скорости движения процесса. Вот истинный, а ранее туманный, смысл первого постулата. Не существуют в природе локальные процессы, параметры которых зависят от скорости перемещения ИСО. В данной интерпретации скорость может иметь любую природу, как относительно некоторого объекта, так и относительно некоторой среды.

Покажем далее, что существуют системы и развивающиеся в них процессы, параметры которых меняются в зависимости от скорости ИСО, в которой реализуется  исследуемый процесс.

 

Так как в ТО, из-за отсутствия соответствующих критериев, нет возможности для установления неподвижности одиночного объекта, а выбрать неподвижный объект из двух избранных тоже невозможно, то Эйнштейн предоставил это право наблюдателю, тем самым, лишив наблюдателя статуса пассивности, обеспечивающего отсутствие влияния на ход природных процессов. Но только наблюдатель перестает быть пассивным, так учение перестает быть научным, а о фундаментальности ТО не может быть и речи.

Совершенно очевидно, что вероятность неподвижности одного из двух избранных  объектов практически равна нулю. Значит, всегда, назначая одно из тел неподвижным, Эйнштейн изначально искажает картину мира.

 

Вся ТО построена на анализе и описании взаимодействия двух тел. Казалось бы, ничего особенного в этом приеме нет. Однако не будем торопиться с выводами, именно в этом приеме состоит лукавая сущность учения.

Можно ли средствами ТО рассматривать ситуации, в которой оба тела двигаются? Конечно, такая возможность имеется, но она крайне не желательна для автора и для его последователей, и поэтому нигде в ТО не используется. Рассмотрение двух независимых, двигающихся тел требует введения третьего, неподвижного тела, относительно которого будут двигаться два первых тела. А анализ систем ТО, включающих более двух тел, способен вскрыть все неустранимые противоречия ТО, что и будет продемонстрировано ниже.

 

Если неподвижная среда отсутствует, то относительная скорость двух тел может быть выражена только через изменение расстояния между телами, как

V=dL /dt.                                                                                                                  (1)

В этом выражении dL это приращение расстояния до взаимодействующего объекта, измеренного по методике Эйнштейна с применением луча света, и не равна приращению пути dS по траектории движения тела в пространстве. Однако dL и dS совпадут, если наблюдатель будет находиться на траектории движения исследуемого тела. Это обстоятельство,- случайное или умышленное совпадение dL и dS,- позволяет маскировать некоторые недостатки ТО. Поэтому для постоянной реализации этого совпадения все примеры в ТО рассматриваются только для тел, которые двигаются по одной оси. Этим приемом Эйнштейн фактически убрал из ТО введенную им относительную скорость, а точнее скрыл её вместе с её нелепой сущностью. Все рассматриваемые в ТО скорости, формально являясь относительными, тем не менее, являются скоростями относительно неподвижного пространства. Это искусственный прием. Но, убрав из своего ученья неудобные относительные скорости, Эйнштейн не мог убрать их из жизни, в которой они присутствуют, но не играют ни какой роли.

Чтобы проверить себя на верное понимание идеальной относительной скорости в пустоте, раскрутите грузик на короткой веревочке,  и ответьте себе, чему равна скорость грузика относительно вашей, уже неподвижной, руки.

Скорее всего, правильный ответ – равна нулю – вы найдете не сразу.

Но если относительная скорость грузика относительно руки равна нулю, то что за скорость вращения мы наблюдаем? Ответ – скорость относительно пространства.

Но если вы этот вопрос зададите на лекции по ТО, то поучите ответ, что это скорость относительно ИСО наблюдателя. Если вы потребуете более подробного ответа, то лектор приведет косвенное описание движения относительно пространства, называя это движение движением относительно ИСО наблюдателя.

Именно относительная скорость тел, а не всем привычная скорость передвижения тела относительно пространства, должна присутствовать во всех формулах ТО. Именно от относительной скорости  зависит, и местный ритм времени, и относительная масса движущегося тела (одно-то тело всегда неподвижно), и относительные размеры тел. Такая интерпретация взаимного перемещения тел вызывает естественный протест со стороны здравого смысла. Но, приняв в ТО исходные постулаты, пусть они совершенно нелепые, необходимо следовать им неукоснительно. Только так можно установить нелепость созданного учения.

Нелепое учение почти невозможно опровергнуть. Опровергать доступно только ошибочные гипотезы, а нелепость гипотез можно только демонстрировать. Попробуйте опровергнуть любое логическое построение, основанное на постулате «два больше трех».

Удивительным в ТО является не только то, что скорость, т.е. кинетическая энергия, непринужденно может преобразовываться без потерь в массу тела, и обратно. Удивляет способность тел знать для этого скорость каждого из окружающих их в пустоте объектов, и реагировать на скорость удаленных тел одинаковым образом, вне зависимости от расстояния до каждого из объектов.

Исследователь, который руководствуется данной интерпретацией природных отношений, должен иметь чрезвычайно узкий кругозор, чтобы не впасть в водоворот естественных неразрешимых противоречий.

Предлагаемая в ТО зависимость свойств вещественных объектов может быть реализована только непосредственным взаимодействием вещественных объектов с материальным пространством.

Логика преобразований Лоренца тоже такова, что может быть реализована только взаимодействием каждого тела с общим для всех тел неподвижным пространством.

Экспериментально установленная справедливость временных преобразований Лоренца неукоснительно доказывает наличие неподвижного материального пространства.

А неукоснительное постоянство скорости света относительно неподвижного пространства также неукоснительно доказывает квантовую структуру времени и квантовую структуру пространства.

 

Проанализируем средствами ТО ситуацию с системой из трех идентичных тел. Пусть центральное тело М имеет массу М, и неподвижно, а с противоположных сторон к нему со скоростью V приближаются два точно таких же тела, но уже с лоренцевой массой М+ d М.

Теперь оставим всё, как есть, только пересадим наблюдателя с центрального тела на одно из приближающихся. Это тело сразу сделается неподвижным и уменьшит свою массу до величины, равной М. Центральное тело приобретет скорость V  и массу М+ dМ, а третье тело приобретет скорость 2V- dV и массу М+ dМ+d(М+dМ). Все d это приращения, которые получены в результате преобразований Лоренца.

Напомним, что в ТО закон сохранения энергии действует своеобразным образом, попросту – официально не действует.

Как это видно, эффект, произведенный введением третьего тела, оказался ошеломляющим, и явно вызывает скрытый протест. Но это еще не всё.

Человек устроен так, что мыслит с использованием стереотипов. Скорость по инерции воспринимается всеми без исключения, как постоянная скорость по прямой линии. Но в ТО такое поведение реализовать невозможно.

Рассмотрим, например, неподвижное и невесомое тело №1 и пролетающее мимо него на расстоянии L тело №2, которое движется по инерции, т.е. по прямой линии и без ускорения.

Задайтесь любыми параметрами и посчитайте величину относительной скорости тела №2 относительно тела №1, используя строго формулу (1). Вы обнаружите, что относительная скорость тела №2 всё время изменяется во времени и в пространстве, а в момент максимального сближения с телом №1 относительная скорость становится равной нулю. Так какую же скорость необходимо применять в преобразованиях Лоренца, если использовать для расчетов движения тел учение Эйнштейна?

Следуя постулатам и логике ТО, использовать можно только ту относительную скорость, которую вы только что вычисляли. В этой ситуации сложнейшая математика ТО оказывается всего лишь  недопустимым упрощением реальных, еще более сложных уравнений, с переменной скоростью движения по инерции для общего случая.

 

Продемонстрируем при помощи анализа системы из трех тел ошибочность первого, основного постулата Эйнштейна, утверждающего абсолютное равноправие всех ИСО, вне зависимости от скорости их взаимного движения.

Проведем следующий мысленный эксперимент.

Рассмотрим тело №1 (платформу) с находящимся на ней наблюдателем. В состав ИСО наблюдателя включим еще твердую (стальную) плиту (тело №2) с идеально круглым отверстием  радиуса R, в котором может вращаться твердый, идеально круглый диск (тело №3, подшипник скольжения) c радиусом R-dR.

Раскрутим диск до угловой скорости w, при этом его внешние элементы будут двигаться с линейной скоростью   V1= wR. Диск будет свободно вращаться в отверстии в соответствии с законами трения.

Теперь сообщим плите с вращающимся диском линейную скорость  V2, направленную по касательной к плите. В соответствии с преобразованиями Лоренца круглое отверстие в плите превратится в симметричный овал. А вращающийся диск должен превратиться в несимметричный, яйцеобразный овал. Это произойдет в результате сложения и вычитания линейных скоростей V1 и V2 в разных соотношениях в разных частях вращающегося диска. В результате различия характеристик деформаций линейно движущегося отверстия и вращающегося в нем диска  при некотором соотношении скоростей V1 и V2, зависящем кроме того и от величины dR, вращающийся диск должно заклинить.

Таким образом, очевидно, что две ИСО, перемещающаяся и неподвижная, не являются полностью равноправными.

Что и требовалось.

На описанном принципе можно бы разработать измеритель скорости относительно физического вакуума, хотя ТО такую возможность отрицает еще на этапе начального постулирования.

Но не следует напрасно тратить силы на разработку спидометра. Ведь, если первый постулат Эйнштейна является ошибочным, то ошибочно и всё учение, в том числе и вывод из нашего мысленного эксперимента.

Зная, как Эйнштейн объяснял парадокс близнецов, можно предположить, как он объяснил бы предложенный мысленный эксперимент. Объяснение следующее.

Вращающийся диск не может быть отнесен к ИСО именно в силу своего вращения. Следовательно, ТО не может предсказать его поведение, каким бы оно ни было.

С такой аргументацией можно согласиться. Но тогда возникает другой вопрос: где начинается и где кончается область применимости ТО? Ведь, вся наблюдаемая часть Вселенной пребывает во вращательном движении, и таким образом, не может быть объектом ТО.

 

Кроме двух заявленных постулатов, Эйнштейн положил в основу своего учения множество других, не заявленных постулатов, одним из которых является преобразование Лоренца. Дело в том, что преобразование Лоренца не является однородным по своему статусу составных частей.

Если для преобразования времени всё подтверждено экспериментально, то для локального искривления пространства экспериментальных подтверждений не имеется, т.е. пространственное преобразование Лоренца является необоснованным постулатом, т.е. произвольным предположением.

Таким образом, одна часть преобразований Лоренца прикрывает ширмой своего «авторитета» вторую, скорее всего, вздорную, часть преобразований.

 

Рассмотрим еще один мысленный эксперимент с использованием анализа системы, состоящей из более двух тел.

Пусть часы №1 находятся на длинной, неподвижной платформе.

Часы №2 находятся в большой неподвижной ракете, стоящей на платформе.

В большой ракете находится малая ракета с часами №3.

Схитрим немного, и лишим наблюдателя возможности чудесной пересадки из одной ИСО в другую. Для этого поместим наблюдателя в большую, неподвижную ракету, и начнем её реактивный разгон по круговой траектории, чтобы наблюдатель знал, что он перемещается в движущуюся ИСО. В момент, когда ракета с наблюдателем на скорости 0,86С поравняется с платформой, двигатели ракеты отключатся, и одновременно запустятся все часы. Часы на платформе будут идти с нормальной скоростью, а часы №2 в ракете, как нам известно, будут идти в два раза медленнее.

Как только двигатель большой ракеты выключится, наблюдатель на ракете дает старт малой ракете в сторону удаляющейся платформы. Малая ракета быстро набирает скорость 0,86С относительно большой ракеты, и тотчас автоматически выключает двигатель.

Оценим сложившуюся ситуацию. Часы №1 идут с нормальной скоростью. Часы наблюдателя в большой ракете идут в два раза медленнее. Часы №3 в малой ракете должны идти ещё в два раза медленнее часов №2, т.к. они стартовали из ИСО с часами №2. Однако часы №3  остановилась на краю очень длинной нашей платформы, и явно должны идти синхронно с часами №1, т.е. с нормальной скоростью и быстрее в два раза, чем у наблюдателя.

Часы №3 стартовали из ИСО №2, и в соответствии с ТО должны замедлить свой ход относительно часов в большой ракете приблизительно в два раза, т.е. в четыре раза относительно часов №1, с которыми часы №3 уже находятся в одной ИСО и идут синхронно.

Для установления истины в нашем эксперименте предусмотрена контрольная синхронизация часов. Достигнув пункта назначения, расстояние до которого известно, наблюдатель фиксирует показание часов и световым сигналом посылает код времени на платформу. При этом наблюдатель убеждается, что время на его часах свидетельствует, что он потратил на путь время меньшее, чем требуется для этого фотонам, т.е. его ракета двигалась с превышением скорости света, хотя ни один прибор этого эффекта во время пути не обнаружил. Всё время пути платформу можно было наблюдать в телескоп, т.е. фотоны с платформы двигались явно быстрее ракеты.

Получив сигнал от прибывшего наблюдателя, часы на платформе автоматически останавливаются, из их показаний вычитается известное время задержки, и это значение отправляется наблюдателю. Таким способом наблюдатель узнает, что часы на платформе показывают время в два раза большее, чем показывают его часы. Это и есть стороннее время его полета.

Корректный вывод из анализа ситуации только один – во время полета все системы корабля вместе с наблюдателем функционировали (жили) медленнее обычного в два раза. И это всё. Никакого искривления пространства не происходило. Древние мыслители могут спать спокойно. Но наблюдатель из своей ракеты во время движения наблюдал мнимые чудеса искривления пространства, вплоть до смещения звезд.

Получается, что неподвижное пространство является общим для всех ИСО, и взаимодействует с каждой ИСО таким образом, что все процессы в движущейся ИСО замедляются в зависимости от величины её скорости относительно неподвижного пространства в соответствии с временным преобразованием Лоренца. Фотоны же этому эффекту не подвержены, т.к. являются принадлежностью физического, неподвижного пространства, и взаимодействуют с ИСО по закону Доплера, только в момент, когда фотоны сталкиваются с сенсорами приемников.

В таком случае, не производя никаких измерений скорости света, используя только часы и временное преобразование Лоренца, можно установить все параметры движения изолированной лаборатории. Для этого необходимо по шести опорным направлениям с известной скоростью отправить идентичные, прецизионные часы, и получив от них информацию о темпе их хода, вычислить истинную скорость лаборатории относительно абсолютного пространства.

Таким образом, ни какой ТО не требуется. Достаточно корректного обращения с преобразованием Лоренца.

 

В нашем втором мысленном эксперименте встречные и попутные фотоны явно должны перемещаться относительно движущегося наблюдателя со скоростью, отличной от скорости света, но это только если использовать часы наблюдателя, что не допустимо, т.к. часы №2 и фотоны находятся в разных ИСО. Это и является причиной множества парадоксов ТО.

Второй постулат Эйнштейна описанному эффекту и формально, и явно совсем не противоречит, но противоречит тому извращенному смыслу, который вкладывал в него сам Эйнштейн.

Чтобы избежать этого противоречия и создать видимость устранения эффекта превышения скорости света, в рамках ТО Эйнштейн придумал эффект сокращения пространства. Таким методом точная компенсация вариаций скорости света всё равно, принципиально, невозможна, т.к. эффект Ритца линейный, а эффект Лоренца сугубо не линейный. Однако у Эйнштейна выбора не было, и он пошел на уловку поглощения приращения скорости света по Ритцу отрицательным приращением за счет замедления времени по Лоренцу. Уловка удалась, т.к. никто не проводил количественную проверку аргументации Эйнштейна.

Эйнштейн же, как обычно, расчленил единый эксперимент на два отдельных эксперимента, сведя каждый из них их к двум ИСО. Сокращение пространства Эйнштейн применил только в одном из мысленных экспериментов, где было подозрение на превышение скорости света.

С философской точки зрения деформация пространства невозможна.

Но если несуществующий эффект сокращения пространства всё же применить и для случая попутных, и для встречных фотонов, то парадокс все равно неизбежен, и будет очевиден даже без количественных вычислений, т.е. на качественном уровне. Однако желающих проверить Эйнштейна не нашлось.

 

Проблемы кривизны пространства обсудим в следующей части «Информации к размышлению».

 

Нижний Новгород, июнь 2016г.

Теория Относительности. Информация к размышлению. Часть 1

Теория Относительности

Информация к размышлению

Часть 1

Принцип относительности

Каждый понимает, что всякая скорость является относительной.

Имея дело со скоростью, по любому поводу, каждый непроизвольно соотносит скорость любого объекта с некоторой обобщенной средой, с окружающим физическим пространством. Иногда человек оценивает скорость объекта относительно себя.

Кроме субъективных оценок относительной скорости, существуют объективные её характеристики. От относительной скорости непосредственно зависят параметры многих физических процессов, как локального свойства, так и не локального, например, траектории движения планет, звезд и галактик.

В наше бытовое понимание относительной скорости двух объектов, так или иначе, всё время вмешивается восприятие скорости тел относительно окружающей среды. Это вмешательство всегда происходит непроизвольно, практически подсознательно. Так или иначе, но в быту мы пользуемся двойным стандартом по отношению к относительной скорости, и этот двойной стандарт никогда не приводит к конфликтным ситуациям.

Эйнштейну, в его  Теории Относительности (ТО) удалось вызвать конфликт.

В ТО Эйнштейна среда отсутствует принципиально. Это значит, что в ТО нет, и не может быть, скорости относительно среды, есть только скорость относительно отдельных объектов. Относительно пустоты скорости быть не может.

Отсутствие неподвижной среды в ТО создает проблему при трактовке скорости по инерции. Действительно, при отсутствии внешних воздействий каждое тело сохраняет свое состояние, что, кроме прочего, означает сохранение равномерного, прямолинейного движения.

А каковы критерии этого равномерного, прямолинейного движения в пустоте? Критериев нет. В этих условиях всякое мероприятие, требующее знания величины и направления скорости, должно начинаться с создания искусственной среды, которая в ТО называется инерционной системой отсчета (ИСО). Например, горизонтальные рельсовые пути можно считать средой движения поездов.

В классической механике скорость по инерции — это скорость относительно неподвижного пространства, которое может быть представлено подходящей неподвижной средой, например, эфиром или физическим вакуумом. А как эта проблема решается в ТО? Чтобы задать скорость избранного тела, в ТО непременно должно рассматриваться еще одно, дополнительное тело – тело, принадлежащее инерциальной системе отсчета (ИСО) наблюдателя, которое в силу второго постулата Эйнштейна может рассматриваться как неподвижное тело. А два основных постулата Эйнштейна следующие.

«Каждый луч света движется в «покоящейся» системе координат с определенной скоростью V, независимо от того, испускается ли этот луч света покоящимся или движущимся телом» [1, т.1, с. 10].

 

Одиночное тело не может являться объектом ТО по определению.

Наблюдатель в ТО обладает абсолютной свободой перемещения, понимаемого как телепортация. Кроме этого, наблюдатель наделен магической способностью – всякая ИСО, куда перемещается наблюдатель, становится неподвижной.

 

Рассмотрим типовую систему, состоящую из двух тел. Для её анализа в ТО есть всего две возможности: можно признать неподвижным тело №1, а можно – тело №2.

Вот откуда возникла потребность Эйнштейна в равноправии всех ИСО. По Эйнштейну, любую ИСО можно рассматривать (назначить) в качестве неподвижной, и при этом в природе ничего не изменится. Так оно и есть. Но это утверждение не верно по отношению к прогнозам, которые произведены с использованием результатов измерений, произведенных в движущейся ИСО. Но прогнозы тоже являются частью реального бытия, и в этом смысле ИСО не могут считаться равноправными. Тем более, что существуют, как выяснится далее, измеряемые параметры, результаты измерения которых меняются в зависимости от выбора ИСО.

Так как в ТО, из-за отсутствия соответствующих критериев, нет возможности для установления неподвижности объекта, то Эйнштейн предоставил это право наблюдателю, тем самым, лишив наблюдателя свойства пассивности, не влияющего на ход природных процессов. Но только наблюдатель перестает быть пассивным, так о фундаментальности ТО не может быть и речи.

 

Вся ТО построена на анализе и описании взаимодействия двух тел, или одного тела и всей Вселенной. Казалось бы, ничего особенного в этом приеме нет. Однако не будем торопиться с выводами.

Можно ли средствами ТО рассматривать ситуации, в которой оба тела двигаются? Конечно, такая возможность имеется, но она крайне не желательна автору, и нигде в ТО не используется, т.к. требует введения третьего тела, относительно которого будут двигаться два первых тела. А анализ систем, включающих более двух тел, способен вскрыть все неустранимые противоречия ТО, что и будет продемонстрировано ниже.

 

Если неподвижная среда отсутствует, то относительная скорость двух тел может быть выражена только через изменение расстояния между телами, как

V=∆L /∆t.                                                                                                                (1)

В этом выражении ∆L не является приращением пути ∆S по траектории движения в пространстве, но совпадет с этим приращением, если наблюдатель будет находится на траектории движения исследуемого тела. Это обстоятельство,- совпадение ∆L и ∆S,- позволяет маскировать некоторые недостатки ТО. Поэтому для реализации этого совпадения все примеры в ТО рассматриваются только для тел, которые двигаются по одной оси. Этим приемом из ТО Эйнштейн фактически убрал относительную скорость. Все скорости в ТО, формально являясь относительными, тем не менее, совпадают со скоростями относительно неподвижного пространства. Это искусственный прием.

Чтобы проверить себя на правильное понимание относительной скорости, рукой раскрутите грузик на короткой веревочке,  и ответьте себе, чему равна скорость грузика относительно вашей, уже неподвижной руки.

Правильный ответ – равна нулю – не моментально придет к вам.

Но если относительная скорость грузика равна нулю, то что за скорость вращения мы наблюдаем? Ответ – скорость относительно пространства. Но если вы этот вопрос зададите на лекции по ТО, то поучите ответ, что это скорость относительно ИСО наблюдателя. И если вы потребуете более подробный ответ, то лектор даст косвенное описание движения относительно пространства, называя это движение движением относительно ИСО наблюдателя.

Именно относительная скорость тел, а не всем привычная скорость передвижения тела, должна присутствовать во всех формулах ТО. Именно от относительной скорости  зависит, и местный ритм времени, и относительная масса движущегося тела (одно-то тело всегда неподвижно), и относительные размеры тел. Такая интерпретация взаимного перемещения тел вызывает естественный протест со стороны здравого смысла. Но, приняв в ТО исходные постулаты, необходимо следовать им неукоснительно.

Удивительным в ТО является не только то, что скорость, т.е. кинетическая энергия, непринужденно может преобразовываться без потерь в массу тела, и обратно. Удивляет способность тел знать скорость каждого из окружающих их объектов в абсолютной пустоте, и реагировать на скорость удаленных тел одинаковым образом, вне зависимости от расстояния до каждого из объектов.

Исследователь, который руководствуется данной интерпретацией природных отношений, должен иметь чрезвычайно узкий кругозор, чтобы не впасть в водоворот естественных неразрешимых противоречий.

Предлагаемая в ТО зависимость свойств вещественных объектов может быть реализована только взаимодействием вещественных объектов с пространством.

Логика преобразований Лоренца такова, что может быть реализована только взаимодействием каждого тела с общим для всех тел неподвижным пространством. Экспериментально установленная справедливость временных преобразований Лоренца доказывает наличие неподвижного материального пространства. А постоянство скорости света относительно неподвижного пространства доказывает квантовую структуру времени и пространства.

Проанализируем средствами ТО ситуацию с системой из трех идентичных тел. Пусть центральное тело М имеет массу М и неподвижно, а с противоположных сторон к нему со скоростью V приближаются два точно таких же тела, но уже с лоренцевой массой М+∆М.

Теперь оставим всё, как есть, только пересадим наблюдателя с центрального тела на одно из приближающихся. Это тело сразу сделается неподвижным и уменьшит свою массу до величины, равной М. Центральное тело приобретет скорость V  и массу М+∆М, а третье тело приобретет скорость 2V- dV и массу М+(∆+d)М. Все ∆ и d это приращения, которые получены в результате преобразований Лоренца.

Напомним, что в ТО закон сохранения энергии действует своеобразным образом, попросту – официально не действует.

Эффект, произведенный введением третьего тела, оказался ошеломляющим, и уже вызывает скрытый протест. Но это еще не всё.

Человек устроен так, что мыслит с использованием стереотипов. Скорость по инерции воспринимается всеми без исключения, как постоянная скорость по прямой линии. Но в ТО такое недопустимо.

Рассмотрим, например, неподвижное и невесомое тело №1 и пролетающее мимо него на расстоянии L тело №2, которое движется по инерции, т.е. по прямой линии и без ускорения.

Задайтесь любыми параметрами и посчитайте величину относительной скорости тела №2 относительно тела №1, используя строго формулу (1). Вы обнаружите, что относительная скорость тела №2 всё время изменяется во времени и в пространстве, а в момент максимального сближения с телом №1 относительная скорость становится равной нулю. Так какую же скорость необходимо применять в преобразованиях Лоренца, если использовать для расчетов движения тел учение Эйнштейна?

Следуя постулатам и логике ТО, использовать можно только относительную скорость. В этой ситуации сложнейшая математика ТО оказывается всего лишь  недопустимым упрощением реальных, еще более сложных уравнений, с переменной скоростью движения по инерции при отсутствии внешних воздействий.

 

Продемонстрируем при помощи анализа системы из трех тел ошибочность второго, основного постулата Эйнштейна, утверждающего абсолютное равноправие всех ИСО, вне зависимости от скорости их взаимного движения.

Проведем следующий мысленный эксперимент.

Рассмотрим тело №1 (платформу) с находящимся на ней наблюдателем. В состав ИСО наблюдателя включим еще твердую (стальную) плиту (тело №2) с идеально круглым отверстием  радиуса R, в котором может вращаться твердый, идеально круглый диск (тело №3, подшипник скольжения) c радиусом R-dR.

Раскрутим диск до угловой скорости w, при этом его внешние элементы будут двигаться с линейной скоростью   V1= wR. Диск будет свободно вращаться в отверстии в соответствии с законами трения.

Теперь сообщим плите с вращающимся диском линейную скорость  V2, направленную по касательной к плите. В соответствии с преобразованиями Лоренца круглое отверстие в плите превратится в симметричный овал. А вращающийся диск должен превратиться в несимметричный, яйцеобразный овал. Это произойдет в результате сложения и вычитания линейных скоростей V1 и V2 в разных соотношениях в разных частях вращающегося диска. В результате различных характеристик деформаций линейно движущегося отверстия и вращающегося в нем диска  при некотором соотношении скоростей V1 и V2, зависящем еще и от величины dR, вращающийся диск должно заклинить.

Таким образом, очевидно, что две ИСО, перемещающаяся и неподвижная, не являются полностью равноправными.

Что и требовалось.

На описанном принципе можно разработать измеритель скорости относительно физического вакуума, хотя ТО такую возможность отрицает еще на этапе начального постулирования.

Но не следует напрасно тратить силы на разработку спидометра. Ведь, если второй постулат Эйнштейна является ошибочным, то ошибочно и всё учение, в том числе и вывод из нашего мысленного эксперимента.

 

Кроме двух заявленных постулатов, Эйнштейн положил в основу своего учения множество других, не заявленных постулатов, одним из которых является преобразование Лоренца. Дело в том, что преобразование Лоренца не является однородным по своему статусу. Если для преобразования времени всё подтверждено экспериментально, то для локального искривления пространства экспериментальных подтверждений не имеется, т.е. пространственное преобразование Лоренца является совершенно необоснованным постулатом, т.е. предположением. Таким образом, одна часть преобразований Лоренца прикрывает ширмой своего «авторитета» вторую, вздорную, часть преобразований.

 

Рассмотрим еще один мысленный эксперимент с использованием анализа системы из более двух тел.

Пусть часы №1 находятся на длинной, неподвижной платформе.

Часы №2 находятся в большой неподвижной ракете, стоящей на платформе.

В большой ракете находится малая ракета с часами №3.

Схитрим немного, и лишим наблюдателя возможности чудесной пересадки из одной ИСО в другую. Для этого поместим наблюдателя в большую, неподвижную ракету, и начнем её реактивный разгон по круговой траектории, чтобы наблюдатель знал, что он перемещается в движущуюся ИСО. В момент, когда ракета с наблюдателем на скорости 0,86С поравняется с платформой, двигатели ракеты отключатся, и одновременно запустятся все часы. Часы на платформе будут идти с нормальной скоростью, а часы №2 в ракете, как нам известно, будут идти в два раза медленнее.

Как только двигатель большой ракеты выключится, наблюдатель на ракете дает старт малой ракете в сторону удаляющейся платформы. Малая ракета быстро набирает скорость 0,86С относительно большой ракеты, и тотчас автоматически выключает двигатель.

Оценим сложившуюся ситуацию. Часы №1 идут с нормальной скоростью. Часы наблюдателя в большой ракете идут в два раза медленнее. Часы №3 в малой ракете должны идти ещё в два раза медленнее часов №2, т.к. они стартовали из ИСО с часами №2. Однако часы №3  остановилась на краю очень длинной нашей платформы, и явно идут синхронно с часами №1, т.е. с нормальной скоростью и быстрее в два раза, чем у наблюдателя.

Часы №3 стартовали из ИСО №2, и в соответствии с ТО должны замедлить свой ход относительно часов в большой ракете приблизительно в два раза, т.е. в четыре раза относительно часов №1, с которыми часы №3 уже находятся в одной ИСО и идут синхронно.

Для установления истины в нашем эксперименте предусмотрена контрольная синхронизация часов. Достигнув пункта назначения, расстояние до которого известно, наблюдатель фиксирует показание часов и световым сигналом посылает код времени на платформу. При этом наблюдатель убеждается, что время на его часах свидетельствует, что он потратил на путь время меньшее, чем требуется для этого фотонам, хотя ни один прибор этого эффекта во время пути не обнаружил. Всё время пути платформу можно было наблюдать в телескоп, т.е. фотоны платформы двигались быстрее ракеты.

Получив сигнал от прибывшего наблюдателя, часы на платформе автоматически останавливаются, из их показаний вычитается известное время задержки, и это значение отправляется наблюдателю. Таким способом наблюдатель узнает, что часы на платформе показывают время в два раза большее, чем показывают его часы. Это и есть стороннее время его полета.

Корректный вывод из анализа ситуации только один – во время полета все системы корабля вместе с наблюдателем функционировали (жили) медленнее обычного в два раза. И это всё. Никакого искривления пространства не происходило. Древние мыслители могут спать спокойно. Но наблюдатель из своей ракеты во время движения наблюдал мнимые чудеса искривления пространства, вплоть до смещения звезд.

Получается, что неподвижное пространство является общим для всех ИСО, и взаимодействует с каждой ИСО таким образом, что все процессы в движущейся ИСО замедляются в зависимости от величины её скорости в соответствии с преобразованием Лоренца. Фотоны же этому эффекту не подвержены, т.к. являются принадлежностью физического пространства, и взаимодействуют с ИСО по закону Доплера, только в момент столкновения с приемником.

В этом случае, не производя никаких измерений скорости света, используя только часы и преобразование Лоренца, можно установить все параметры движения изолированной лаборатории. Для этого необходимо по шести опорным направлениям с известной скоростью отправить идентичные, прецизионные часы, и получив от них информацию о темпе их хода, вычислить истинную скорость лаборатории относительно абсолютного пространства.

Таким образом, ни какой ТО не требуется. Достаточно корректного обращения с преобразованием Лоренца.

 

В нашем втором мысленном эксперименте встречные фотоны неизбежно должны перемещаться относительно наблюдателя со скоростью, превышающей скорость света, но это только если использовать часы наблюдателя, что не допустимо, т.к. они находятся в разных ИСО.

Второй постулат Эйнштейна этому эффекту явно противоречит. Чтобы создать видимость устранения эффекта превышения скорости света, Эйнштейн придумал эффект сокращения пространства. Таким методом точная компенсация вариаций скорости света принципиально, всё равно, невозможна, т.к. эффект Ритца линейный, а эффект Лоренца сугубо не линейный. Однако у Эйнштейна выбора не было, и он пошел на уловку поглощения приращения скорости света по Ритцу отрицательным приращением за счет замедления времени по Лоренцу. Уловка удалась, т.к. никто не проводил количественную проверку аргументации Эйнштейна, хотя бы теоретически. Эйнштейн же, как обычно, расчленил единый эксперимент на два отдельных эксперимента, сведя каждый из них их к двум ИСО. Сокращение пространства Эйнштейн применил только в одном из мысленных экспериментов, где было подозрение на превышение скорости света.

С философской точки зрения искривление пространства невозможно.

Но если несуществующий эффект сокращения пространства всё же применить и для случая попутных, и для встречных фотонов, то парадокс неизбежен, и будет очевиден даже без количественных вычислений, т.е. на качественном уровне. Однако желающих проверить Эйнштейна не нашлось.

 

Проблемы кривизны пространства обсудим в следующей части «Информации к размышлению».

 

Нижний Новгород, июнь 2016г.

 

Поступок Эйнштейна, который перевернул Мир

Поступок Эйнштейна, который перевернул Мир

(Историческая реконструкция)

Владимир Леонович

Введение

Энтузиазм Эйнштейна был на исходе. Лекции по ОТО следовали одна за другой, но собирали все меньше и меньше публики. Слушатели реагировали вяло, явно ничего не понимая. Задавали глупейшие вопросы, и заранее начинали смеяться. Было от чего придти в расстройство. Еще чуть-чуть – и он станет всеобщим посмешищем.
Все чаще на ум приходит Фауст. Продать душу дьяволу. Не для себя, а ради всеобщей пользы. Ведь, всем же будет польза, да еще какая. Пусть не понимают, главное, чтобы приняли. Потом поймут.
Казалось бы, странно в положении Эйнштейна думать о торге с дьяволом.
Конечно, речь идет об условном торге, но предложение, совершенно реальное, уже сделано – и выбор за ним, за Эйнштейном.

Историческая справка

В 1898 году в Германии была опубликована статья немецкого математика Пауля Гербера под названием «Пространственное и временное распространение гравитации» [1]. Автор статьи поставил себе задачу проверить, не являются ли необъяснимые расхождения между реальными значениями прецессий планетных орбит с их расчетными величинами результатом конечности скорости распространения гравитации. Дело в том, что все упомянутые расчеты параметров орбит всегда проводились, исходя из предположения о моментальном распространении гравитации.

В своих расчетах Гербер использовал принцип запаздывающих потенциалов, постулируя конечность распространения гравитации.
Из всех доступных объектов, обладающих обозначенной аномалией для поставленной задачи наиболее всего подходил Меркурий, для которого погрешность определения аномальной прецессии была минимальной, с него Гербер и начал.
Окончательное выражение, которое приводит Гербер для расчета скорости гравитации (изначально принятой равной скорости света) представлено в следующем виде:
c2 =6πμ/ a(1-e2)△p, где △p – аномальная прецессия, а – перигелий, T – период.
μ=4π2а3 / T2 — константа. (1)
Гербер выделил составную константу μ, акцентируя тем самым её связь с Третьим законом Кеплера.

Первая попытка оказалась обнадеживающей. Найденная скорость распространения гравитации, получилась равной 305500 км/с, т.е. незначительно превышающей известную скорость света. Это незначительное различие можно было отнести к всевозможным типам погрешностей.
Однако все последующие попытки применить формулу (1) к другим планетам продемонстрировали полную несостоятельность метода.
Когда статья попала в руки Эйнштейна, ему сразу стала ясна её несостоятельность. Но завораживающее совпадение параметров Меркурия с поставленной Гербером задачей производило мистическое впечатление, которое и засело занозой в памяти Эйнштейна.

Принятие решения

Чем явственнее становилась безнадежность убеждения научной общественности в своем открытии, тем чаще Эйнштейн вспоминал работу Гербера.
Если в постановке задачи Гербера поменять местами исходное с искомым, то, постулируя скорость гравитации равной скорости света, что сделано в ОТО, можно получить аномальную прецессию орбиты Меркурия. Случайность, конечно, но каков будет эффект!
В свете последних событий оно приобретает дьявольский смысл. Соблазн. На карту поставлено все: или он всеобщее посмешище, и вся его разработка отодвигается на долгие годы; или перед наукой открывается новая столбовая дорога. И он, гениальный ученый, идет впереди всех.
Итак, накануне 18 ноября, доведенный до отчаяния безуспешными попытками убедить научное сообщество в своей правоте, Эйнштейн решается на чудовищный подлог: выдать решение Гербера за достижение ОТО. Достижение, недоступное классической теории.
18 ноября 1915 года доклад по ОТО хорошо подготовлен, община постаралась. Аншлаг обеспечен. Но каков риск. Вдруг на лекции или после её объявятся соратники Герберта.  Необходимо, насколько возможно, изменить окончательную формулу.
Если в выражении Гербера подставить развернутое значение «μ» и сократить на «а», то оно приобретает вид c2=24π3a3/аT2(1-e2)△p  или  △p = 24π3a2/T2(1-e2)c2     (2), и произведет впечатление более сложной зависимости, чем есть на самом деле.
Это выражение, △p=24π3a2/T2(1-e2) c2, и представил Эйнштейн 18 ноября 1915 года на знаменитом докладе.
Но было еще одно обстоятельство, пугавшее Эйнштейна. Еще ни одна, даже самая простейшая задача не была решена на основе системы уравнений ОТО. Как объяснить появление сложнейшего расчета? Нужно так преподнести факт, чтобы не возник вопрос о происхождении решения.

Триумф

Сообщение о якобы найденной поправке к аномальной прецессии Меркурия, Эйнштейн сделал ближе к концу лекции. Зал пришел в такое возбуждение, что вопрос о происхождении решения никому уже не пришел в голову.
Первое аналитическое решение уравнений Эйнштейна для большого и малого шаровых тел появилось только спустя полгода после предъявления формулы аномальной прецессии Меркурия.

Следующую ночь Эйнштейн не спал. Следующий день был тоже очень тревожным. Эйнштейн ждал разоблачений.
Но все обошлось.
Мир – тронулся. И начал переворачиваться … с боку на голову.
Но Эйнштейн еще долго не замечал этого, а когда обнаружил, то не нашел ничего лучшего, как показать всем язык.

Заключение

Сделки с совестью, как и с дьяволом, редко заканчиваются добром. Формула (1), присвоенная Эйнштейном, оказалась с подвохом. Именно из этой, изначально ошибочной формулы, следует мистическое, ничем не обоснованное, расширение Вселенной.
Предположение о том, что Эйнштейн не знал о работе Гербера, рассмотрено и подробно проанализировано в [2], и не выдерживает критики.
Автор с огромным уважением относится к Эйнштейну, как к незаурядной личности. Логика поступков Эйнштейна позволят надеяться на оставленное им завещание для потомков. Можно даже назвать срок его обнародования. Это случится, как только появится новая, более совершенная теория.

Источники информации

1. Пауль Гербер. «Пространственное и временное распространение гравитации», Штаргард, 1898г., Интернет. http://www.bourabai.kz/articles/gerber/gerber-rus.htm. Перевод на русский Йохана Керна (Johann Kern) , 2004.
2. В.Н. Леонович, «Анализ одной странной ситуации из истории
Общей Теории Относительности», Интернет: http://www.sciteclibrary.ru/rus/catalog/pages/11104.html
3. Н.Т. Роузвер. «Перигелий Меркурия от Леверье до Эйнштейна», Интернет.
4. А.А. Тяпкин. «Об истории возникновения “Теории относительности”», Интернет.
5. Физический энциклопедический словарь. М. Советская энциклопедия, 1983.

Атом. Попытка философского осмысления

Атом. Попытка философского осмысления

Леонович Владимир

 

Предисловие

 

Прежде чем приступить к анализу заявленной темы, конкретизируем некоторые отличия философского подхода от общепринятого сейчас научного подхода.

 

На первый взгляд принципиальной разницы быть не должно. Но ведь существует понятие философский подход, значит, и различие существует.

 

Наиважнейшим различием является то, что философский метод, не включая в свои правила требования беспристрастности, тем не менее, естественным образом реализует это условие в большей мере. Философ, анализирующий частную проблему в составе общей, как правило, не является автором частной разработки, и уже в силу этого более беспристрастен.

 

Кругозор философа в рамках используемой им парадигмы обычно шире по сравнению с кругозором специалиста, хотя знания специалиста в своей отрасли гораздо глубже.

 

Мыслитель, избравший философию основным родом своей деятельности, должен владеть методологическими достижениями философии, что доступно любому исследователю, но часто не является их достоянием.

 

Философ профессионально владеет диалектической логикой и, что очень важно, более строго следует ей.

 

Действие законов философии, выведенных в результате философских обобщений, равносильно действию естественных природных законов. В этом смысле законы философии весьма конструктивны. Однако их конструктивность проявляется обычно в ограничительном аспекте. Философские законы жестко ограничивают неуемную творческую фантазию спецов теоретиков. И это является причиной того, что многие теоретики исподволь помыкают законами философии в угоду своим честолюбивым устремлениям.

 

Профессиональный ученый может совмещать в себе исследователя и философа. Но это трудно. Это требует дополнительных усилий, производимых за счет некоторого отвлечения от избранной специализации. В современной жизни такие случаи редки, тогда как в древности это было нормой.

 

Введение

 

Практическая деятельность человечества сопровождается непрерывным увеличением знаний об окружающем мире. Осмысливая и систематизируя накапливаемые знания, проверяя эти знания на практике, человечество осознало и восприняло ряд непреложных философских истин. Одна из таких основополагающих истин состоит в том, что окружающий нас мир, в образе Вселенной, реален и гармоничен. Изучение законов гармонии Вселенной является одним из основных направлений деятельности философии.

 

В настоящее время Вселенная, как гармоничная система, существует совместно с человечеством. Но мир будет существовать и в случае, если человечество исчезнет; как мир существовал и раньше, до появления человечества.

 

Реальность окружающего мира мыслится в формате его материальности. Материя — непреложная данность бытия. Материю нельзя ни уничтожить, ни произвести,- вот два «нельзя» из обоймы философских ограничительных законов. Материя не имеет ни начала своего бытия, ни конца; она беспредельна в пространстве и пребывает в безостановочном движении. Движение материи подчиняется законам причинной логики, исключающим всякую парадоксальность. В природе нет, и не может быть, парадоксов – и это утверждение является одним из самых действенных и конструктивных законов диалектики.

Использованная выше общепринятая формулировка о подчинении природных процессов и явлений законам природы является не совсем корректной и, более того, является весьма коварной. Природа, не подчиняется ни каким законам. Природа только реализует свою фундаментальную логику – это и есть единственный природный закон. То, что мы узнаем о природе и формулируем в форме законов, является законами природных моделей, выявленных и сформулированных нами. Эти законы всегда приблизительны. А природа не знает приблизительности, природа всегда конкретна в рамках квантовой неопределенности. Приблизительны только наши прогнозы, основанные на наших приблизительных моделях.

Всякий парадоксальный вывод, полученный при помощи безупречной логики, свидетельствует о том, что он основан на ложной посылке (предположении, постулате).

Если используемая модель приводит к парадоксальному выводу, значит, модель содержит фатальную ошибку.

Формирование субъективного, адекватного философского восприятия мира требует от субъекта сбалансированных энциклопедических знаний, которые ему обязана предоставить школа. Малейшее изменение в философских фундаментальных концепциях влечет кардинальные изменения в самобытном мировосприятии исследователей.

Стремительно возросший объем научных знаний в начале ХХ века, при их недостаточной систематизации, явился для многих исследователей непреодолимой преградой в формировании их адекватного, самобытного представления о мире.

Сиюминутный успех в ограниченной области знаний порождает завышенное самомнение причастного субъекта. Это самомнение  иногда перерастает, явно или не явно, в гордыню. А гордыня, вкупе с пренебрежением к философии, чревата глубочайшими заблуждениями.

Вот образец богоподобного поведения современного кумира, Стивена Хокинга, (фрагмент взят из его произведения «Краткая история времени»).

Цитата. «… В итоге в 1970 г. мы с Пенроузом написали совместную статью, в которой наконец доказали, что сингулярная точка большого взрыва должна существовать, опираясь только на то, что верна общая теория относительности и что во Вселенной содержится столько вещества, сколько мы видим. Наша работа вызвала массу возражений,  …Но с математической теоремой не очень поспоришь, и поэтому, когда работа была закончена, ее приняли, и сейчас почти все считают, что Вселенная возникла в особой точке большого взрыва. По иронии судьбы мои представления изменились, и теперь я пытаюсь убедить физиков в том, что на самом деле при зарождении Вселенной никакой особой точки не было». Конец цитаты.

Оказывается, устройство мира зависит от иронии судьбы одного человека. А в чем ирония? Автор (Хокинг) несколько запоздало расширил свой кругозор. Но достаточно ли?

Человек, участвуя в общем движении материи, может влиять на это движение и его результаты. Но человек не может влиять на законы движения материи. Законы движения материи можно только познавать. Однако окончательно познать мир невозможно, по причине того, что это свойство заложено в принцип устройства мира. Часть не может вместить целое. Кто не понимает, что является лишь частью необъятного мира, и решает, что он познал материю, тот обречен на ошибки, чреватые трагическими последствиями.

Природа наделила человека способностью приспособления к изменяющимся условиям существования. И человек в процессе своего развития выработал уникальное качество, являющееся основой его интеллектуального самосознания и его интеллектуальной деятельности, – способность предвидения.

Совершенствование способности предвидения с целью его практического применения привело к необходимости формализации познанных законов движения материи, что, в свою очередь, потребовало создания системы типовых, упрощенных за счет пренебрежения малыми отклонениями, идеализированных законов движения.

Идеализация – это прием упрощения реальной действительности, необходимый для применения приемов математического формализма в рамках удовлетворительной, для практических нужд, погрешности. Авторское определение.

Идеализация и формализм – неразлучны с приблизительностью.

Природа следует своему закону неукоснительно и без всяких погрешностей. Погрешность — это свойство нашего формализованного представления, и наших технических возможностей при измерениях. Но только этими возможностями мы и можем пользоваться.

Приблизительность формализованных прогнозов движения материи может приводить, и приводит, к возникновению парадоксов, хотя в природе их нет. Эти парадоксы возникают тем чаще, чем менее полна (или даже ошибочна) модель принятой формализации. Всякая, даже очень хорошая модель имеет ограниченную область своего применения, за пределами которой модель приводит к ошибочным выводам, первым признаком которых являются парадоксы. И в этом рациональная суть парадоксов.

Всякий парадокс – это повод для поиска скрытой ошибки.

Вот что пишет по поводу геометризации мира Эйнштейном фанатичный математик, практически не владеющий философией, Фридман А.А. в своей работе  «Мир как пространство и время», 5 сентября 1922, Петроград, изд. Наука, Москва 1965.

 

Цитата. «… Таким образом, время свергается со своего пьедестала. Исполняются слова великого немецкого математика Минковского, и физический мир предстает перед нами в своем истинном свете, как совокупность вещей, называемых явлениями, характеризуемых при арифметизации четырьмя числами , ,, . Физический мир может служить, на основании сказанного, интерпретацией пространства четырех измерений; явления физического мира становятся интерпретацией точки четырехмерного геометрического пространства.

Вместе с этой новой точкой зрения на физический мир отпадают и те трудности исследования его, на которые мы указывали в конце предыдущего отдела: время перестает мешать нашим исследованиям, наоборот, потеряв свое преимущественное положение, смешавшись с пространственными координатами, время становится деятельным помощником при исследовании уже не физического пространства и не физического времени, которых самих по себе нет, а совокупности пространства-времени – физического мира».

Конец цитаты. Но не конец абсурда.

 

Своей естественной оговоркой в конце цитаты, назвав геометрический мир миром физическим, Фридман превратил своё высказывание в полнейший абсурд.

 

Одной из первых, жизненно необходимых формализаций, коварно проявившей свою, скрытую от авторов неполноту, было представление о геометрической точке и о понятии нуль. Числовая геометрическая ось, как формализация бытовой мерной линейки, самым естественным образом вошла в быт человека.

Проблема, вызванная частичной неадекватностью этого представления обнаружилась лишь при формировании геометрии как науки, т.е. изначально только в теоретическом аспекте.

Научный подход в математике и геометрии требовал четкого определения понятия «число». Число естественно мыслилось как количественная мера вещественных объектов, выраженных в штуках. Но странно, в таком представлении нет места для числа нуль. А представление-то уже сложилось.

Любой количественный ряд заканчивается наименьшим числом – единицей, которая символизирует обобщенный цельный образ объекта счета или его конкретной части, выбранной в качестве масштаба. Нуль – это понятие, и символ. Символ, который обозначает отсутствие объекта счета. Нуль монет не имеет физического смысла, т.к. ничем не отличается от нуля овец или от нуля камней. Нуль – не число счета. Математическое деление на отсутствие, т.е. на нуль, – бессмысленно, а вовсе не равно бесконечности.

Но нуль на мерной линейке и на числовой геометрической оси вызывающе занимает свое числовое место.

Изобретение дробных чисел, казалось бы, позволило решить проблему, определив число нуль, как предел дробной последовательности, стремящейся к нулю.  Но странное дело, нуль, определенный через предел, приобрел неоднозначность. Можно поделить нуль на нуль – и получить в результате конкретное число, величина которого определяется характером последовательностей. Но если нуль, определенный как предел, попытаться поделить на нуль, полученный в результате штучного вычитания, то проблема деления на отсутствие возникнет вновь.

Проблему так и не решили. Отложили – и забыли. Но забытье не останавливает жизнь. Забытье — это сон разума, а сон разума порождает чудовищ. И чудовище родилось. Этим чудовищем является безразмерная материальная точка. С философских позиций, безразмерная материальная точка – это очевиднейший абсурд. Нет размеров – нет объекта. Нет объекта – нет материи объекта.  Не бывает безразмерных материальных точек.

Геометрическая точка – это комбинация трех цифр, обозначающая местоположение в формальной системе координат. Комбинация трех цифр как образ геометрической точки не прижился в сознании человека, привыкшего мыслить образами. Геометрическая точка мыслится в образе бытовой точки. Возник забавный, но коварный, курьез. Геометрическая точка, призванная быть идеализацией бытовой точки, и таковой являющейся, обрела в качестве своего символьного обозначения бытовую точку.

Аксиоматическое утверждение: «В любом отрезке содержится бесконечное количество точек», — некорректно с точки зрения полноты описания, и по сути является ловушкой. Действительно, если точки содержатся — значит, эти точки есть; а если точки есть, то они объективны; а если они объективны, то они материальны. Хотя переход «объективны – материальны» является ложным посылом, перед нами действующий стереотип мышления.

Не могут геометрические точки содержаться, в чем бы то ни было. Безразмерные точки на заданном отрезке можно только определить и обозначить, зато действительно — сколько угодно.

Стереотип утвердился, когда материальная безразмерная точка еще никаких проблем не вызывала, и термин «материальная точка» никого не насторожил. На базе безразмерной материальной точки было создано учение Эйнштейна, Теория Относительности.  Это учение, в основу которого положено чудовище в форме материальной безразмерной точки, в свою очередь послужило основой для создания следующего поколения сонма чудовищ: черных дыр, больших взрывов и прочей востребованной экзотики. Эту экзотику придумали неучи-предприниматели на потребу жаждущих зрелищ.

Но с проблемой безразмерной материальной точки это уже никто не связывает. К проблеме не обратились даже тогда, когда появилось веское основание, т.е. когда возникла квантовая теория.  Более того, квантовую теорию, в ущерб самой теории, создали так, чтобы она как можно меньше затрагивала проблему нуля и точки.

Для того, чтобы избежать проблемы нулевой точки, существующую квантовую теорию пытаются свести к теории поля, т.е. к теории чистой, подвижной энергии. В этом представлении материальные точки не нужны, более того, они там являются обузой и помехой.

Весь мир в этом энергетическом представлении является формой существования энергии, а вещество – это всего лишь энергетический вихрь или вообще что-то невообразимое — флуктуация (отклонение от нормы) в мировом энергетическом океане. Вздор, конечно, но всё это на полном серьезе. Ведь, если фотон — это универсальная квантовая, т.е. неделимая мера  энергии, а из энергии создан мир, то получается, что фотон и есть тот объект, из которого создано мироздание. Согласитесь, не очень удобная модель, особенно с учетом волнового дуализма фотона, и его неспособностью быть неподвижным. Но таково реальное состояние, в котором пребывает сейчас квантовая теория поля (КТП).

Если отличительной чертой философского метода является тест на всеобщую гармонию, то отличительной чертой метода современной квантовой теории является нежелание соотносить наработки, созданные в одной области, с тем, что сотворено в соседней области, т.е. в этой квантовой теории.

Вернемся к формализации количества материи с помощью числовой оси с дробными числами.

Если единица — это мера количества вещественных объектов, то что же реально могут описывать дробные числа? Каков их физический смысл? Дробные числа описывают те же самые вещественные объекты, только в масштабах с чуждой, искусственно выбранной, формальной единицей измерения. Формальное отношение к дробным числам приводит к соблазну разделить любую мерную единицу на сколь угодно большое число её элементов, что и произошло в классической геометрии.

Но можно ли и материю реально дробить до бесконечности?  Ведь, если нельзя, то какой смысл решать проблему бесконечно малых величин, не существующих в природе.

Классическая теория, опираясь на Евклидову геометрию, утверждает, что бесконечно малое существует. Математический формализм чужд физической проблематике. Математики никогда не задумывались о границе применимости своего математического аппарата. Более того, они пытаются возвести математику в ранг владыки мира. По их теперешнему понятию, любой математический пассаж имеет в природе свое материальное воплощение. Вот и возникли 4-х мерные (и более мерные) геометрические пространства и параллельные (эвереттовы) вселенные — нескончаемый сонм живучих и множащихся чудовищ. Живучих, потому что это околонаучное шоу тешит обывателя. Эйнштейновская ТО чужда обывателю, т.к. она его унижает своей заумью, но Черные дыры и Большой взрыв – это уже научная экзотика, пряность к пресному бытию сибарита-содержателя.

Знание, которое нам преподают под видом геометрии Евклида, является только малой толикой этой геометрии, т.к. по определению Евклида, точка — это то, что не имеет частей, а вовсе не абсурдный безразмерный объект. Вдумаемся, Евклид однозначно определил точку как  квант вещества в современном понимании. Если перед нами неделимый элемент материи, то это и есть материальная геометрическая точка. Вовсе не безразмерная.

Безразмерная точка тоже не имеет частей, и имеет право быть основой одной из геометрий Евклида, которую и создали. Но безразмерная точка не является реальным объектом, т.к. является всего лишь геометрическим местом. Современная геометрия Евклида – это идеальная геометрия местоположений. Идеальная – значит, приблизительная. Однако Евклид в своих Началах закладывал реальную геометрию. Дело в том, что реальным объектом не может быть не только безразмерная точка, но и идеальная линия, и идеальная плоскость. Реальные объекты всегда объемны, а именно, они трехмерны. Хотите убедиться в этом – попытайтесь построить 4-ую геометрическую ось, т.е. реально пространственную, чтобы она была ортогональна 3-м известным осям. Попытка обречена на неудачу. И не потому, что человек ограничен в своих возможностях, а потому, что так устроен мир. Мир – трехмерен, и мир — подвижен.

Объем является непреложным атрибутом материального объекта.

Реальная геометрия всегда трехмерна, и описывает исключительно одно реальное  пространство, оперируя при этом множеством других искусственных, идеализированных пространств, что и служит причиной множества заблуждений.

Классическая геометрия оперирует тремя псевдо-реальными пространствами: одномерным, двумерным и трехмерным. Иных размерностей геометрического пространства не бывает даже в идеализированной геометрии. Многомерны лишь математические массивы, которые не могут быть полноценными моделями геометрического пространства, но могут быть использованы для описания реальных объектов и процессов в некоторых, специально оговоренных ситуациях. Это азбука философии, но философия у формалистов не в почете.

Каждый, кто пытается внедрить в научный обиход геометрическое пространство с размерностью превышающей три, либо профан, либо ушлый фальсификатор.

Реальные объекты всегда имеют конечный размер, и не могут иметь бесконечных или неограниченных параметров, т.к. реализация бесконечного параметра требует бесконечного числа материальных носителей, которые, как уже выяснили, сами по себе всегда имеют конечные размеры и параметры. Таким образом, объект с бесконечным параметром может быть только бесконечного размера, т.е. не может существовать. Это азбука квантового мировоззрения в философской интерпретации.

Авторы современных квантовых теорий даже не пытаются разрабатывать квантовые геометрии, но тем не менее, претендуют на полноту своих квантовых построений, которые становятся абсурдными при использовании для их описания оскопленной, идеализированной геометрии Евклида с безразмерными точками.

Все силы квантовых теоретиков брошены сейчас на поиск модели, которая позволила бы примирить квантовую теорию с правящим учением Эйнштейна. Такую модель найдут, конечно, как нашли правила перенормировки. Но зачем всю жизнь ходить в обуви, которая жмет.

 

Квантовая теория, и её успехи, вроде бы, признаются всеми, но как-то странно, без констатирующего философского обобщения, и без установления соответствующего статуса. Это позволяет всем желающим продолжать пользоваться фарисейскими представлениями, основанными на применении компилятивной парадигмы, включающей в себя, в том числе и представление о безразмерной физической точке, т.е. изначально ложного утверждения.

Как следствие, в самобытной философии исследователей бытуют и уживаются два представления о делимости материи: беспредельная делимость и делимость квантовая.

Например, сплошь и рядом в построениях популяризаторов квантовой концепции мира используется обращение к силовым полям бесконечной протяженности. Эти авторы лекций и учебников даже не осознают абсурдности квантового поля с бесконечной протяженностью. Ведь, достигнув предела квантовой малости, поле должно, либо перестать уменьшаться, и длиться далее в бесконечность как константа не равная нулю, либо как равная нулю, т.е. оборваться. Естественно, в природе реализуется последнее.

Материальный квант любого типа (если этих типов несколько), и пространственный квант в том числе, который естественно мыслится минимально информационно наполненным, невозможно представить абсолютно аморфным и изотропным. Любой тип кванта явно должен иметь внутреннюю, но непосредственно уже недоступную нам, структуру. Видимо, именно это имел в виду Ленин, конкретизируя мысль философов прошлого, когда писал о неисчерпаемости якобы точечного электрона.

В некотором интервале масштабов мир устроен как последовательность условно квантовых вложений: молекулы, атомы, частицы. Причем внутренние структуры этих квантовых уровней доступны для непосредственного исследования. Попытки продолжить тенденцию в сторону уменьшения масштаба приводят к пониманию того, что, начиная с некоторого уровня квантовых вложений, структура кванта наиболее глубокого вложения становится недоступной для расчленения средствами квантовых объектов более высоких уровней. Познание внутренней структуры материального кванта с этого уровня возможно только в рамках трансцендентной метафизики. Основой метафизического постижения мира является построение умозрительных моделей на базе философских обобщений и выводов, с последующим сравнением результатов, прогнозируемых моделью, с наблюдаемыми реалиями. В принципе этот прием составляет метод «черного ящика». Неделимый квант и есть в некотором роде «черный ящик».

Стандартная Модель, например, описывает кварковую структуру элементарных частиц, проверяя справедливость своих предположений методом столкновения и разрушения элементарных частиц. Но как установить (выявить) структуру кварков, если кварки по отдельности, вне частиц, не существуют. Только совпадением теоретических предсказаний, относящимся к поведению наблюдаемых осколков частиц, с их реальным поведением.

Стандартная Модель – это модель с атрибутами метафизических вкраплений.

Аморфное, и бесконечно делимое на части материальное нечто, должно состоять из фрагментов с размерами, стремящимися к нулю. Вот это и есть убийственный приговор для данного представления. Разве можно построить теорию (модель) на элементах, не имеющих конкретного размера?

Что значит «стремящиеся»? Это образное, фигуральное выражение. Ничто, никуда не стремится. Просто, какой бы масштаб ни был выбран – он всегда будет неадекватным, а нулевого масштаба не существует. Это и есть приговор беспредельной делимости.

Из аморфного вещества, как из глины, можно создать условные кирпичики всевозможной формы. А из этих кирпичиков создать геометрические (архитектурные) объекты любой сложности. Но не хватит никакой фантазии, чтобы привести эти геометрические объекты в нескончаемое, гармоничное движение.

Возможности геометрии ограничены отсутствием времени и его  атрибутов, т.е. отсутствием движения, а это значит, что геометрия, как ей и положено, мертва. Геометрию вещественного, реального мира оживляет механика. Мы так привыкли к этому, что не задумываясь, приписываем механическое движение  к атрибутам геометрии. Обратим внимание, ТО Эйнштейна заявлена как геометрическая теория. И, при постановке задачи, Эйнштейн  оперирует только пространственными координатами. Но, нарушая научную этику и логику, по ходу решения частных задач, исподволь возвращает движение (т.е. время) в свое уже 4-х мерное геометрическое представление, делая его то ли 5-ти мерным, то ли 4-х мерным, но с мерцающим двойным стандартом: то 4-х мерное, то 3-х мерное плюс время.  Последнее обстоятельство создает условия для полного произвола теоретиков, манипулирующих 4-ой или 5-ой координатами.

Наблюдаемый реальный мир не дает никаких оснований для безразмерно точечного, аморфного, моделирования.

 

Осознав принципиально квантовое устройство мира, и отслеживая структуру его уровней, можно сделать обобщающий вывод.

По мере перехода от одного квантового уровня структуры материи к другому, более низкому, количество исходных квантовых элементов, неуклонно уменьшается. В конце концов, оказалось, что на атомном уровне всё разнообразие вещественного мира создано всего из трех элементарных частиц: электрона, протона и нейтрона.

 

Экстраполируя  тенденцию сокращения количества исходных элементов структур, приходится предположить, что следующий квантовый уровень содержит всего один основополагающий элемент – универсальный материальный квант. Квант – являющийся носителем всего мирового разнообразия.

 

Грандиозная сложность предполагаемого устройства универсального кванта, необходимого для построения Вселенной, поражает, еще до начала моделирования кванта.

 

Мир, созданный на основе одного, универсального элемента принципиально неисчерпаем, т.к. по сути, универсальный квант является непостижимой инверсией всей Вселенной в самоё себя, представляемое универсальным квантом. А человек является только частью Вселенной, пытающейся отобразить в себе максимально большую долю Вселенной, которая принципиально не может быть всем миром.

 

Как можно на основе одного типового квантового элемента (или даже трех) построить всё разнообразие Вселенной? Только при философском допущении наличия динамичной внутренней структуры этого универсального материального кванта. Такое допущение не дает нам права называть этот квант, да и любой другой, элементарным. Чтобы отличать этот квантовый уровень от других, условно назовем его «пространственным», это естественно, т.к. универсальный квант, содержащий минимум внутренней информации, очевидно должен формировать свободное пространство, которое составляет основную часть Вселенной.

 

Всё то, что уже можно определенно сказать о свойствах пространственных квантов, которые формируют все виды материи только за счет изменения своей внутренней структуры,- всё свидетельствует о невозможности расчленяющего исследования этой структуры.

 

Это утверждение логически следует из уверенно предполагаемых характеристик универсального кванта, дополненных общим свойством неразрывности квантов материи, из чего непосредственно следует взаимная неподвижность пространственных квантов.

 

Неподвижность квантов материи воспринята философами и исследователями как тупик, что и послужило, видимо, причиной отсутствия дальнейших разработок теории пространства в этом направлении. Действительно, если кванты пространства неподвижны, то как же перемещаться в таком пространстве?

 

Вот, именно здесь возник барьер непонимания. Барьер, создавший долговременный затор на пути к истине.

 

Часть 1

 

Движение в квантовом мире обеспечивает не механика, а информатика. Информатика, которая эмулирует и механику, и вообще все физические явления, передавая информацию по эстафетному принципу [1]. Эстафета – это почти волна. Но не волна. Или не та волна. Это и волна, и частица единовременно, а не избирательно, в зависимости от действий наблюдателя или от внешних условий. Особенности квантовой эстафеты — вот причина естественного, эффективного дуализма.

 

Древние мыслители предвосхитили неизбежный кризис в процессе познания, когда внутренняя структура объектов исследования становится недоступной практическому вмешательству, и для преодоления этого кризиса предложили потомкам, т.е. нам, принцип познания, соответствующий понятию «метафизика».

 

Метафизика – это принцип, способ проникновения за грань доступного с целью расширения поля объективных физических знаний. Более поздние философы, не оценив глубину замысла авторов этой идеи, и желая конкретизировать это, не понятое ими понятие, внедрили в обиход  множество других определений, искажающих изначальную суть метафизики.

 

Чтобы понять принципиальное устройство пространственного кванта, а детальная структура нам недоступна, необходимо как можно больше знать о всевозможных свойствах универсального  кванта. Для выполнения этого условия обратимся к свойствам материи, которые нам известны и проявляются на атомарном уровне, как достаточно близком к пространственному кванту.

 

Однако прежде чем сфокусировать наше внимание на атоме, необходимо все же определиться, по возможности, с его составляющими. А это, как известно, электроны, протоны и нейтроны. Кроме этого, исходя из самых общих соображений, атом необходимо рассматривать в неотрывной связи с физическим вакуумом, который традиционно из анализа исключается по причине его, якобы, абсолютной индифферентности ко всему, в нем происходящему. Этот ложный стереотип порожден успешной практикой распространенного механистического  подхода, нашедшего свое отображение в принципе относительности Галилея, в рамках которого эта индифферентность действительно реализуется при малых скоростях, правда, с неощутимой для нас погрешностью.

 

Кроме того, системный подход требует рассмотрения, кроме четырех названных, бесспорных участников формирования атома, еще трех гипотетических объектов, носителей поля: фотона, гавитона и носителя электрического поля, которому не нашлось места в современной официальной науке.

 

Часть 2.1

 

Начнем с фотона.

Самая революционная концепция, рожденная в рамках  Стандартной Модели, – это способность взаимного превращения элементарных частиц, и их обломков, друг в друга, посредством промежуточного превращения в энергию.

 

Осколки частиц, а их идентифицировано уже несколько сотен, тоже назвали элементарными частицами. Можно предположить, что количество этих короткоживущих осколков будет со временем расти всё больше и больше.

 

На естественный вопрос, как заканчивается жизненный цикл виртуальных осколков вещества, Стандартная Модель ответить пока не может, ибо является описательной моделью, а экспериментальные возможности пока еще не достигли желаемого уровня.

 

В связи с этим уместно рассмотреть все формы участия фотонов в жизненном цикле атомов. Речь идет о способности вещества производить фотоны, превращаться в фотоны и способности фотонов производить массивное вещество, входящее в состав атома.

 

Квантовая теория поля пытается нас уверить, что элементарные частицы являются особой формой существования энергии. В доказательство приводится явление аннигиляции античастиц, а также явление дефекта массы. В обоих этих явлениях вещество выступает в роли специализированной потенциальной энергии, на подобие пороха, который способен исчезать, сгорая, и превращаться в фотоны.

 

При аннигиляции электрона и позитрона наблюдается возникновение двух фотонов, или более. Два – обязательно. Параметры этих двух фотонов предполагаются практически идентичными. Это по одним источникам.

 

По другим источникам в результате аннигиляции рождается короткоживущий бозон, который тут же  распадается или на два мезона, или на два кварка, которые моментально обрастают глюонами, забираемыми из пространства, и превращаются в два адрона.

 

Рождение пар, видимо, должно происходить в обратном порядке. Для этого должно произойти лобовое столкновение двух абсолютно одинаковых фотонов.

Лобовое столкновение двух фотонов, как причина и источник рождения двух частиц, весьма сомнительно, ведь волны не могут сталкиваться. При этом, встречным нейтральным фотонам нужно сформировать пару неких устойчивых, зеркально симметричных вихрей-зарядов, с четко заданными, нормированными  параметрами, и со структурой, которая по сложности и информативной наполненности явно должна превосходить структуру фотонов. Каждое из таких столкновений должно приводить к возникновению типовых, т.е. неотличимых от уже существующих, частиц, которые обладают массой, т.е. содержат в своем составе Бозон Хиггса, или специализированную структуру, взаимодействующую с полем Хиггса, и эмулирующая свойства массы.

 

Читатель нигде не найдет выше приведенного, саркастического описания процесса рождения электрон-позитронной пары. Но описание сформировано на основе данных из официальных справочников. Просто теоретики, решая частные задачи, вводят произвольные постулаты без оглядки на смежные области квантовой теории. А если эти постулаты свести вместе, что должны делать сами теоретики, то получается выше приведенная абракадабра. И это еще без привлечения мюонов, кварков и глюонов.

 

К тому же, аннигиляция, в качестве действенного способа добычи энергии, явно отвергнута природой, избравшей сугубо асимметричную форму существования вещества.

 

Кроме того, никто еще не наблюдал ничего похожего на столкновение фотонов. А если фотон это локализованная волна, то вообще нет никаких надежд на такое столкновение.

 

Это по поводу создания электрон-позитронной пары из энергии. А как образуются другие элементарные частицы и множество неустойчивых частиц, со структурами существенно различающимися? Тоже из стандартных фотонов? Всего лишь с другой энергией? Всё очень сомнительно. Везде напрашивается философское «нельзя» и «доверяй – но проверяй».

 

Чтобы избежать назойливого сомнения, заинтересованные исследователи придумали добывать пары античастиц одним фотоном, но из атомного ядра. А еще придумали создавать эти пары из энергии вакуума с помощью флуктуаций или поляризации вакуума. Здесь вопросы неуместны, т.к. это из области теории инфляции, в которой всё допустимо, что потребно авторам.

 

Инфляция – это полное бездействие (обесценивание) известных законов природы, взамен которых действуют законы, необходимые авторам инфляционных фэнтези.

 

Флуктуация – это случайное событие, состоящее в отклонении от среднего значения параметра, характеризующего некоторый статистический процесс. Конкретная причина конкретной флуктуации является неизвестной. Большая флуктуация всегда является результатом однонаправленного, но тоже случайного, сложения (которое почему-то часто называют резонансом) определенных, но неизвестных, событий наблюдаемого процесса.

 

Однако в настоящее время флуктуацию иногда трактуют как беспричинное событие, чем вводят и себя, и всех остальных в заблуждение, т.к. беспричинное событие – это антинаучное понятие, отрицающее все законы сохранения.

 

Так или иначе, наблюдаемое искусственное рождение вещества возможно только в симметричном исполнении, т.е. в паре с антивеществом. Это обстоятельство, с учетом факта отсутствия заметного количества антивещества в природе, явно свидетельствует о том, что количество вещества во Вселенной не увеличивается. Существующее же вещество, окружающее нас, целиком превратить в энергию без антивещества невозможно. Вещество – основной переносчик и преобразователь энергии. А квант энергии – это порционная мера скалярного количества обобщенного движения материи.

 

Таким образом, квантовая теория поля, претендующая на полноту описания мира, по сути, является мифологической, т.к. апеллирует к придуманным, исходным состояниям инфляционной Вселенной. А самое главное она часто манипулирует выдуманными под каждый конкретный случай, загадочными явлениями квантового мира, и не собирается что-либо делать, чтобы эти явления стали менее загадочными. Удачные манипуляции, которые удается подогнать под наблюдаемые явления, афишируются, а неудачные замалчиваются, создавая в итоге видимость триумфального успеха квантовой теории.

 

Метафизический метод познания, без которого не обойтись в современных квантовых исследованиях, требует максимальной прозрачности аргументации, а также не мыслим без дискуссионной апробации, а именно это перестало быть нормой в науке.

 

Наблюдаемые процессы аннигиляции сомнительны в плане предположения о полной аннигиляции массивного вещества. Аннигиляция становится менее сомнительной в плане предположения об участии в аннигиляции только зарядов. При аннигиляции протонов остается множество осколков массивного вещества. А при аннигиляции электронов (якобы полной) нет полной гарантии, что не остаются массивные осколки неизвестного вещества, не имеющего заряда,  судьба которого не может быть установлена в современных методиках измерения.

 

Интерпретация результатов квантовых экспериментов, связанных с разрушением протонов, в связи со спецификой индикации, несет неизбежный элемент произвола в его толковании, обусловленного набором стереотипов, которым толкователь подвержен. Кроме того, выбор сенсоров и мест их установки в значительной мере предопределяет результат эксперимента, т.е. зависит от воли и эрудиции исследователя, и его заинтересованности.

 

Часть 2.2

 

Мы еще вернемся к фотону, который рассмотрели в качестве основного носителя энергии, а теперь в плане исторической справедливости обратимся к весьма сомнительной частице по названию нейтрино.

 

Известны удивительные физические свойства нейтрино, которыми он наделен своими создателями. Но публикуемые описания не полны. Некоторые из удивительных, а точнее – странных, свойств нейтрино тихо замалчиваются. Попытаемся выявить их с философских позиций, т.е. в рамках вселенской гармонии, в которой нейтрино должно принимать участие.

 

В философском аспекте нас будут интересовать не только физические свойства, но и функциональное назначение нейтрино в природе.

 

Итак, заявлено, что нейтрино — это частица. Таким образом, это однозначно не электромагнитное поле.

 

Однако масса покоя нейтрино изначально объявлена равной нулю. Уже странно. При этом энергия нейтрино меняется от нулевых значений до 0,8 МэВ. Значит, нейтрино это релятивистская частица, и распространяется она со скоростью света. Но уверенности в этом нет. Почему? Всё очень не просто. Дело в том, что если отбросить последнюю оговорку о возможном несовпадении скорости нейтрино со скоростью света, нейтрино становится очень похожим на фотон, только неуловимый, и диапазон энергии не так широк. А в природе дублеров не бывает.

Вот мудрые создатели нейтрино и ввели искусственное, и смутное, различие: скорость нейтрино равна скорости света, но без гарантии.

 

Однако в 2015 году за открытие нейтринной осцилляции, якобы подтверждающей наличие инертной массы нейтрино, была присуждена Нобелевская премия. Значит, нейтрино все-таки движется, а не распространяется. И скорость его движения, без сомнений, меньше скорости света. Меньше. Но какая? Пока не известно. Но если скорость нейтрино не равна скорости света, то она может быть какой угодно. Получается, что пора искать медленные нейтрино. А такие нейтрино должны весить в полтора раза больше электрона. И где же они? Их нет.

 

Кроме того, если у нейтрино есть масса, то нейтрино содержит в своем составе бозон Хиггса, масса которого приблизительно уже известна и равна 125 ГэВ/С2.  Получается, что нейтрино это вовсе и не нейтрино, а какая-то совсем иная сущность, о которой Паули даже не подозревал. Видимо, Нобелевский комитет, как и квантовые теоретики, тоже работает по секциям. Одна секция отвечает за  бозон Хиггса, другая за нейтрино, а между собой секции не общаются.

 

Измерять скорость гипотетической, неуловимой частицы неимоверно сложно. Значит, всё так и останется до следующего открытия, которое косвенным образом определит скорость нейтрино или отменит его массивность. Таким образом, двойной стандарт для авторов, склонных к фальсификации и самообману, обеспечен.

 

Приведенных данных вполне достаточно, чтобы определить место нейтрино в классификационном ряду Стандартной Модели. В этом ряду нейтрино находится между фотоном и всеми остальными частицами. Таким образом, нейтрино это все-таки ближайший родственник фотона.

 

Как и фотон, нейтрино — нейтральная частица. Спин нейтрино равен 1/2, а его спектр энергии непрерывен и меняется приблизительно от  0 до 0,8 МэВ.

 

Энергетический спектр нейтрино достаточно широк. Это значит, что энергия нейтрино должна выражаться формулой E=kE0, где k – 1, 2, 3 …, а E0 – минимально возможная порция энергии, т.е. квант энергии һ, без которого не мыслится квантовая теория, но для которого в теории нейтрино нет места.

 

Однако и представлением  E= kE0 никто не пользуется, видимо, чтобы не привлекать внимания к коэффициенту k и к кванту E0, и к их физическому смыслу. У фотона этот коэффициент отождествляется с частотой. А с чем отождествить его у нейтрино? А чему равно E0? Неужели это опять ħ/2.

 

Отличие нейтрино от фотона состоит в том, что фотон образуется в пространстве за счет работы, совершаемой атомом, а для нейтрино такой возможности не просматривается. Рождение нейтрино – это следствие и признак преобразования нуклонного вещества. Чем больше в пространстве нейтрино — тем меньше нейтронов и тем больше распавшегося вещества, т.е. протонов и электронов.

 

Если тяжелое вещество создано в звездах, то звезды должны производить достаточное количество нейтронов. А в молодой звезде ничего, кроме протонов и электронов, нет. Создавая нейтроны, звезды должны интенсивно поглощать нейтрино. Однако звезды напротив интенсивно излучают нейтрино.

 

Если нейтрино не поглощается в той же мере, что и излучается, то по плотности нейтрино можно судить о возрасте Вселенной.

 

Бесконечность Вселенной во времени предполагает её динамическое равновесие, а для этого необходимо, чтобы нейтрино не только излучались, но в таком же количестве и поглощались. Хотелось бы знать, хотя бы теоретически, в каких природных процессах происходит равновеликое поглощение нейтрино. К-захват явно не может справиться с такой нагрузкой.

 

Таким образом, без ответа остается естественный философский вопрос: зачем природе понадобилось собирать энергетическую дань в форме нейтрино, которые сами по себе в природе не востребованы. Ответов как всегда минимум два. Либо мы не знаем чего-то очень важного, и значит, Стандартная Модель не полна; либо нейтрино является порождением недоразумения. Логика не отвергает третий вариант, в котором ошибочны обе гипотезы.

 

 

Неразбериха с нейтрино началась с самого рождения частицы. Спасая закон сохранения энергии в акте бета-распада, когорта «великих из Тюбингена» одобрила идею Паули о неуловимой гипотетической частице, списав на нее экспериментально обнаруженный дефицит энергии.

Ключевым словом в этом сообщении является слово «экспериментально». Вот именно на эксперимент и следовало направить всю мощь интеллекта первооткрывателей.

Но случилось – как случилось.

 

Обратим внимание на распространенную и устойчивую формулировку при описании произошедшего события. Оказывается, что участники сотворения нейтрино «спасали закон сохранения». В этой формулировке отразилось и недопонимание понятия «закон природы», и недопонимание роли наблюдателя в познании законов природы, и мания собственного величия. Уж если и спасали, то не природный закон (человечество над законами природы не властно), а спасали себя от конфуза, а человечество от очередной природной загадки.

И, похоже, спасли.

 

Итак, в каждом акте бета-распада рождаются протон, электрон и нейтрино. Поскольку скорость протона постановили считать равной нулю, а скорость электрона и, соответственно, его энергия имеет непрерывный спектр, то и скорость нейтрино должна меняться по соответствующему, компенсирующему закону.

 

Возникает естественный вопрос — как развивается процесс распада нейтрона во времени. Вопрос не праздный. Если распад происходит одномоментно, то допустим вариант с неподвижным протоном, что и постулировал Паули. В этом случае электрон и нейтрино испускаются и двигаются в противоположные стороны, унося равный по величине импульс.

 

При последовательном распаде, с участием виртуального бозона, протон быть неподвижным принципиально не может.

 

В варианте, предложенном Паули, удивительным является именно то, что нейтрино абсолютно точно компенсирует количество движения электрона, которое меняется случайным образом. Поскольку масса покоя нейтрино была заявлена равной нулю, то компенсация энергии электрона возможна только за счет вариаций релятивистской массы нейтрино, которая обязана изменяться квантовым образом.

 

Так, что же сомнительного было в организации экспериментов при изучении бета-распада, на что не обратил внимания Паули и все его соратники. Нелепостью данных экспериментов было постулирование неподвижности протона, рожденного неподвижным нейтроном. Это обстоятельство воспринимается с большим удивлением, т.к. в дальнейшем для косвенного доказательства реальности нейтрино, Лейпунским была предложена проверка методом измерения протонной отдачи в момент испускания нейтрино.

 

Проверка была реализована, и отдача была обнаружена. Однако проверка проведена не на протонах, а на ядрах атомов, что не совсем одно и то же, т.к. объявлять ядро атома безразмерной точкой — уже неприлично. При этом в проведенных экспериментах вновь не учитывалась ещё одна из возможных составляющих отдачи, а именно, не учитывался момент количества движения ядра атома. А это то, что не может не учитывать профессиональный исследователь.

 

А что, если атомное ядро это не капля, а напряженная ажурная конструкция из протонов и нейтронов, способная не только вращаться, но и колебаться, поглощая энергию. Что тогда?

 

Обратимся к теории бета-распада, разработанной Ферми.

Вот квинтэссенция его теории, представленная его уравнениями:

n → p + e + ν+

p → n + e++ ν    [2]

Первое из уравнений описывает распад нейтрона на протон, электрон и антинейтрино, а второе описывает гипотетический распад протона на нейтрон, позитрон и нейтрино. При этом протон постулируется одной из самых стабильных частиц. В шахматах этот прием называется гамбитом, т.е. жертва стабильностью протона для достижения позиционного преимущества.

 

Оба процесса совершенно независимы. Подставьте второе уравнение в первое – и перед вами модель вечного двигателя первого рода. Из чего следует, что процесс, описываемый вторым уравнением, в природе не реализуется.

 

Не верится, что Ферми мог допустить такую оплошность. Но здесь анализируется то, что преподносится официальной наукой, так что перед нами идея модели вечного двигателя Ферми.

 

Ситуация напоминает прием с массой фотона. Масса фотона равна m= nħ/c. При этом масса неподвижного фотона постулируется равной нулю, хотя известно, что неподвижных фотонов не бывает.

 

Казалось бы всё просто, если у фотона есть масса – докажите экспериментально, и двигайте науку дальше. Однако все эксперименты свидетельствуют о нулевом приросте массы после поглощения фотона. Вот, и пришлось поглощение фотона постулировать как неподвижный фотон, только писать об этом не принято, т.к. всем понятно, что после поглощения, фотона уже не существует.

 

Вспомним философскую проблему нуля. Сколько весит нуль пудовых барашков?

 

Нейтрон является самой тяжелой и самой сложной элементарной частицей. Есть даже исследователи, которые считают нейтрон составной частицей, образованной протоном и  электроном. Про нейтрино они почему-то забывают. Эту забывчивость нельзя назвать странной. Она естественная. Ведь, если нейтрон является составной частицей, то необходимо ответить на вопрос, что собой представляет частица, образованная из протона и электрона, например, при К-захвате, ведь в этой частице нейтрино не будет. Или будет? Стандартная Модель позволяет брать всё, что хочешь, из окружающего пространства, сколько надо, и когда надо.

 

Давайте посмотрим, что же окончательно предлагает нам квантовая теория по интерпретации бета-распада.

 

Итак, нейтрино уносит до 0,8 МэВ, при этом в каждом акте излучения оно, якобы, точно компенсирует недостающую суммарную энергию образовавшихся электрона и протона, приводя энергию распада нейтрона к константе. Этот факт не акцентируется, но именно он дает основание для введения в процесс излучения виртуального, коротко живущего бозона. Таким образом, неравномерность собственного спектра излучения нейтрино жестко связывается со спектром излучаемых электронов, хотя энергия отдачи протона при этом повисает в воздухе, и висит до сих пор.

 

Скорость нейтрино равна скорости света, но квантовая теория на этом как бы не настаивает, т.к. для нейтрино не гарантируется нулевая масса покоя. В 2015 году ситуация несколько изменилась. У нейтрино, косвенным образом, обнаружили инертную массу. Но очень маленькую, такую, что ни измерить, ни рассчитать невозможно.

 

Теперь уже изначально декларируется наличие массы, а потом, в комментарии, это наличие не гарантируется. Это, как и до обнаружения массы, служит поддержкой двойного стандарта при интерпретации моделей процессов с использованием нейтрино. Очень удобно.

 

Кроме того, заявленная неуловимость нейтрино, при современном состоянии Вселенной, в философской интерпретации равнозначна утверждению о нестационарности Вселенной. Действительно, учитывая интенсивность нейтринного излучения, оно должно относительно быстро насытить собою стационарную Вселенную до такой плотности, при которой интенсивность излучения должна сравняться с интенсивностью поглощения. Но данного эффекта в природе явно не наблюдается. Получается, либо Вселенная непрерывно расширяется, чтобы поддерживать дефицит плотности нейтрино, либо мы являемся свидетелями первичного, и еще не закончившегося, процесса насыщения Вселенной, т.е. мы живем в очень молодой Вселенной. Обе ситуации достаточно парадоксальны.

 

Усомнившись в реальности нейтрино, благодаря перечисленным обстоятельствам, можно ли представить бета-распад без участия нейтрино?

 

Можно. При бета-распаде внутри нейтрона происходит формирование (создание) электрон-позитронной пары. При этом электрон испускается наружу, а позитрон или его аналог остается в составе протона. На формирование двух противоположных зарядов требуется энергия, которая и обнаруживается в качестве дефицита. Возникает проблемный вопрос фундаментального свойства. В какой форме эта энергия всегда присутствует в нейтроне? И какая сила преодолевает кулоновское притяжение электрона и позитрона?

 

Нам достоверно известно, что масса нейтрона больше суммы масс электрона и протона. Если этот факт соотнести с эффектом дефицита массы, то эффект получается на первый взгляд с обратным знаком. Всё очень странно.

Но и факт отталкивания положительного и отрицательного зарядов в бета-распаде тоже не менее странен.

Вот, когда будет разработана модель этого странного поведения, тогда и можно строить модель бета-распада без участия нейтрино.

 

Пока же живет и действует вычурная и противоестественная теория нейтрино, теория неуловимой, достаточно тяжелой, до 0,8 МэВ (у электрона  0,5 МэВ) частицы, которая в каждом акте распада, то ли имеет разную массу, то ли разную релятивистскую скорость, Но без двойного стандарта не обойтись.

 

Таким образом, существование сомнительной частицы искусно поддерживается  искусственно создаваемой неопределенностью, попросту – поддерживается неразберихой.

 

Часть 2.3

 

Обратимся к электрону.

Если в результате новых открытий становится понятно, что некоторый стереотип не соответствует истине, то это вовсе не означает, что ошибочный  стереотип уже отменен. Стереотип именно тем и характерен, что он исключен из осознанного процесса мышления. В силу этого свойства, ложный  стереотип необходимо изживать сознательно, и с усердием.

 

Например, от привычного, предлагаемого учебниками определения электрона, как элементарной заряженной частицы, необходимо сознательно перейти к более конкретному и более полному определению, охватывающему, например, следующую ситуацию.

 

Встречные электроны испытают рассеяние, не вступив в непосредственный контакт. Интерпретируя эту ситуацию в обобщенном проявлении, допустимо принять, что электрон это силовое поле, которое несет свое ядро-частицу, оберегая это ядро от непосредственного контакта. Развивая эту мысль, можно придти к аналогичному выводу по отношению к атому. А именно,  суммарное поле электронной оболочки атома бережно несет свое атомное ядро, храня его от экстремальных воздействий.

 

Учитывая выше изложенное, можно дать более корректное и более подробное определение электрона.

 

Электрон — это сложный природный объект, состоящий из вещественной частицы квантовой природы (неделимого ядра), характеризуемой неизменными массой и зарядом; ядро электрона поддерживает вокруг себя три локальных, неуничтожимых и абсолютно стандартных силовых поля: гравитационное, электрическое и магнитное.

 

В приведенном определении электрона, нет революционных составляющих – всё давно и хорошо известно.  Но, тем не менее, суть определения, в некотором смысле, революционна.

 

Определение прямо декларирует всем известную, но не акцентируемую истину об отсутствии энергетических затрат на поддержание стабильных силовых полей элементарных частиц, а также определение конкретизирует квантовую природу электрона, из чего логически следует, что поля  электрона локализованы в пространстве. А этот вывод является для многих революционным.

 

Магнитное поле, как производное электрического поля, можно было бы исключить. Но благодаря его причастности к квантовым, инвариантным характеристикам, правильнее рассматривать это магнитное поле как самостоятельное, в качестве фундаментального спина магнитного момента.

 

В гармоничном взаимодействии с протонами и нейтронами электроны образуют объемную динамичную структуру синтезированного атомарного вещества. Эта структура успешно сопротивляется контактному смыканию элементов вещества под действием полей гравитации и разноименных кулоновских полей.

 

Уместно задать философский вопрос: зачем природе понадобился спин. Наверное, можно предложить несколько вариантов, каждый из которых связан с известной функцией, выполняемой с участием спина. Однако, задавая вопрос, зачем понадобился спин, хотелось бы узнать (догадаться) о какой-то фундаментальной задаче, решаемой спином.

И здесь необходимо порыться в копилке застарелых вопросов фундаментального свойства.

 

Одним из таких охотно забытых вопросов является проблема, как на основе сугубо квантовых структур, которые в принципе не могут быть изотропными, природа предоставила человеку (эмулировала) изотропный, сферически симметричный макромир.

 

Спин, как фундаментальное вращательное движение вещества, помогает решать эту проблему, но частично, сводя всевозможные квантовые асимметрии к одной, осевой. Эта асимметрия присутствует во множестве объектов вещественного мира, но природа сумела устранить и её, практически из всех физических процессов. Каким образом природе это удалось? Возможно, подсказку дает атом водорода.

 

Эксперименты показывают, что электронная оболочка атома водорода проявляет себя как сферически изотропная. Никаких намеков на природный гироскоп или магнитный контур. Ясно, что для реализации этого эффекта-явления орбитальная плоскость электрона должна сама участвовать как минимум в двух ортогональных, вращательных движениях. Попросту говоря, орбитальный момент атома водорода быстро кувыркается, формируя сферическую орбиталь электронной оболочки.

 

Распространение этого принципа собственно на электрон и остальные элементарные частицы, приводит к наблюдаемой в природе сферической симметрии вещественного мира.

 

Таким образом, можно предположить, что фундаментальный спин это вращение элементарной частицы сразу в трех ортогональных плоскостях. Естественно, в квантовом исполнении эти движения реализуются последовательно, за три кванта времени.

 

Почему же ни в одном эксперименте это движение не зарегистрировано. Видимо, это определяется особенностью метрологического обеспечения существующих измерений. Если и возможна методика, позволяющая зафиксировать трехмерное вращение, то она должна быть весьма изощренной. Совершенно ясно, что в результате одного измерения можно получить только одно направление спина. Как бы исследователи не меняли направление сенсоров, они неизбежно обнаруживают параллельный спин, что подтверждает, как и наше предположение, так и официальный постулат о коллинеарности  спина и направления движения электрона.

 

Часть 2.4

 

Многие из академиков охотно согласятся, что электрон — квантовый объект, но эти же академики и их последователи тут же восстанут против локальности силовых полей электрона.

Вот этот двойной стандарт и есть причина многих, временно существующих парадоксов. Входя в квантовый мир, многие исследователи не могут освободиться от полезных стереотипов классических представлений, которые совершенно недопустимы в квантовом мировоззрении.

 

Ни квантовый объект, ни квантовый параметр принципиально не могут быть ни нулевыми, ни бесконечными.

 

Квантовое силовое поле формируется конечным количеством специализированных виртуальных носителей.

 

Самой вопиющей, и самой катастрофической по своим последствиям, является ошибочная трактовка соотношения неопределенностей Гейзенберга. Гейзенберг либо забыл, либо не посчитал нужным дополнить свое соотношение одним очевиднейшим условием, а именно: погрешность любого квантового измерения ∆х одного избранного параметра не может быть равной нулю, и всегда большее, чем ∆X/2, где ∆X – квант измеряемого параметра. Это азбука квантового представления, которая относится к левой части соотношения неопределенностей. Правая часть соотношения Гейзенберга определяется уже квантовой природой методики измерения, которая, по мнению Гейзенберга, вне зависимости от природы измеряемых параметров непременно включает в цепочку сенсорных преобразований фотонное представление измеряемых величин. Эта метрологическая погрешность не единственная в суммарной погрешности производимого измерения, но она является обязательной, и поэтому её присутствие справа со знаком больше совершенно оправдано. Знак равенства, совмещенный со знаком больше, в соотношении Гейзенберга означает, что ħ/2 является недостижимым пределом минимальной погрешности. Поэтому, когда в рассуждениях теоретиков встречаешь оборот «если один из сопряженных параметров измерен точно, то …», то перед нами теоретик-профан, или ушлый фальсификатор [3].

 

Использовать соотношение неопределенностей Гейзенберга позволительно только для оценки конечных измерений или расчетов. Применение этого соотношения  в самих расчетах, что происходит довольно часто, приводит к неизбежным искажениям реальной действительности.

 

Загадочное, казалось бы, свойство силовых полей зарядов всех типов сохранять свою величину во времени и распределение в свободном пространстве, при философском подходе, приводит к логичному решению проблемы — проблемы энергетического обеспечения стабильности силовых полей частиц. Это решение следующее.

 

Полевые виртуальные частицы-носители, реализующие контактное дальнодействие вещества, являются неотъемлемой и неуничтожимой принадлежностью элементарных частиц. При этом полевые кванты должны последовательно и периодически взаимодействовать, как со сторонними частицами, так и со своей частицей-носителем. Для этого, после каждого квантового взаимодействия, полевые кванты-частицы должны в полном составе возвращаться к своему источнику, т.е. к частице, откуда они и испускались.

Этого требует логика наблюдаемых физических явлений и характеристик полевого взаимодействия частиц.

 

Ни одна частица априори не знает, где находятся другие частицы, но в каждый конкретный момент частица получает информацию, куда и как она должна двигаться. Это очевидный факт. Во исполнение этого, кванты силовых полей должны излучаться регулярно и равномерно во все стороны, – и все непременно возвращаются, с соответственно измененными своими параметрами, доставляя необходимую информацию для реализации согласованного, мирового движения Вселенной. По-другому, просто, не может быть. Таким образом, силовые поля по своей сути являются сканирующими [1], и в этом смысле они переменные. Однако большая (планковская) частота повторяемости излучения позволяет рассматривать усредненные силовые поля как постоянные. При этом надо понимать, что перед нами стабильные, не излучающие волн, осцилляторы. При всяком поступательном перемещении, такой осциллятор допустимо, при необходимости, интерпретировать как псевдо волны де Бройля.

 

Если электрон в представлении современной квантовой теории является плоской бесконечной волной вероятности, в чем нас хотят убедить некоторые теоретики, то чем тогда в этом представлении является электрическое  и магнитное поле электрона? Вопрос из обоймы вопросов системного подхода. Задавать такие вопросы не рекомендуется.

То, что квантовые теоретики знают, они заложили в свои формулы, а то, что не знают – значит, и знать не положено.

 

Нас убеждают, что всякий раз, когда электрон вступает во взаимодействие, его волновая функция мгновенно коллапсирует, т.е. сжимается  в точку, где происходит это взаимодействие. Но разве можно указать состояние электрона, когда он ни с чем не взаимодействует. Таких состояний нет, т.к. любой  объект Вселенной постоянно находится в изменчивом (вариативном) поле гравитации Вселенной.

 

По поводу сканирующих силовых полей современный ретроград скажет, что этого не может быть, т.к. никто, ничего подобного не наблюдал. Но оглянитесь вокруг, сколько всего привычного обнаружится, на что ископаемый ретроград когда-то говорил, что этого не может быть.

Никто не видел процесс распространения  радиоволн, но все наблюдают известные результаты этого движения – и в итоге свыклись и признают их существование. Эта конкретная привычка — пример метафизического познания природы. Привычка входит в наше сознание, как практическое достижение, превращаясь в стереотип мышления. И так будет со всеми выводами метафизического свойства, прошедшими апробацию практикой.

 

К тому же, отдаленные аналоги сканирующего поля все же есть, это все щупы и лоты, а также детская игрушка – возвращающийся шарик на резинке, привязанной к ладони.

 

Модель сканирующего силового поля, обеспечиваемого инвариантным количеством носителей, вносит определенность в интерпретацию характеристик суммарных полей. В данном представлении суммирование полей разного знака методом их компенсации явно невозможно. Если нейтрон является комбинацией положительного и отрицательного зарядов, то в пространстве всегда будут присутствовать оба поля полностью, действе которых уже может  компенсироваться в момент совместного действия. Присутствие в пространстве сразу двух противоположных полей обнаруживается при вращении нейтрона. Ведь, если нейтрон имеет магнитный момент, а сам при этом нейтрален, значит, в нейтроне присутствуют сразу два заряда, один из которых более удален от его центра вращения.

 

Суммарные магнитные поля нейтральных атомов простираются на огромные расстояния, не проявляя своей электрической составляющей. Физики, не понимая сути явления, свыклись с ним – и перестали удивляться.

 

Законы сложения полей одного знака реализуют, приблизительно, правила векторной алгебры, хотя истинные законы сложения, учитывающие эффект экранирования – несколько иные (квантовые), но они пока не изучаются.

 

Часть 2.5

 

Вернемся к анализу известных характеристик электрона.

Итак, калиброванный, петлевой, токовый заряд электрона формирует шарообразное, локализованное электрическое поле. Кроме того, токовая петля формирует калиброванное магнитное поле, названное спином.

 

Философы, похоже, недооценили значение спина как фундаментального явления. Впервые человечество столкнулось с законом сохранения в таком формате. Вещественная частица обладает движением, от которого не может избавиться, которое она не может передать другой вещественной частице. Спин влияет только на поведение своего носителя, и не может ни исчезнуть, ни измениться.

 

Не осознав этого нового для нас качества частиц, нельзя глубоко проникнуть в метафизическую суть атомарного вещества. Природа, создав спин, потратила на это порцию энергии. Частица хранит эту энергию в неприкосновенности. Но всегда ли? А что происходит при аннигиляции?

Но, что такое аннигиляция. Разве мы знаем.

 

Мы предполагаем, что при аннигиляции две частицы не разрушаются, в бытовом смысле этого слова, а полностью переформатируются в иное состояние материи, т.е. превращаются в энергию.

Всё очень не просто, т.к. при аннигиляции должно сохраниться еще и количество движения аннигилирующих частиц. Какой же должна быть энергия фотонов в зависимости от скоростей исходных частиц?

 

Во что именно превращаются аннигилирующие частицы, пока известно только частично и приблизительно.

 

При своем поступательном перемещении в пространстве электрон создает магнитное поле, которое является дополнительным по отношению к его спину. Величина этого поля определяется затраченной работой сторонних сил, что находит свое выражение в скорости электрона относительно пространства.

В рамках ТО это простое и естественное представление нельзя даже сформулировать. Дело в том, что Эйнштейн, декларативно признав материальное пространство, тем не менее, сохранил в своем учении математический аппарат, разработанный на основе отрицания этого пространства. Таким образом, декларация оказалась лицемерной, а учение двуликим.

 

Самым распространенным в природе видом перемещения электронов является их обращение вокруг ядра атома.

 

Комбинированное электрическое и  магнитное поле электрона действует на сторонние заряды, которые в свою очередь действуют на рассматриваемый электрон. В результате электрон меняет своё положение в пространстве или в системе, а также меняет форму своих полей в зависимости от движения и размещения сторонних зарядов. Таким образом, электрические поля электрона изменчивы и подвижны. Форма поля отдельного электрона в составе системы становится неопределенной. Только в свободном пространстве можно проверить стабильность полей одиночных электронов.

 

Инвариантные параметры поля электрона, находящегося в составе любой системы, тем не менее, должны существовать – и существуют. В квантовой модели, со сканирующими полями, таким инвариантом, естественным образом, является количество испускаемых квантов – носителей поля, т.е. объем собственного поля заряда. Этот инвариант мог бы стать  эффективным инструментом для исследователей, но этим инвариантом ещё никто не пользовался.

 

Ни одна из квантовых концепций не рассматривает и не учитывает законы изменения моментальной формы электрического поля электронов и атомов. Это не только допустимо, но и необходимо в рамках инженерных расчетов. Однако при интерпретации конкретных экспериментов и при разработке теорий, претендующих на фундаментальность, является существенным упущением.

 

Известно, что излучение электромагнитного поля неразрывно связано с укоренным движением зарядов, которыми обычно являются электроны. Силовые поля, как выяснили выше, не расстаются при этом со своими носителями зарядов. При этом, для электрических полей при смещении заряда нет данных о задержке времени при передаче воздействия, а гравитационные поля такой задержки точно не обнаруживают.

 

Моментальное распространение гравитации не имеет прямого экспериментального подтверждения, но оно подтверждено косвенно, расчетами натурных наблюдений. В угоду ТО  моментальное распространение гравитации официальной наукой не признается, хотя это очень странно. Ведь в ТО нет времени, а есть только геометрическая кривизна. Из этого следует, что любое пробное тело, помещенное в любую точку пространства, моментально должно испытать гравитационную силу. Таким образом в ОТО скорость гравитации должна бы быть не только моментальной, но даже бесконечной.

 

Отметим, что моментальной скоростью обладает объект, который преодолевает любое конечное расстояние за один квант времени. Но в ТО моментальных скоростей быть не может. А в природе не может быть бесконечных скоростей. Вот и пришлось Эйнштейну ловчить, назначив скорость гравитации равной скорости света, а вслед за Эйнштейном ловчит до сих пор и официальная наука.

 

Часть 2.6

 

Каков же механизм излучения электромагнитных волн? Пока никто не знает, т.к. не известно устройство пространства. Но и вопрос не совсем корректный. Термин «механизм излучения» сразу сужает область поиска, ограничивая её механическими представлениями, хотя понятно, что всех интересует природа излучения.

 

Чтобы хоть что-то прояснить в этом вопросе, попробуем воспользоваться нашими знаниями из области взаимодействия электронов с электромагнитными полями. При этом будем пользоваться теоремой взаимности.

 

Рассмотрим действие радиоволн на электроны.

Взаимодействуя с радиоволной электрон проводимости испытывает возвратно-поступательное ускорение, направленное ортогонально распространению волны. Кроме того, известно, что это ускорение лежит в плоскости поляризации волны.

 

В предложенных обстоятельствах желательно уточнить, что же это такое — электрон проводимости, и каким образом он поглощает квантованную энергию радиоволн.

 

Академическая наука предлагает вариант, в котором электроны проводимости — это полусвободные электроны, сорванные с внешней оболочки атома, которые образуют некое облако, довольно свободно перемещающееся в структуре ионной решетки проводника. Известно, что групповая скорость этого облака, при реализации бытовых токов, очень мала и измеряется несколькими миллиметрами в секунду. При этом скорость электронов в оболочке атома равна приблизительно 1/137 скорости света, т.е. очень велика.

 

Электроны проводимости и электроны атомных оболочек, поддерживая динамическое равновесие облака должны непрерывно осуществлять рекомбинацию.

 

Механизм рекомбинации в учебниках не описывается.

Очевидно, что для рекомбинации электронов их скорость в составе облака и в составе атомной оболочки должны быть соразмерными. Таким образом, облако получается весьма необычным.

 

Облако проводимости, состоящее из высокоскоростных электронов, оказалось очень неудобным для выполнения своих функций. Следствием этого обстоятельства стало то, что процесс рекомбинации отнесен к квантовым процессам туннельного перехода, что позволяет не задумываться о промежуточных состояниях участников процесса.

 

Первый вопрос, который возникает при попытке всё же понять суть явления, это по какой причине электроны покидают валентную оболочку атома.

 

Первое, что приходит на ум, это тепловые столкновения. И сразу – нестыковка, т.к. судя по зависимости сопротивления проводника от температуры, эффект наблюдается обратный, т.е. повышение температуры приводит к понижению проводимости.

 

Несоответствие еще более заметно при явлении холодной сверхпроводимости, в котором проводящее облако явно существует при практически нулевых температурах.

 

Приходиться сосредоточиться на поиске не ударной природы ионизации, не зависящей от температуры проводника.

 

Рассмотрим в проводнике два смежных атома, контактирующих своими оболочками, в геометрическом смысле, и без учета взаимных деформаций, вызванных сближением атомов. Пусть один из внешних электронов атома №1 в некоторый момент оказался в точке условного касания оболочек, т.е. точно между ядрами смежных атомов №1 и №2. В этом состоянии моментальные поля притяжения электрона к ядрам атомов №1 и №2 почти совпадают по величине и противоположны по направлению. Из этого состояния электрон может покинуть свою орбиталь от малейшего, удачно направленного возмущения.

 

Результат действия такого «удачного» возмущения в квантовой электродинамике трактуется как туннельный переход, т.е. процесс преодоления потенциального барьера без видимого приложения сторонних сил.

Назовем мимолетное состояние электрона, когда он находится в точке касания оболочек, стартовым, в плане возможной ионизации.

 

Облако, созданное таким способом, будет характеризоваться высокой и стабильной, парциальной температурой, с распределением по скорости, существенно отличающимся от распределения Максвелла. Это расхождение будет тем более заметным, чем интенсивнее будет процесс рекомбинации, чем короче будет время жизни электрона в облаке. Средняя скорость электронов облака проводимости будет меньше орбитальной скорости. Однако в процессе рекомбинации, этим же способом, скорость будет восстанавливаться.

 

В условиях сверхпроводимости время жизни электронов в облаке проводимости становится неограниченным, т.е. в этом режиме рекомбинации быть не должно.

 

Нескончаемый хоровод электронов сверхпроводимости по замкнутому проводнику, вовсе не идеальной формы, не может существовать сам по себе, без затрат сторонней энергии. Это значит, что система, состоящая из неподвижной ионной решетки замкнутого проводника и из потока облака электронов, образует при удачном стечении обстоятельств резонансный, самонастраивающийся контур, который черпает энергию из окружающей среды, охлаждая её. Функцию подкачки  энергии в сверхпроводящий контур выполняет, по всей видимости, резонансная (самосогласованная) куперовская пара. Из резонансного контура можно даже отводить очень малое количество энергии, ток сверхпроводимости будет поддерживаться неизменным  [4].

 

А что, если кроме облака проводимости на результирующую проводимость влияют электроны, находящиеся в стартовом состоянии, которые готовы существенно пополнить облако при возникновении внешнего напряжения. Тогда мы получим ток проводимости двойной природы: первичное облако проводимости и электроны подпитки проводимости, поступающие из стартового состояния только с момента приложения внешнего напряжения. Это позволит объяснить многие нюансы в свойствах проводимости, например, почему сверхпроводимость обычно реализуется сплавами, и почему бывают разные зависимости проводимости от температуры.

 

Часть 2.7

 

Отвлечемся пока от облака проводимости, и обратимся, для расширения нашего кругозора в плане взаимодействия силовых полей и электронов, к взаимодействию электронов с оптическими фотонами.

 

Нас интересует фотонное взаимодействие электронов в четырех фазовых состояниях, а именно: для электронов в составе оболочки атома, для электронов плазмы, для электронов проводимости и для свободных электронов.

 

Достоверно известно, что атом способен поглощать фотоны.  При этом считается, что один из электронов атома возбуждается, переходя на орбиталь с большей энергией. С этого уровня электрон может вернуться на прежний уровень,  излучив точно такой же фотон. Но электрон может перейти и на другой энергетический уровень, излучив другой фотон, соответствующий данному переходу.

 

Как конкретно фотон взаимодействует с атомом – пока никто не знает.

Естественное предположение, что фотон излучается атомом, в официальной науке отвергнуто и подменено утверждением об излучении фотона одним электроном атома, причем только при переходе электрона с одной, разрешенной, орбиты на другую и тоже разрешенную. Характер перехода постановлено считать мгновенным, что наиболее всего соответствует экспериментальным данным. Решение было бы мудрым, если бы это решение охарактеризовали как вынужденное и временное.

 

Декларировав мгновенное распространение действия, создающего реальный фотон, академики не соотнесли свое решение с ТО, отрицающей такую возможность. Но, тем не менее, это решение, как бы укрепляет альянс ТО и Квантовой теории, приучая научное сообщество к мысли об осуществимости компилятивной парадигмы.

 

Официальное положение об излучении фотона орбитальным электроном можно принять только как нулевое приближение, т.к. нельзя существенно изменить траекторию любого из электронов, не повлияв значительно на все остальные. Но второй постулат Бора, о котором чуть позже, используя завоеванные квантовые привилегии, отрицает это влияние, искусственно обедняя мир атома.

 

При поглощении фотона электроном атома возможен фотоэффект, при котором один электрон, поглотивший фотон, покидает структуру атома.

В фотоэффекте экспериментально установлено, что наблюдаются случаи выброса электронов из облучаемого образца в сторону источника фотонов, что очень странно с точки зрения официальной теории, постулирующей продольный импульс фотона. Создается впечатление, что наблюдаемые при фотоэффекте электроны, являются вторичными. И тогда возникает вопрос огромной и принципиальной важности – в каком направлении происходит первичный выброс электрона из атома по отношению к направлению движения и поляризации фотона.

 

Дело в том, что сам по себе фотоэффект, в том проявлении, в котором его изучал Эйнштейн, вовсе не доказывает наличия продольного импульса у фотона.

 

Представим очень легкую, практически невесомую, но достаточно жесткую, сжатую пружину со слабой защелкой. При столкновении такой пружины с рыхлой структурой слабо соединенных шаров, возможна ситуация, имитирующая фотоэффект. Пружина, оказавшись между шарами, может разжаться и оторвать один шар за счет своей потенциальной энергии сжатия. Но для этого пружина должна упереться в соседний шар из состава рыхлой структуры. Это очень важное обстоятельство. В этом случае структура шаров получает малую долю энергии, а основную долю  энергии пружина отдает вырванному шару. Однако возникший при этом импульс распределяется между шаром и системой поровну, так что суммарный импульс всегда точно равен нулю.

 

Энергией системы в подобных случаях принято пренебрегать. А заодно и импульсом системы, хотя для этого часто нет оснований.

 

Отдельно взятый шар преобразовать потенциальную энергию условно невесомой пружины в соответствующий импульс не может. Это еще одно очень важное обстоятельство, из которого следует, что, скорее всего, для поглощения фотона требуется соответствующая динамичная система.

 

Тщательный анализ всевозможных исследованных ситуаций, возникающих при отражении и поглощении фотона, в том числе повторение опытов Лебедева, показал, что фотон не имеет продольного импульса [5].

 

Из этого факта следует огорчительный для многих вывод: результирующее фотонное давление всегда равно нулю. Сотни экспериментаторов, которые безуспешно пытаются построить фотонный движитель, считающих себя неудачниками, могут успокоиться. Они не виноваты в своих неудачах. Виновны спровоцировавшие безнадежный поиск.

 

А вот руководителям проекта «Пионеры» есть над чем задуматься [6]. Ведь эта команда списала загадочное поведение аппаратов в дальнем космосе на давление теплового излучения, а давления не существует.

 

Однако хлопоты и огорчения космических инженеров ничто по сравнению с той перестройкой, которую следует произвести в самой космологии.

 

То, что фотоны переносят энергию – факт очевидный. То, что эта энергия может преобразоваться в форму, в которой присутствует продольный импульс – тоже очевидно. Но этот импульс обязательно сопровождается равным и противоположным по направлению импульсом реакции, и это необходимо осознать.

 

Таким образом, фотоны можно рассматривать переносчиками кванта именно тепловой энергии, в строго классическом понимании, по которому тепло – это характеристика хаотической составляющей движения. Средняя скорость теплового движения всегда равна нулю. Это не закон, это определение.

 

Если потоку космических частиц приписывается некая температура, исходя из скорости потока, то этот поступок является профанацией.

 

Принцип переноса кванта тепла представлен в примере с невесомой пружиной. Однако фотон отдает энергию не любой системе, а только строго соответствующей и находящейся в подходящем состоянии. В противном случае фотон отражается.

 

Известно, что требованиям поглощения и излучения способен удовлетворять атом.

А какие еще системы удовлетворяют этому требованию? Сводной информации нет. Если бы других систем не существовало вообще, то можно было бы ожидать, что между устройством фотона и устройством атома существует корреляция.

 

Однако судя по разрозненной, но не очень убедительной информации, излучает и поглощает всё вещество.

Но один и тот же «тепловой» фотон (или в точности такой же) может отдать свою энергию на биологический или химический синтез. Получается, что формат фотонной энергии совместим с многими форматами потенциальной и кинетической энергии

 

 

Если фотон не имеет ни продольного, ни какого другого импульса, а похоже, это так и есть, то фотон принципиально не может поглощаться ни одной свободной элементарной частицей. Доказывается от противного.

Однако одиночные совершенно свободные частицы в природе не существуют, это принадлежность приближенной идеализации. Таким образом, для любого энергичного электрона, и тем более для пучка электронов, всегда можно указать систему, которая и реализует так называемое тормозное излучение электронов.

 

Из вышеизложенного следует, что свободные элементарные частицы не могут излучать фотоны. А это приводит к краху многих интерпретаций экспериментов  и явлений с участием элементарных частиц, фотонов и гамма квантов.

 

 

Этот, философской значимости вывод, – нечто совершенно новое в физике частиц, и хотелось бы убедиться в этом на практике.

 

Далее, если допустить, что фотон это локализованный осциллятор, несущий квант энергии и перемещающийся в пространстве с максимально возможной скоростью (скоростью света), то придется признать, что отдельные элементы структуры фотона перемещаются со скоростью, превышающей скорость самого фотона, т.е. скорость света.

 

Таким образом, фотон не может быть осциллятором. Это значит, что фотон распространяется как жесткая пространственная конфигурация, что плохо увязывается с представлениями о процессе отражения фотонов.

 

Кроме того, если допустить, что фотон переносит чисто потенциальную энергию, то возникает естественный вопрос по определению формы этой энергии, которая (форма) пока еще не  известна.

 

Логика поведения фотона не вписывается ни в логику механических, ни в логику волновых взаимодействий, значит, для неё остается только логика квантовых операторов. Однако последнее замечание не несет конструктивной информации, т.к. логика квантовых операторов не имеет ограничений по своей применимости.

 

Логика операторов не отвергает и не нарушает общепринятую логику во всех её проявлениях, как считают некоторые теоретики [7], а лишь расширяет её. К тому же, квантовая логика испытывает бурное развитие вовсе не в квантовой теории, а в кибернетике и информатике, что создает проблемы субъективного свойства по её использованию.

 

Итак, атом поглощает энергию фотона, а один из электронов атома может приобрести при этом дополнительное движение, т.е. импульс или момент импульса, скомпенсированные импульсами реакции. Но исследование реакции часто не производится.

 

При взаимодействии орбитального электрона атома с фотоном происходит, либо переход электрона на более высокий энергетический уровень, либо полный разрыв связи электрона с атомом, т.е.  реализуется фотоэффект.

 

А что же происходит с фотоном после его поглощения? Если фотон есть виртуальное возмущение пространства, то фотон, естественно, исчезает бесследно. А если фотон является частицей, то нам необходимо проследить его судьбу. Но не будем этого делать из соображений экономии, т.к. есть все основания не доверять учению Эйнштейна о фотонах, как о частицах. Если же Эйнштейн все-таки прав, то позволим себе оставить пока белое пятно в наших умозаключениях.

 

Из всего вышеизложенного можно сделать следующий вывод.

Фотон – локализованный объект, представляющий собой специфическое возбуждение пространства, перемещающееся со скоростью С, и являющееся результатом взаимодействия пространства с подходящей вещественной системой. Одна из подходящих систем – это атом в некоторых избранных состояниях.

 

Фотоны могут поглощаться атомами и другими подходящими системами, если такие  системы существуют, только полностью и без потерь, когда вся энергия фотона передается поглощающей системе, а фотон прекращает существование. Энергия фотона не может изменить суммарный импульс поглощающей системы. Обычно, в момент поглощения фотона происходит преобразование энергии фотона в калиброванный элемент тепловой энергии. Однако при фотосинтезе, возможно, происходит непосредственное преобразование потенциальной энергии фотона в потенциальную энергию синтезируемой молекулы. Вот где, похоже, спектр имеет решающее значение.

 

За квантовый стандарт каждого фотона из полного набора возможных фотонов, явно отвечает пространство.

 

Однако нельзя утверждать, что фотон является исключительно переносчиком энергии. Энергия – это скаляр. А фотон явно поляризован. И на поляризацию можно воздействовать. Значит, кроме энергии фотон переносит ещё и некоторую дополнительную информацию.

Как и для чего в природе используется поляризация фотона? На этот вопрос, и многие другие вопросы, еще предстоит ответить.

 

Фотон – это еще не разгаданное до конца явление природы.

 

Часть 2.8

 

Чтобы приступить к анализу взаимодействия вещества и пространства, необходимо уяснить, есть ли принципиальная разница между фотонами и радиоволнами, и если есть, то в чем она состоит.

 

Первое, что приходит на ум, это то, что для взаимодействия радиоволн с веществом, в отличие от фотонов, как будто бы не требуются атомные структуры. Это предположение находит подтверждение в том, что характеристика поглощения и излучения радиоволн антеннами не имеют линейчатых спектров.

 

Кроме того, нет сомнений, что радиоволны не переносят продольный импульс, т.к. наведенный ими импульс тока всегда поперечный. В рамках проведенного выше анализа было бы странно, если бы радиоволны переносили продольный импульс, тогда как фотоны его не переносят.

 

По аналогии с фотоном, и из общих соображений, суммарный поперечный импульс, наводимый радиоволной, должен быть нулевым.  Но в системе электрон — радиоволна это требование реализовать невозможно. Таким образом, либо радиоволна переносит осциллирующий поперечный импульс, что более чем странно, либо по аналогии с фотоном радиоволна поглощается некоторой системой, включающей в свой состав электрон проводимости. А такой системой, обеспечивающей требуемую реакцию, может быть только ионная решетка проводника.

 

Значит, мы вновь возвращаемся в некотором роде к атому, т.е. к виртуальной системе электрон – радиоволна – ион атома. И нельзя говорить, что электроны поглощают энергию радиоволн, т.к. энергию поглощает проводник. Процесс поглощения энергии радиоволны пока ещё не совсем понятен.

 

Некоторую  ясность в этот вопрос может внести, как ни странно, лазерное (фотонное) охлаждение вещества, движущегося навстречу фотонному лучу [8]. Авторы открытия лазерного охлаждения, получившие за это Нобелевскую премию, не обратили внимания на эффект, который возможно является вторым их открытием, и может быть, более ценным.

 

Дело в том, что вероятно лазерный встречный луч в этих опытах не просто тормозит атомы встречного вещественного потока, а тормозит парциально, т.е. часть атомов, поглотив фотон, замедляется, а некоторая часть, поглотив встречный фотон, напротив —  ускоряется. Это видно из диаграммы, приведенной Филлипсом У.Д. в своей нобелевской лекции, см. рис.1.

Рисунок 1. Фрагмент нобелевской лекции Филлипса. У.Д. [8]

Если исходить из официальной парадигмы, то Филлипс У.Д. и его соавторы при такой интерпретации открыли фотон с отрицательным продольным импульсом, что совершенно невероятно. Вот поэтому они, как и Эйнштейн при анализе фотоэффекта, не пожелали замечать якобы отрицательный импульс фотона. Мы же здесь должны сделать другой вывод.

 

Радиоволны переносят энергию в форме, преобразующейся атомом в поперечно поляризованный квант тока,  с нулевым суммарным механическим импульсом.

 

Фотоны переносят энергию в форме, преобразующейся атомом в поляризованный квант тепла, с нулевым суммарным механическим импульсом. Поляризация теплового импульса требует дополнительного исследования.

 

Чтобы поглощать фотоны, поглощающая система должна быть способна воспринять от фотона энергию либо в формате двух противоположных импульсов, с суммой равной нулю, либо в формате, не содержащем импульса. При этом реализуется универсальный квантовый принцип, который в бытовом изложении означает: или всё, или ничего,- если речь о поглощении единичного кванта.

 

Отсутствие у фотона продольного импульса – это одно из основополагающих отличий фотона от частицы. Нет импульса – нет и релятивистской массы. Фотон – не частица, он только похож на неё некоторыми свойствами, например неизменность пространственной конфигурации фотона.

 

Повторим. Если рассматриваемая система при взаимодействии с фотоном не может одновременно реализовать два противоположно направленных импульса движения, то тепловое поглощение фотона этой системой исключается.

 

Данная характеристика вещественных систем могла бы быть весьма конструктивной при разработке соответствующих моделей, что позволило бы, наконец, приступить к теоретическому исследованию проблемы прозрачности вещества. Действительно, если атом не может поглотить данный фотон, и не реализует условия его отражения, то фотону ничего не остается, как продолжить свое движение сквозь вещество среды.

 

Продолжим. Исходя из наших теоретических изысканий, необходимо предположить, что электроны облака проводимости в процессе поглощения радиоволн могут участвовать только в паре с соседним ионом из состава решетки проводника.

 

И мы опять возвращаемся к механизму взаимодействия типа фотон-атом-электрон. Различие в данном случае состоит лишь в том, что электроны проводимости не требуют соблюдения резонансных условий, которые необходимы для поглощения или излучения фотона оптического.

 

Выявленный вариант взаимодействия радиоволны с электронами проводника, похож на реальность. Необходимо провести целевые эксперименты, чтобы окончательно отказаться от представления, что волновое электромагнитное поле, может служить точкой опоры и способно непосредственно совершать работу, сообщая точечному объекту не нулевой импульс.

 

Работу могут совершать только вещественные системы посредством силовых полей, поглотителями (приемниками) которых опять же являются вещественные частицы. Более наглядно это можно  изложить следующим образом: точечный заряд в поле радиоизлучения не будет испытывать никакого воздействия.

 

Получается, что разреженная водородная (и прочая) плазма, не должна быть ни светопоглощающей, ни радиопоглощающей. Именно это свойство обеспечивает прозрачность космоса, тем самым подтверждая наш вывод.

 

Данное предположение можно проверить, исследовав модуляцию слаботочного электронного луча в вакуумной трубке под действием поперечного радиоизлучения.

 

Все проведенные ранее эксперименты, которые можно бы привлечь для проверки этого явления, как правило, проводились без контроля за границами ближнего, т.е. силового, поля антенн. В результате, в зоне облучения могут присутствовать как радиоволны, так  и силовое осциллирующее поле, что не позволяет на основе проведенных экспериментов сделать однозначный вывод по поводу  взаимодействия радиоволн со свободными электронами.

 

Отметим еще раз, что волновые поля обеспечивают односторонние воздействия, а силовые поля обеспечивают двусторонние взаимодействия.

 

Часть 2.9

 

В чем же сокровенный, природный умысел однонаправленного дальнодействия? Это философский вопрос, затрагивающий фундаментальные принципы космологии. И это одновременно тест для любой космологической модели, ибо каждая модель должна дать ответ на вопрос, что происходит с излученной энергией, ведь она не может пропадать бесследно.

 

Как же реализуется процесс перехода орбитального электрона с одного уровня на другой?  К ответу на этот вопрос невозможно приступить, не построив дееспособную теорию неподвижного квантового пространства.

 

Однако авторы подавляющего большинства существующих квантовых теорий как бы не замечают этого естественного требования. И как следствие, уклоняются даже от обозначения тех проблем, которые невозможно решить без обращения к абсолютному пространству.

 

Найдя способ статистического описания квантового мира, служители этого способа пытаются уверить себя и общественность, что других возможностей не существует. Более того, своё недостаточное знание и умение, такие ученые объявляют фундаментальным свойством природы. В результате, часть теоретиков уверилась в том, что промежуточных состояний квантовых вещественных объектов вообще не существует. Существуют только волновые функции и конечный результат их действия.

 

Но давайте представим следующую ситуацию. Пусть исследователь создал теорию, позволяющую прогнозировать поведение квантового объекта при наличии сведений о начальном состоянии объекта, которые исследователь не может установить принципиально. Однако он может провести опыт и узнать конечное состояние объекта. Решив обратную задачу, экспериментатор может рассчитать как начальное, так и промежуточное состояние объекта, и тем самым установить скрытую от нас, сущность.

 

Это и есть один из методов метафизического познания мира.

По известному конечному результату процесса рассеяния пучка пробных частиц, исследователь судит о параметрах объекта, который рассеивает пучок.

 

Принцип метафизического познания мира был осознан еще философами древности, но ускользнул от перегруженных сложной и успешной математикой современных ученых.

 

Эйнштейн, свободный от математических перегрузок, интуитивно понимал значение скрытых параметров и верил в их существование, но даже он, с его авторитетом, не смог преодолеть снобизм современной математической школы.

 

Скрытый параметр – это не тот параметр, величину которого мы не знаем, зная о существовании параметра, а тот, о котором мы смутно догадываемся, или не догадываемся вовсе.

В нашем случае скрытым параметром до настоящего момента являлась сканирующая природа силовых полей.

 

Часть 3.1

 

Энергия, по изначальному определению, это способность совершать работу. Произведенная работа приводит к уменьшению исходной энергии той формы, за счет которой произведена работа. А чтобы совершить работу, необходима точка приложения силы и точка опоры, т.е. нужна вещественная система, как минимум из двух тел, способная совершать работу. Последнее обстоятельство часто  ускользает от внимания исследователей, особенно в мысленных экспериментах.

 

Стоит только осознать, что для совершения работы необходимы как минимум два вещественных объекта, как существующая интерпретация эквивалентности массы и энергии изменится коренным образом.

 

Замкнутую систему, характеризуемую заданным количеством волновой энергии и количеством вещества, несущим потенциальную энергию, превратить в нечто, состоящее из чистой энергии, принципиально невозможно. Замкнутая система не может реализовывать безусловные процессы

E → MC2  и   MC2 → E,

где M – масса вещества системы, а C – скорость света.

 

В свете наблюдаемых эффектов аннигиляции можно допустить, что возможно в природе реализуются некоторые вариации соотношения масса/энергия, в замкнутой системе. Но критерии для определения границ вариации пока не обнаружены. Не доказано и то, что при аннигиляции электронов рождаются гамма-кванты (фотоны), а ни нейтральные, высокоскоростные частицы, которые нам еще не известны.

 

Вещество способно создать фотон, затратив при этом соответствующую энергию. Но масса вещества при этом не изменяется. Из этого следует, что, скорее всего, ни фотон, ни группа фотонов, не могут создавать вещество.

 

Во всех известных экспериментах по созданию электрон-позитронных пар участвует стороннее вещество. Каким образом это вещество участвует в создании пар, никто не знает. Сами волны, при встрече, не рассеиваются и не уничтожаются. Они расходятся, не оставляя следов о встрече.

 

Пространство заполнено электромагнитным излучением, но никто еще не наблюдал ни столкновения фотонов, ни их последствий.

***

 

При фотоэффекте, точкой опоры для электрона является атом, представляемый в основном своим ядром, которое и получает равный, но противоположный электрону электро-механический импульс.

 

Почему электро-механический?  Потому что  электрон, как и ядро атома, реализует два типа инерции: механическую и электрическую.

 

Инерцию заряда во многих методиках измерений легко спутать с инерцией массы, что, к сожалению, и происходит. Это можно выявить и устранить, если об этом знать и понимать природу каждого вида инерции. Можно, например, по одной и той же методике произвести сравнительные измерения инерции для электрона и протона, а затем в сравнительном анализе выявить составляющее влияние различных сущностей.

 

Если исследовать ускорение протона в постоянном гравитационном поле, то исследователь обнаружит инерционное сопротивление массы протона, плюс магнитное сопротивление его заряда. Это значит, что протон в заданном гравитационном поле будет падать медленнее нейтрона! Зато нейтрон вообще не будет падать в электрическом поле.

 

Однако проще всего это сделать в современном кольцевом ускорителе.

Система горизонтального удержания заряженных частиц фактически производит магнитное, взвешивание частиц, т.е. определение их гравитационной массы. А система удержания луча на круговой траектории фактически, но косвенным образом, измеряет массу инерции. Система, ускоряющая частицы, преодолевает суммарную, электро-механическую инерцию. Однако при разгоне частиц современными мощными ускорителями, на последнем этапе, ускорение частиц практически равно нулю, и почти не влияет на результат измерения двух масс различной природы: гравитационной и инерционной.

На любом мощном кольцевом ускорителе можно количественно проверить учение Эйнштейна.

 

Эйнштейн постулировал эквивалентность массы инерции и массы гравитации, т.е.  идентичное поведение массы инерции и массы гравитации во всех условиях, в том числе при изменении скорости вещества. И никто до сих пор не удосужился проверить это вольное утверждение. При этом огромные средства вложены в проверку этого же постулата при бытовых скоростях. Результат проверок при бытовых скоростях, всегда благоприятен для ТО.

Однако здравый смысл, логика и философское мировосприятие склоняют к мысли о том, что масса гравитации уменьшается при увеличении скорости тел, и даже приближается к нулю при приближении скорости тела к скорости света. Масса же инерции при всех скоростях остается неизменной, т.е. она инвариантна [1].

 

Часть 3.2

 

Несомненно, что атом является природной фабрикой по производству фотонов, которые атом создает в окружающем пространстве из материи пространства в основном за счет тепловой энергии. При этом не совсем ясно, какую конкретно роль в природе играет спектр излучаемых фотонов. Кроме того, не ясна окончательно и роль, и характер излучения атомов, происходящего в твердых и жидких телах. Действующая модель этого излучения построена на концепции о продольном импульсе фотона, и значит, скорее всего, не верна. Однако вполне возможно, что выводы этой теории могут оказаться близкими к истине, как уже случалось с некоторыми ошибочными теориями.

.

Из принципа взаимности следует, что всякий природный излучатель может выступать в роли поглотителя, т.е. атомы, излучающие фотоны, способны и поглощать фотоны. При этом вторичное излучение фотона может происходить не только на частоте поглощения.

 

Атом является носителем множества слабо выраженных, но устойчивых асимметрий, лежащих в основе разнообразия молекулярного вещества. Эта асимметрия не хаотична, она лежит в основе гармонии Вселенной. Гармонию творит асимметрия.

 

Недавно возникшее, популярное направление в науке, которое изучает  всевозможные симметрии, традиционно впало в эйфорию мнимого всемогущества. Теоретики этого направления ищут основополагающую, фундаментальную симметрию мира. А такой симметрии нет и быть не может. Природа реализует только те виды симметрии, нарушая которые она может обеспечивать гармонию Вселенной. Выбор исходных симметрий модели аналогичен выбору системы координат. Выбрали тип симметрии – и можно изучать те природные законы, которые влияют на эту симметрию.

 

Взаимодействие атомов между собой сопровождается дополнительным непрерывным взаимодействием каждого атома с пространством, что проявляется в непрерывной генерации спектра фотонов. Спектр фотонов является визитной карточкой каждого свободного атома, но теряет это свойство в составе твердого тела, состоящего из идентичных атомов или молекул. В связи с этим возникает некоторое недоумение по поводу теории излучения черного тела, которая предписывает всем молекулам черного тела излучать одинаково, меняя параметры излучения только в зависимости от температуры тела.

Однако излучение газообразного вещества четко проявляет свою спектральную индивидуальность. При этом нигде, ни слова о корреляции двух типов излучения. Каждая из двух теорий входит в состав квантовой электродинамики (КЭД), которая объявлена самой успешной теорией. Однако механизм перехода от одного спектра излучения к другому не может быть скачкообразным, и похоже, этот переход никому не ясен. Почему запреты Бора и Паули действуют для газовых молекул, обеспечивая индивидуальный спектр, и не действуют для молекул твердого тела, обеспечивая стандартный непрерывный спектр?

 

Проследим поведение атома при так называемых механических взаимодействиях твердых тел.

В классической механике принято считать, что воздействие на испытуемое тело осуществляется либо непосредственно сторонним телом (контактным способом), либо полем стороннего тела. Поле наблюдаемого тела, как правило, не рассматривается. Считается, что о наблюдаемом теле достаточно знать массу, заряд и его форму.

Это еще один застарелый стереотип научной  идеализации, порождающий при некоторых экстраординарных условиях,  разные парадоксы. Кроме того, на практике эта идеализация проявляется как не учитываемая (неощутимая) погрешность измерений.

При столкновении твердых тел, собственно атомы и элементарные частицы, их составляющие (протоны, нейтроны и электроны), в мнимой непосредственности контактного столкновения участия не принимают. Взаимодействуют только поля с частицами. Это все знают, но случается, забывают вспомнить.

Таким образом, классическая механика, как и термодинамика, является порождением статистической идеализации, которая, правда, исторически смогла обойтись без этапа статистического усреднения, а сразу развила свой специализированный математический аппарат, в основу которого положена классическая геометрия.

 

Часть 3.3

 

Обратим внимание на одно очень интересное обстоятельство, которое авторы и популяризаторы квантовой теории практически не комментируют. Линейный размер атомов слабо зависит от их атомного номера, т.е. с возрастанием массы атома его размер почти не увеличивается. Чтобы понять суть этого явления обратимся к планетарной модели атома.

Модель атома, предложенная Резерфордом и усовершенствованная Бором, называется планетарной по причине очевидного сходства двух конструкций. Завораживает и сходство формул, которые эти конструкции описывают. На первый взгляд — очень наглядно, особенно для атома водорода. Действительно, вокруг тяжелого протона (звезды) обращается легкий электрон (планета). И вот наглядный образ уже работает.

Но ведь в движении электронов и планет есть ещё и существенное отличие, о котором нужно всегда помнить, но которое никто из авторов модели, и их последователей, никогда не упоминают. Разница в том, что в атомах электроны (планеты) между собой не притягиваются как планеты, а отталкиваются, причем с огромной силой, соизмеримой с силой притяжения электрона к ядру атома (звезде).

Таким образом, ни на какое сходство, за исключением атома водорода, надежд быть и не должно.

 

Однако и с атомом водорода всё не так просто. В атоме, в отличие от реальной планетарной системы, действуют силы разной природы и разных масштабов.

Силы электрические и силы гравитационные формируют центростремительную силу, а центробежную силу формируют только силы инерции. Центробежная сила определяется только инертной массой электрона, которая принимается эквивалентной массе гравитации.

Для системы протон-электрон силы Кулона превосходят силы гравитации по интенсивности приблизительно на 39 порядков.

 

Известно, что всякое возбуждение электрона, находящегося на орбите атома, вызывает увеличение его кинетической энергии и его потенциальной энергии в равных долях.

Если бы у электрона, как у планет, не было заряда, то удвоение его орбитальной скорости вызвало бы увеличение радиуса орбиты приблизительно в полтора раза.

Наличие кулоновского поля требует введения для потенциальной энергии другого масштаба, и масштаб этот в пересчете к силам гравитации равен 10. Таким образом, при удвоении энергии орбитального электрона радиус его орбиты изменится очень незначительно, т.е. возбужденный электрон увеличит скорость, но практически не увеличит при этом радиус своей орбиты.

Однако в соответствии с известной формулой Бора радиус возбужденной орбиты электрона равен

r = an/Z .

Здесь n – порядковый номер уровня возбуждения орбитального электрона; Z – атомный номер элемента, a — размерная константа.

Исходя из формулы Бора, радиус первого возбужденного уровеня электронной орбиты в любом атоме будет в 4 раза превосходить исходный стационарный размер атома, а радиус второго – в 9 раз, дальше — больше.

Преклоняясь перед авторитетом Бора, а главное, перед результатами спектральных измерений, основанных на формуле Бора, и подтверждающих её, можно было бы извиниться за проявленную инициативу с ещё одной проверкой планетарной модели – и забыть про неё. Но дело в том, что реальные электронные оболочки в реальных атомах ведут себя именно так, как показал наш анализ, т.е. радиус реальной электронной орбиты практически не зависит от величины n и Z.

 

А поведение возбужденного орбитального электрона чрезвычайно важно для понимания процессов поглощения и излучения фотонов. Так что  необходимо выбрать вариант, соответствующий истине. И выбор не в пользу формулы Бора.

Бор не знал, что размер атомов не зависит от числа электронных оболочек, и его не удивила рыхлая структура оболочек атома, которую предписывает его формула. Но современные-то академики это знают.

 

Орбитальный электрон водорода притягивается к протону по закону Кулона, очень интенсивно, а центробежная сила формируется по закону Ньютона силой инерции. Коэффициент, обеспечивающий соответствующий пересчет масштабов электрических сил в гравитационные, для связки электрон – протон равен приблизительно 10. Соотношение сил инерции и сил Кулона до сих пор официально не определено.

Коварство создавшейся ситуации в том, что этот коэффициент не присутствует ни в одной формуле, т.к. он скрыт изначально эклектической системой единиц измерения, примененной в расчетах Бора.

 

Математик не может выявить оплошность физика, совершенную  при постановке задачи. Вот, поэтому математик и не может заменить физика. А разработчики квантовых теорий всё повышают и повышают статус математики в ущерб статусу физики.

 

Частный успех планетарной модели при описании атома водорода косвенно доказал, что модель локализованного электрона обращающегося вокруг ядра атома соответствует действительности. И в этом величайшая заслуга Бора и Резерфорда.

 

Таким образом, можно утверждать, что электрон всегда является локализованным элементом вещества, вне зависимости от того, измеряет наблюдатель что-нибудь или не измеряет. А волновая функция – это лишь математическая модель для промежуточных вычислений, описывающая статистическое распределение математического ожидания, т.е. распределение результатов множества измерений, и не более.

Волновая функция электрона является плоской и бесконечной в плоскости (y, z) не потому, что такова природа электрона, а потому, что волновую функцию так определили. Если полет пули описывать только с помощью оси х, то волновая функция пули в принципе не будет отличаться от волновой функции электрона, тоже будет плоской и бесконечной.

Статистическое распределение это характеристика процесса, но не объекта. Также и волновая функция электрона описывает не объект, а только метрологический процесс метафизического свойства.

Хотелось бы понять — эта простая истина ускользает от внимания правящих сейчас теоретиков, или теоретики сознательно, для привлекательности своей продукции, насаждают искаженное представление о волновой функции, мистифицируя своих спонсоров.

 

Естественные неудачи, вызванные применением планетарной модели к тяжелым атомам, были вызваны ошибочным представлением характера коллективного движения электронов в условиях действия двух сил разной природы, т.е. были вызваны ошибочной постановкой задачи. Электроны так сильно отталкиваются друг от друга, что вопреки идее Бора не могут реализовать круговые стационарные орбиты. Об этом наглядно свидетельствуют имеющиеся решения уравнений Шрёдингера, которые допускают положение электронов даже непосредственно в ядре атома. Таким образом, К-захват электронов вовсе не является спонтанным, в чем пытаются нас уверить, а являются результатом случайного совпадения (резонанса) всех сил колеблющихся (вращающихся) электронов атома. Именно всех.

 

Обычные тепловые «столкновения» атомов могут вызвать последовательность удачно складывающихся флуктуаций, в результате которых один из электронов оказывается в пределах ядра атома – и внедряется в ближайший протон, от которого уже не может увернуться под действием магнитного поля, как это происходит с электроном в водородной плазме.

Благоприятное совпадение нескольких случайных событий нельзя называть просто резонансом, т.к. резонанс — это регулярное благоприятное совпадение периодических процессов. Поэтому К-захват можно условно назвать результатом случайного резонанса.

 

Несколько слов о свойствах решения уравнений Шрёдингера. Не секрет, что уже для двух электронов в атоме это решение, можно сказать, катастрофически усложняется, и обычно не может быть выражено аналитическими функциями. Но и будучи решенными современными цифровыми, приближенными методами, эти решения не являются гарантированной истиной. Дело в том, что степень адекватности решений любых уравнений зависит от корректности и полноты  формулировки исходных условий.

Чтобы реально ощутить этот эффект, воспользуемся методом Станиславского, и представим себя в качестве специалиста по решению уравнений Шрёдингера. Задача не самая сложная. Необходимо рассчитать волновую функцию для единственного валентного электрона лития. Не беда, что мы не умеем решать уравнения Шрёдингера, нам нужно только сформулировать исходные условия для профессионала математика. Вот от того, как мы сформулируем, вокруг чего и как вращается наш электрон, такое решение и получит математик.

А теперь попросим сформулировать исходные условия для нашей задачи нескольких отдельных физиков. Спрашивается, от кого больше будет зависеть разброс решений уравнений Шрёдингера для одной и той же задачи: от физиков, или от математиков?

 

В связи с вышеизложенным, вопрос к популяризаторам – почему во всех описаниях ссылка на решения уравнений Шрёдингера является последней инстанцией? Почему часто в источниках не указываются используемые идеализации (упрощения), примененные при решении конкретной задачи.

Итак, мы выяснили, почему радиусы квантовых орбит разных энергетических уровней в атомах очень мало отличаются друг от друга по сравнению с величиной самого радиуса.

Спрашивается, какие же физические законы, действующие внутри атома, заставляют электроны вести себя так, что реализуются формальные правила заполнения электронных оболочек.

Запреты Паули предполагают сверхестественную информированность электронов, а хотелось бы знать физические законы.

Опустим пространные логические построения, и сразу приведем одно предположение, дополняющее известные энергетические требования законов сохранения, которое причинным образом влияет на движение электронов.

Характер стационарного движения электронов вокруг ядра должен стремиться исключить образование пучностей электронного облака. А это условие исключает встречное движение электронов по параллельным траекториям, приводящее к неизбежному сближению электронов. При этом следует принимать во внимание, что при увеличении номера атомного элемента, каждый следующий добавленный электрон обращается не вокруг ядра, а вокруг иона. Сложность задачи неимоверная. Но ведь есть нулевое приближение запретов Паули.

 

Часть 3.4

 

По здравой логике, при обнаружении нового явления или эффекта, первооткрыватели-теоретики должны предложить соответствующие гипотезы.

По результатам последующих целевых исследований эти гипотезы должны либо отвергаться, либо корректироваться и утверждаться в рабочую теорию.

Авторитарный подход искажает этот естественный процесс, из которого выпадает этап творческого осмысления и практической проверки гипотез. Вопреки здравому смыслу и логике, авторитеты, с посредничеством угодников, творят сразу теории.

Случайные пробелы в знаниях нельзя исключить в отношении любого человека, в том числе и в отношении авторитета. Но возведение в догму ложного представления одного человека  недопустимо ни при каких обстоятельствах. И, если научная общественность не способна отстоять случайно попранную истину, то это свидетельствует о хроническом нездоровье общества.

 

Науке дорого обошелся авторитет Бора. Допущенная им оплошность при построении планетарной модели атома была скомпенсирована подгонкой вторичных математических моделей по формированию спектров, и в результате мало повлияла на дальнейший прогресс науки. Но вот, о второй ошибке, допущенной Бором, этого уже сказать нельзя.

 

Развивая квантовые идеи при построении планетарной модели атома, Бор ввел два следующих постулата.

 

  1. Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определённая энергия. При этом, в стационарном состоянии атом не излучает электромагнитных волн.

 

  1. Излучение и поглощение энергии атомом происходит при скачкообразном переходе из одного стационарного состояния в другое, при этом имеют место два соотношения:

Современная квантовая теория весьма благосклонно относится к введению частных постулатов и их последующей, непринужденной коррекции. В приведенных, как оказалось ошибочных, постулатах Бора не было бы ничего особенного, если бы Бор не решил обосновать их, используя классическую аргументацию. Для этого  он привел веский, как ему казалось, аргумент, утверждая, что орбитальные электроны, в классической интерпретации, должны постоянно излучать, и вследствие этого быстро падать на ядро атома. А так как уже было известно, что атомы излучают, а электроны, тем не менее, не падают, то при такой аргументации первый постулат выглядел очень внушительно, и просто напрашивался.

Ошибочный аргумент, приведенный, так сказать, для пущей важности, вызвал чудовищные последствия. Фундаментальное положение о не потреблении энергии при стационарных круговых движениях тяготеющих тел было попрано. Правда, не огульно, а избирательно, только для электродинамики. В механике планетам до сих пор позволено кружиться вокруг звезд без ограничения времени  и без потери энергии.

Эффектный аргумент Бора о якобы постоянно излучающем классическом электроне, потребовавшийся ему для обоснования своей концепции, был явно ошибочным и вздорным. Но действует до сих пор, тормозя и искажая решение множества как практических, так и теоретических задач. Коварство создавшейся ситуации в том, что квантовая теория, в лице Бора, запретила излучение, которого нет – и, следовательно, не может быть опровергнута прямым экспериментом.

А какой же постулат действительно был нужен Бору?

Постулат о спонтанном, квантовом излучении атома, которого по классическим соображениям быть бы не должно.

В этом варианте потребовалось бы обоснование спонтанности, т.е. случайного излучения, происходящего за счет внутренних процессов. А каких процессов? Вот, при ответе на этот вопрос и возникла бы необходимость во взаимодействии атома с физическим пространством, в котором формируются излучаемые фотоны. Но не случилось.

Непонимание сути происходящего чревато ошибками при интерпретации некоторого неизвестного явления.

Недопонимание сути приводит к ошибкам, специфическая особенность которых в том, что они очень похожи на истину. В этом случае недопонимание бывает более вредоносным, чем полное непонимание.

Заблуждение Бора никто не оспорил. И вот, наука несет крест.

Однако, если концепция Бора не верна, то какой же должна быть более правильная.

 

Приведем одну из возможностей.

При приближении атома к равновесному состоянию, каждый электрон стремится двигаться в зоне своей стационарной орбитали, и в этих состояниях электроны не изучают. Всё как у Бора. Только это не следствие квантового постулата, а прямое следствие уравнений Максвелла. Далее.

В результате случайных тепловых столкновений, и прочих возмущений, например, трения, электроны могут ударно переходить на любую другую траекторию, которая может не соответствовать требованиям стационарности. Из этих состояний электроны могут тут же возвратиться в исходное состояние, излучая при этом соответствующий фотон, реализуя тем самым непрерывный спектр излучения.

 

В случае газообразного состояния вещества всё происходит похожим образом, но несколько иначе. Электроны при столкновении атомов, которые уже не связаны с опорой  атомной решетки, испытывают меньшие ускорения и имеют возможность демпфировать условия моментального излучения фотона. В результате, излучения может не произойти. Перемещаясь, таким образом, относительно свободно, сообразно внешним воздействиям, возбужденные электроны, попав на резонансную орбиту, излучают соответствующий квант, и оказываются на вполне определенном уровне.

 

Отметим существенное отличие. Энергия излученного фотона перестает быть случайной, и определяется разницей энергий двух существующих уровней атома, один из которых является резонансной ловушкой, что приводит к формированию линейчатого спектра. В результате формируются линейчатые спектры, индивидуальные для каждого атома соответствующего элемента.

 

По предложенной гипотезе получается, что реально в атоме действует инверсный второй постулат Бора. Такая интерпретация квантового излучения электронов позволяет адекватно отразить необъятное разнообразие природы. Если бы электроны в атоме идеально следовали квантовому формализму Бора – природа не создала бы ничего выдающегося.

 

Предположение о справедливости инверсированного толкования постулата Бора подтверждается найденными уже решениями уравнений Шрёдингера для электронов в тяжелых атомах. Облака вероятности нахождения электронов свидетельствуют о большой свободе их движений, несовместимой с принципом движения только по Боровским орбитам.

 

Решения уравнений Шрёдингера предъявляются как величайшее достижение квантовой теории, не обращая при этом внимания на их явную несовместимость с запретами и Бора, и Паули, чем плодится искусственный двойной стандарт.

 

Теория строения атома ничего не потеряет, а только выиграет, если жесткий «запрет» сменить на мягкое «стремление». Ведь оба запрета сформулированы для стационарных состояний атомов, а они в этих состояниях никогда не пребывают, но всё время стремятся к ним.

 

Часть 3.5

 

Установлено, и множество раз перепроверено, что суммарный вес элементарных частиц, составляющих атом, взятых по отдельности, всегда больше веса самого атома. Это явление называется дефектом массы. Дефект массы связан с энергией, выделяемой при ядерном распаде атома, следующим соотношением

E=ΔmС2                  (2),

где Δm — дефект массы, С — скорость света.

 

Не вызывает сомнения положение, что вес частиц, составлявших атом, естественным образом восстанавливается после того, как атом распадется. Это значит, что с частицами в составе атома количественного изменения вещества не происходит. Однако гравитационные свойства частиц явно изменяются.

Что происходит с инерционными свойствами частиц, из опытов прошлого заключить невозможно.

Эффект дефекта массы свидетельствует, что с увеличением внутренней (запасенной) энергии ядра атома, его гравитационная масса уменьшается. Как правило характеристику «гравитационная» не указывают. Как оказалось – напрасно.

Исходя из выше изложенного, можно предположить, что в природе действует не релятивистский принцип, а принцип более общего характера, который включает скоростную зависимость как частный случай. Обобщающим принципом может быть только лоренцевская  зависимость полевых взаимодействий от общей энергии системы.

 

В этом случае, всякая система должна изменять свои гравитационные свойства (вес) в соответствии с изменением содержащейся в системе энергии. Совершенно естественно и логично, что кинетическая энергия тела тоже вызывает ослабление гравитации, т.е. дефект гравитационной массы. Однако в ТО постулируется обратное, т.е. бесконечное увеличение гравитационной массы, а вместе с ней и массы инерции, при приближении скорости тел к скорости света. Из этого противоестественного постулата следует, что увеличивая относительную скорость тел, мы непонятным образом, либо увеличиваем их реальную массу, либо соответственно изменяем физический закон притяжения, который становится способным реализовать бесконечный параметр, т.е. бесконечную силу притяжения.

 

Современная техника позволяет достоверно определить закон изменения масс для случая релятивистских скоростей, т.е. в зависимости от сообщаемой частице кинетической энергии. Это можно узнать, например, по результатам измерений параметров современных ускорителей при стабилизации пучка ионов свинца или водорода, т.е. пучка протонов.

Можно. Но данных нет. Факт замалчивания этих сведений очень настораживает [9].

 

По этому поводу придется сделать небольшое отступление.

 

Проведем мысленный эксперимент, позволяющий сделать более определенный вывод о связи энергии с массой тела, с учетом сложившихся  представлений о дефекте массы.

 

Рассмотрим систему из трех свободных и неподвижных тел: два шара и пружина с защелкой, каждое тело имеет массу m. Сообщим шарам скорость V, и направим их на пружину, подобрав начальные условия так, чтобы в момент столкновения пружина сжалась и защелкнулась, а шары остановились.

 

Проследим, как изменяется масса нашей системы по ходу эксперимента, пользуясь представлениями ТО.

 

В начальный момент, когда система была неподвижна и разделена, её масса была 3m. Затем, когда шарам сообщили скорость V, её масса, по Эйнштейну, увеличилась на 2Δm. Когда же пружина сжалась, а шары остановились, система оказалась в напряженном, неподвижном состоянии. Масса системы при этом должна уменьшиться до величины начального состояния, т.е. до 3m. Второе и третье состояние нашей системы, кроме того, характеризуется постоянством её энергии, которое возможно в данной ситуации только при равенстве релятивистского приращения массы во втором состоянии величине дефекта массы в третьем состоянии, который всегда отрицателен.

 

Обратим внимание на то, что природа напряженности пружины совпадает с природой напряженности атомного ядра. В обоих случаях напряженность формируется деформацией кулоновских полей.

 

Таким образом, либо релятивистское приращение массы и дефект массы должны быть отрицательными, либо  дефект массы и релятивистское приращение массы должны быть оба положительными, но этого не может быть, т.к. отрицательность дефекта массы неоднократно подтверждена экспериментально. Эйнштейновское, положительное приращение массы экспериментального подтверждения не имеет. Значит, релятивистское приращение массы является отрицательным.

Первоначально, косвенные подтверждения роста массы тел при увеличении скорости получены на циклотронных ускорителях при скоростях частиц не достигающих релятивистского диапазона, где инерция заряженных частиц складывается из двух составляющих: собственно массы инерции, которая не изменяется, и магнитной инерции заряда, которая в нерелятивистской области скоростей растет с ростом скорости.

Вот это, двойное сопротивление инерции, и послужило Эйнштейну основой для его формулы

M= M0/√(1-V2/C2) .

Чтобы преодолеть возникшее парадоксальное разногласие, необходимо признать, что изменение гравитационного притяжения масс при увеличении скорости вещества является отрицательным, и убедиться в этом экспериментально. Конкретный, математический закон уменьшения можно выявить на имеющихся мощных ускорителях.

Теоретически, используя уже имеющиеся косвенные данные, этот закон выводится в следующем виде:

M= M0[1-V2/C2]    (3)

M – масса гравитации тела при его нулевой скорости относительно физического пространства, равная массе инерции, являющейся в предлагаемом представлении инвариантом относительно скорости [1], как детектора кинетической энергии.

Данная модель устраняет сразу несколько парадоксов ТО, в том числе и знаменитый парадокс массы фотона.

Однако в эту гармоничную гипотезу закралось некоторое сомнение, связанное с бета-распадом.

 

Если использовать принцип дефекта массы, а нет оснований его не использовать, то получается, что при бета-распаде перед нами  дефект массы с обратным знаком. Однако это обстоятельство вовсе не отрицает наметившейся закономерности в формировании дефекта массы, но требует учета дополнительных, интересных обстоятельств.

Действительно, в случае с отрицательным дефектом массы в атоме, электрическая напряженность конструкции ядра имеет внешнюю направленность на разрыв. А в случае с положительным дефектом в нейтроне, напряженность имеет внутреннюю направленность на сжатие. Но, не взирая на напряженность поля, направленную к центру, нейтрон все же распадается. И это обстоятельство заставляет целенаправленно искать причину такого поведения нейтрона. И эта находка, возможно, станет принципиально новым открытием.

 

Наличие магнитного момента у нейтрона свидетельствует в пользу гипотезы о нейтроне как составной частице с двумя противоположными зарядами, один из которых является не центральным и движется по около круговой орбите.

 

Часть 3.6

 

Продолжим. Казалось бы, выявление эффекта, описываемого соотношением ΔE=ΔmС2      (2),

в свое время должно было вызвать революционную перестройку в естественных науках и в философии.

Действительно, нарушается фундаментальный закон сохранения массы, закон Ломоносова.

Однако всё не совсем так, как кажется с первого взгляда.

 

Обнаружено вовсе не нарушение закона, а его несоблюдение в некотором частном случае. И, самое главное, при устранении уникальных условий, эффект исчезает, т.е. исходный вес элементов системы самопроизвольно восстанавливается при распаде атома. Значит, количество вещества всё время оставалось неизменным, и масса, определяющая количество вещества, никуда не исчезала, т.е. закон Ломоносова не нарушается.

 

А что же тогда происходит?

Ни ТО, ни современная квантовая теория не приспособлены для ответа на этот вопрос. Обе теории могут только математически формализовать экспериментально установленный факт, т.е. предложить соотношение (2).

 

Все понимают и все согласны, что и электрон, и протон это максимально стабильные частицы. Это значит, что непременно существуют внутренние, инвариантные параметры, обеспечивающие стабильность частиц. В качестве одного из этих параметров Ломоносов предложил количество вещества, выражаемого массой.

 

Обратим внимание, в законе Ломоносова речь идет о количестве вещества! А дефект массы – это эффект, обнаруживаемый при взвешивании частиц. Таким образом, для опровержения закона Ломоносова оснований было недостаточно. Закон и не опровергли. Его просто забыли.

 

 

Если масса в разных условиях весит по-разному, то надо изучать эту зависимость в полном объеме, и только после этого делать основополагающие выводы. Однако случилось так, что озарение Марии Кюри по поводу замеченного ею частного соответствия, Эйнштейн превратил в фундаментальный принцип эквивалентности массы и энергии.

 

Никто не сомневается, что элементарные частицы, получаемые в результате распада атома, идентичны частицам, из которых атом был собран. При этом не заметно ни удивления, ни любопытства по поводу того, что же происходит с элементарными частицами в составе атома, от чего они теряют в весе.

 

Повторим. Всё свидетельствует, что количество вещества в атоме, собранном из соответствующих элементов, неизменно в обоих состояниях. Однако меняется закон гравитационного взаимодействия.

 

А что за причина?

Но ведь известно, что ядро атома пребывает в напряженном состоянии, т.е. несет огромную потенциальную энергию. Если обобщить, получается, что наличие внутренней потенциальной энергии в любой системе должно вызывать ослабление гравитационного взаимодействия. Таким образом, дефект веса можно интерпретировать как ослабление гравитации. А это уже знание, позволяющее строить соответствующую модель, которую можно исследовать в плане прогнозирующих способностей, т.е. на степень адекватности реальному миру.

 

Развивая идею о влиянии внутренней энергии системы на интенсивность гравитационных взаимодействий, можно усмотреть любопытный факт. Гравитация сама создает внутреннее напряжение в системе, определяемой как массивное вещественное тело.

 

Получается, что всякое тело имеет некоторый (начиная с ничтожного) дефект веса, который тем больше, в процентном исчислении, чем больше масса тела. Логично предположить, что эта зависимость носит лоренцовский характер. Это справедливо, если эффект носит релятивистский характер. В этом случае эффект изначально ничтожно мал, но затем начинает быстро увеличиваться, отодвигая границы эффекта Черной дыры в небытие.

 

Предложенная зависимость является всего лишь концепцией гипотезы. Гипотезы, которая устраняет Черные дыры, как из ядер всех галактик, так и из Вселенной, вообще. А то, что в центрах галактик Черных дыр нет – это уже давно очевидный факт, в буквальном смысле этого слова [10]. А если Черных дыр нет в центах галактик, то, значит, их нет вообще.

 

Экспериментально обнаруженный «дефект» массы не нарушил закона Ломоносова. Но его нарушил постулат Эйнштейна об эквивалентности масс. По Эйнштейну, потеря в весе связана с потерей массы инерции. Таким образом, масса частиц не может быть в этом случае гарантом стабильности частиц. Логика и здравый смысл подсказывают, что закона эквивалентности масс не существует.

 

А если гипотетический закон эквивалентности масс не существует, то замена Δm на m в соотношении (2) является не только необоснованной, но и противоестественной.

 

Убедительная экспериментальная проверка реальности соотношения

E=mС2              (1)

до сих пор не проведена. Единственным основанием для этого утверждения является уникальная реакция аннигиляции электрон-позитронной пары.

 

Считалось, что с полным преобразованием массы в энергию происходит аннигиляция электронов. Однако современная интерпретация, не отрицая предыдущую, утверждает, что при аннигиляции электронов рождаются мюоны и адроны. Однако сначала рождается виртуальный фотон. Этот фотон сразу превращается или в пару мюонов, или в пару кварков [Википедия] , которые тут же обрастают глюонами и преобразуются в пару адронов.

 

Таким образом, если кому-то надо, тот может считать, что электрон и позитрон превращаются в фотонную энергию, а кто в этом сомневается, тот может обоснованно сомневаться дальше.

 

Во всех остальных известных реакциях аннигиляции о полном преобразовании массы в энергию речи не идет.

 

Похоже, что аннигилируют только заряды. При аннигиляции протонов масса не исчезает, а лишь убывает, скорее всего в соответствии с соотношением (2), но проверить это на коротко живущих остатках протонов пока очень сложно.

 

Поскольку параметры виртуального фотона, никто знать не может, то необходимо признать, что полного преобразования массы в энергию, и обратно, на практике не реализовано.

 

Энергия фотонов, возникающих при аннигиляции электронов, в соответствии с ТО, должна точно равняться энергетическому эквиваленту массы электронов, т.е. 0,511 МэВ, плюс кинетическая энергия этих электронов. Однако привлечение в этот процесс глюонов делает проверку принципиально невозможной.

 

Похоже, что аннигиляция – это еще один ключ к разгадке тайны материи. Вот только ключ пока вставили не в тот замок.

 

Исходя из вышеизложенного, можно сформулировать определение дефекта массы, отличное от официального.

 

Всякое изменение внутренней энергии системы сопровождается изменением веса данной системы в соответствии с соотношением

 

ΔE=-Δm С2   (4),

 

масса инерции при этом остается неизменной.

 

В этой интерпретации, формула (1), E=mС2, является выражением максимальной энергии, которую можно сообщить данной вещественной системе.

 

Часть 3.7

 

Электрические поля принципиально отличаются от гравитационных тем, что своим перемещением в пространстве создают вторичные материальные сущности, а именно: магнитные поля и электромагнитные волны.

 

Электромагнитная волна не является собственным полем частицы, а является принадлежностью пространства. Из этого естественного наблюдения следует, что фотон является именно виртуальным переносчиком энергии. Фотон формируется из физического вакуума силовым полем заряда, определенной пространственно-временной конфигурации. При этом фотон создается за счет работы, совершаемой зарядом-инициатором. Будучи поглощенным, фотон передает свою энергию приспособленному для этого вещественному носителю энергии, а сам бесследно исчезает, как виртуальное возмущение пространства.

 

Таким образом, фотонное действие не является обменным, оно одностороннее и избирательное. Его можно назвать адресно-передаточным, т.к. поглощение фотона происходит избирательно.

***

 

Официальная точка зрения, на этот же самый процесс, гораздо богаче и затейливее. По  официальному представлению, в волновой структуре фотона создается (формируется) релятивистская масса, имеющая инерцию, т.е. имеющая продольный, конкретный импульс, величина которого жестко связана с частотой фотона-волны.

 

Массивный фотон взаимодействует с внешним гравитационным полем. Обычное при этом пояснение популяризаторов, что масса неподвижного фотона равна нулю, является антинаучным. Неподвижных фотонов не бывает. Таким образом, вопрос должен ставиться следующим образом – есть у фотона масса или у него её нет. Утверждается, что есть. Далее следует двойной стандарт. Позволяется считать, что объект, генерирующий фотоны, тратит на это свою массу, и также позволяется считать, что не тратит.

 

Оказавшись в гравитационном поле параллельном движению фотона, фотон должен, не меняя скорости, изменять свою энергию, а значит, и свою начальную массу, и свою начальную частоту. Загадочный процесс может происходить плавно (по Эйнштейну), но непонятно как, или происходить скачками (т.е. квантовым образом) и должно реализоваться красное смещение характерных спектров молекул и атомов. Эффект тем больше выражен, чем больше гравитационное поле. Это значит, что ядра галактик должны иметь заметное красное смещение по сравнению с их периферией. Однако этого не наблюдается. Но все к этому безразличны. Статьи и учебники издаются.

 

Эффект красного смещения спектра наблюдается, но интерпретируется официальной наукой как эффект Доплера удаляющихся галактик.

 

По официальной точке зрения, масса фотона может меняться не только в результате гравитационных взаимодействий, она меняется еще и по воле наблюдателя, который может выбирать ИСО с произвольной скоростью, и, в соответствии с эффектом Доплера, назначать  вес фотонов и их импульс.

***

 

Итак, мы имеем две существенно отличающиеся точки зрения на одну природную сущность, называемую фотоном. А что же, все-таки, в этих точках зрения общего.

 

Общее то, что при поглощении, фотон не может поглощаться частично. Это чрезвычайно важное свойство, которое при создании модели накладывает на нее очень существенные требования.

 

Наличие или отсутствие массы у фотона доступно проверке, как в мысленном, так и в реальном эксперименте.

 

Мысленный эксперимент.

 

Рассмотрим систему из неподвижного зеркала и одного фотона, движущегося  ортогонально в раскрыв зеркала. Считаем, что все начальные параметры системы (т.е. до момента отражения) известны.

 

Пусть фотон отразился от зеркала. Мы знаем, что при полном отражении передача тепловой энергии неподвижному зеркалу не происходит, и частота отраженного фотона точно равна частоте падавшего фотона.

 

Если бы фотон имел продольный импульс Р, то после отражения импульс фотона должен стать отрицательным относительно ИСО наблюдателя, а его энергия должна остаться прежней. Закон сохранения импульса системы требует, чтобы импульс зеркала возрос на 2Р. Но это невозможно, т.к. при этом неизбежно должна возрасти как кинетическая, так и тепловая энергия зеркала, а она, как экспериментально установлено, остается без изменений. Разрешением этого парадокса, не существующего на самом деле, является признание отсутствия продольного импульса у фотона. Однако это противоречит официальной точке зрения.

 

В случае поглощения фотона зеркалом, происходит возбуждение одного из электронов одного из атомов зеркала. А что же происходит дальше, если атом не излучит точно такой же фотон, и не реализует фотоэффект. Известно, что температура плохого отражателя возрастет. Значит, атом, поглотивший фотон, получает возможность толкать соседние атомы. Получается, что энергия поглощенного фотона превращается в хаотическое движение атомов зеркала. При этом суммарный прирост импульса поглотителя имеет возможность остаться равным нулю. Но утверждать это из данного эксперимента нельзя. Однако с учетом предыдущего эксперимента вывод однозначный: фотоны не имеют продольного импульса, а значит, не имеют ни массы покоя, ни массы релятивистской.

 

Чтобы эксперимент с поглощением фотона стал доказательным, достаточно проверить равенство излученной энергии с тепловой энергией, полученной поглощающим телом.

 

Таким образом, наблюдаемые при фотоэффекте встречные по отношению к направлению фотонов электроны могут быть либо  следствием вторичного рассеяния первичных фотоэлектронов, либо следствием всенаправленного испускания фотоэлектронов, либо следствием возможного испускания фотоэлектронов против движения фотонов.

 

Определение характера испускания фотоэлектронов могло бы прояснить механизм поглощения фотонов.

 

Приведенное доказательство выглядит вполне убедительным в рассмотренной ситуации с неподвижным зеркалом. Однако в ситуации с подвижным зеркалом всё несколько усложняется.

 

Пусть лазер, излучающий фотоны с энергией νh, неподвижен относительно наблюдателя, а зеркало, отражающее луч лазера, движется навстречу лучу со скоростью V. После отражения, энергия фотона, как известно, увеличится, и это может произойти только за счет потери энергии зеркалом. Это значит, что зеркало либо теряет часть своего импульса, либо теряет часть своего тепла, т.е. охлаждается.

Практика лазерного охлаждения свидетельствует, что вещество, движущееся навстречу лучу света, охлаждается [8].

 

За чрезвычайно сложное объяснение лазерного охлаждения, основанного на предположении о наличии продольного импульса у фотонов, авторам присуждена Нобелевская премия.

 

Часть 3.8

 

Рассмотрим некоторые, не афишируемые, особенности фотонов, которые условно можно назвать странными.

 

Рассмотрим вызов, который фотон бросает соотношению неопределенностей Гейзенберга. Действительно, скорость фотона заранее известна с известной погрешностью, которую теоретически можно повышать до планковского предела. Это повышение точности измерения не накладывает никаких ограничений на сопряженные измерения. Значит, любой сопряженный со скоростью параметр фотона тоже может быть измерен с высочайшей точностью. Это позволяет представлять фотон в некоторый конкретный момент времени как квантовое возмущение материи с известными координатами и скоростью.

 

Рассмотрим два фотона, один с энергией ħ, а другой с энергией 2ħ. Первый вопрос, который возникает, чем отличаются два фотона. А именно, сколько пространственных квантов материи задействовано в создании структуры каждого из фотонов, и какие элементы структуры фотона ответственны за количество переносимой энергии.

На эти простые вопросы с непростыми ответами должна бы отвечать любая модель фотона, любой квантовой теории.

 

Вопрос об энергии сразу требует конкретизации, а именно, какие формы энергии возможны в структуре фотона? Дело в том, что если фотон действительно движется с максимально допустимой скоростью, то элементы его структуры вообще лишены возможности перемещения относительно друг друга, т.к. это неизбежно вызвало бы превышение скорости света отдельными элементами фотона. Таким образом, с точки зрения ТО, внутренняя структура фотонов совершенно неподвижна.

 

Применение этого утверждения при интерпретации оптических экспериментов вызовет лавину парадоксов.

 

Таким образом, однозначно получаем, что фотон не содержит кинетической энергии.

 

Предположение, что каждый раз при удвоении энергии фотон удваивает количество составляющих его материальных элементов, весьма сомнительно.

 

Если же фотоны с разной энергией содержат равное количество материальных квантов, т.е. пространственного материала, то можно говорить об одном фотоне с разными внутренними конфигурациями его структуры.

 

Если же все фотоны отличаются и количественно и структурно, то перед нами целое семейство родственных образований — фотонов.

 

Необходимо определиться.

 

Квантовое движение с максимальной скоростью означает, что фотон, или любой другой объект, за один квант времени (в один квантовый цикл) смещается как целое на один пространственный квант. С большей скоростью перемещаться в любом квантовом пространстве принципиально невозможно. Если при этом ни один элемент фотона не меняет своего относительного положения, то это соответствует нашему представлению о принципе движения абсолютно неподвижного объекта.

Всё здесь сказанное относится к скорости относительно неподвижного пространства.

 

Здесь придется сделать маленькое отступление по поводу ТО Эйнштейна.

Уникальные свойства фотонов, положены в основу учения Эйнштейна. Скорость фотона объявлена фундаментальным инвариантом ТО. Но конфуз в том, что сами характеристики фотона не вмещаются в рамки ТО, которая не может измерять скорость между фотонами относительно стороннего наблюдателя. Каждому ясно, что для стороннего наблюдателя два фотона по одной прямой сближаются со скоростью 2С. А по учению Эйнштейна скорость сближения фотонов равна С.

 

Вот, и академики, которые дали добро на строительство коллайдеров, явно признают этот факт. Но те же академики не хотят посвящать общественность в проблему несовпадения параметров ускорителей и получаемых на них результатов, с прогнозами ТО. Ведь, если сопровождать один из протонов, то он станет привычно легким и неподвижным шариком, а навстречу ему со скоростью  близкой к скорости света летит тяжеленный и сплюснутый почти до нуля другой протон, который даже неловко называть таким же.

Каков будет результат столкновения? Это совсем не ёрнический вопрос. Но у ТО нет на него ответа.

 

По правилам ТО наблюдатель не может непосредственно измерить относительную скорость между двумя сторонними объектами,  он может её только рассчитать. По этим правилам получается, что первый фотон удаляется от наблюдателя со скоростью С, а второй фотон приближается со скоростью С. При этом скорость между фотонами тоже равна С. Это математический фокус, не имеющий физического смысла.

Таким образом, учение Эйнштейна принципиально исключает возможность адекватно описывать некоторый класс практических ситуаций, и при этом не определяет производимого этой недоступностью эффекта.

 

Вот реальная ситуация. Один протон в БАК преодолевает 1м за долю секунды со скоростью 0,99999999С, но и второй протон, летящий навстречу, за ту же долю секунды преодолевает еще 1м с той же скоростью. Относительная скорость сближения протонов в коллайдере равна 1,99999998С. Оба протона «живут» в системах, темп времени в которых совпадает, но отличается от темпа нашего времени. Но нас-то интересуют эффекты в нашем времени, а ТО не может ответить на наши вопросы. По ТО, если один протон весит 1 условную единицу, то второй  весит 47000 условных единиц. Или наоборот. Где формулы по расчету результатов столкновения? Их нет. Однако есть бозон Хиггса, образование которого при столкновении двух протонов предсказано квантовым учением с названием Стандартная модель.

 

Часть 3.8

 

Однако вернемся к взаимодействию фотонов с частицами, составляющими атом, а именно, к электрону.

 

Рассмотрим сначала взаимодействие свободных электронов с фотонами при разных условиях. Пофантазируем на тему, как нейтральный фотон, перемещающийся со скоростью света, может быть поглощен или рассеян одиночным, электроном, и что при этом может произойти с электроном.

 

Нам известно, что свободный электрон не реализует возбужденные состояния, связанные с его внутренней структурой, т.е. с собственной осцилляцией или с внутренним напряжением. Считается, что такой структуры нет. В этом случае, получив порцию энергии от фотона, электрон имеет только одну возможность — изменить свою скорость.

 

Если импульс, передаваемый фотоном, равен нулю, а энергия фотона равна νh , то из выше изложенного следует, что одиночный, свободный электрон не может поглотить фотон. И он не может изменить энергию фотона.

 

Однако о рассеянии фотонов на электроне ничего определенного сказать невозможно. Из общих соображений, интуитивно, можно предположить невозможность рассеяния фотонов на одиночном электроне. Это предположение основывается на соотношении размеров фотона и электрона. Кроме того, если в эффективный размер электрона включить его поле, то для фотона оно окажется осциллирующим, т.к. ни о каком усреднении говорить не приходится. Если даже рассеяние имеет место, то оно непременно будет случайным и частичным, т.е. часть фотонов из ансамбля рассеивается, а часть нет. Всё это гипотетически.

 

Однако запрет поглощения и генерации фотонов не распространяется на ансамбль электронов. В случае взаимодействия ансамбля электронов с фотонами, допустимо рассматривать электронные пары, когда электроны находятся на расстоянии, сопоставимом с размерами фотона, как виртуальный псевдо куперовский объект. Однако это допущение справедливо только для достаточно плотных электронных ансамблей.

 

Таким образом, окончательно получаем, что одиночный электрон или ансамбль достаточно разрозненных электронов всегда прозрачен для фотонов.

 

При отсутствии квантовой теории неподвижного пространства трудно представить, как фотон конкретно взаимодействует с парой условно свободных электронов. Однако известен экспериментальный закон рассеяния фотонов на медленных электронах. Скорее всего, в подобных экспериментах электроны нельзя рассматривать как свободные по причине того, что они находятся в силовом поле установки, параметры которой в источниках не приводятся.

Можно утверждать, что поглощение фотонов или их излучение электронами не наблюдалось.

 

Здесь можно ожидать возражения, ссылающегося на официальную интерпретацию излучения Черенкова.

Однако сам Черенков, который изучал явление более 10 лет, считал, что излучение вызывается потревоженными атомами из состава среды распространения. Нобелевские же лауреаты сочли излучение Черенкова излучением самих электронов, двигающихся с постоянной скоростью, превышающей скорость света в данной среде. Постоянство скорости электронов при излучении Черенкова никто не измерял. Поверили авторитетам, как поверили и в то, что электрон может производить энергию излучения, не изменяя своей скорости, т.е. без потери энергии [12].

 

Сейчас в Интернете можно найти анонимные статьи, которые очень аргументировано и профессионально опровергают официальную точку зрения, соглашаясь с первоначальным мнением Черенкова. Анонимность, в данной ситуации, это защита от административных  санкций. Видимо, специалисты, публикующие эти статьи, еще не на пенсии.

 

Таким образом, нет оснований для предположений, что свободный электрон способен поглощать или излучать фотоны.

 

А что можно предположить в отношении радиоволн?

Казалось бы, что может быть проще. Радиоволны излучаются антеннами. А в антеннах колеблются электроны, которые и излучают радиоволны непосредственно. Всё сказанное – бесспорно, кроме характеристики — непосредственно. Непосредственно – это как?

 

Часть 3.9

 

Рассмотрим тормозное излучение.

Разгоним электрон до скорости, близкой к скорости света, и направим его на плоский объект, отрицательно заряженный. Наш электрон испытает торможение.

На каких участках, и с какой частотой электрон будет излучать радиоволны, и в каком направлении? Прикинем, сколько всяких возможностей. А связать их не с чем. А ещё, не ясно как должна обеспечиваться осевая симметрия? А как быть с повторяемостью? Похоже, повторяться сможет только одна ситуация – наш электрон вообще не может излучать.

 

Действительно, исходные данные производят впечатление вполне исчерпывающих, но при этом явно ощущается их парадоксальная недостаточность, а это значит, что в постановке задачи скрыта ошибка.

 

Ситуация вполне показательная для выявления способов преодоления искусственных парадоксов. Начинать необходимо с выявления использованных стереотипов. В нашем вопросе речь идет об электромагнитном излучении, неотъемлемым свойством которого является колебание. Периодичность электромагнитного излучения обычно задается частотой источника возбуждения. В данной задаче фактор периодичности отсутствует. Вследствие чего мы должны сделать логический вывод: заряд, движущийся с неизменным тормозным ускорением, излучать э.м. волны в линейной среде не может. Получается, что необходимым условием излучения должно являться возвратно-поступательное ускорение заряда. Именно ускорение, а не скорость. Хотя возвратно-поступательную скорость заряда невозможно реализовать без возвратно-поступательного ускорения, формулировка с возвратно-поступательной скоростью искажает суть и маскирует истинную причину излучения. Пространство не реагирует на скорость зарядов, но реагирует на их линейное ускорение. В случае движения со ступенчатой скоростью, как например, это происходит в атомах, при смене энергетических уровней электронов, всякая ступенька в скоростной характеристике движения заряда может рассматриваться как полуволна, но только  с точки зрения возвратно-поступательного ускорения, реализующего эту ступеньку. И всё становится на свои места.

 

Таким образом, утверждение, что всякое ускоренное движение заряда сопровождается излучением – является весьма сомнительным, и скорее всего, ошибочным. Все примеры тормозного излучения, приведенные в справочниках фактически описывают ударное излучение электронов, т.е. излучение в момент ударного столкновения. А в этом случае ускорение является возвратно поступательным импульсом.

 

Заряд, равномерно движущийся по круговой орбите, возвратно-поступательной составляющей своего ускорения не имеет – и не излучает. Однако проекция кругового движения электрона может иметь возвратно-поступательную составляющую. Но проекция заряда не является физическим объектом, и не может совершать работу, связанную с излучением. Если бы Бор, или его последователи, попытались рассчитать, или хотя бы качественно прикинуть диаграмму направленности излучения заряда, движущегося по кругу, то они не совершили бы свою роковую ошибку.

 

Приведенное обоснование естественного отсутствия излучения у стационарных орбитальных электронов не является единственным. Строгое и корректное решение уравнений Максвелла приводит к тому же выводу. Кроме того, из давно известного факта, что петля постоянного тока не излучает, легко, но несколько громоздко, от противного, доказывается, что не излучают и все элементы тока этой петли. Последнее обстоятельство подтверждено экспериментально в опытах с пучностью тока в замкнутом сверхпроводнике.

 

Возникает уверенность, что для генерации радиоволн необходимо обязательное возвратно-поступательное движение возбуждающего заряда (электрона). При этом механизм распространения радиоволн таков, что пространство реализует только синусоидальные волны. Если движение заряда не синусоидальное, то возбудится некоторый спектр радиоволн, видимо, соответствующий ряду Фурье.

 

Часть 3.10

 

Теперь попытаемся определиться с собственными магнитными полями протона, нейтрона и электрона, т.е. со спинами этих элементарных частиц. Экспериментально установлено, что величина спина является квантовым инвариантом. А направление? Интуиция подсказывает, что направление спина свободного нуклона или электрона может быть любым. Вот только измерить это направление технически невозможно, да и к интуиции в квантовом мире надо относиться с осторожностью.

 

Направление спина, как его ни измеряй, будет определяться совпадением или несовпадением измеряемого спина с ориентацией сенсора измерительного прибора. Это не значит, что реальное положение спина является неопределенным или выбираемым из двух возможных направлений, хотя именно так и трактуется некоторыми теоретиками квантовой электродинамики, плодя разные парадоксы, эпатирующие общественность.

 

Одни исследователи постулируют, что спин не имеет свойств гироскопа, т.е. спин не имеет инерции и всегда связан с направлением движения своего носителя. Другие исследуют прецессию спина, т.е. считают, что частицы обладают спином-гироскопом.

Но есть экспериментальные данные, которые можно интерпретировать как движение спина по ленте Мёбиуса.

 

В экспериментах, при взаимодействии электрона с сенсором измерительного прибора, спину приписывается только одно из двух значений, или 1/2, или -1/2. Но это не исходные состояния, которые спин имел до измерения, это результат преобразования, вызванного действием сенсора.

 

Если в некотором эксперименте спин не является случайной величиной, то серия стандартных измерений даст конкретное соотношение фиксируемых направлений спина. Это соотношение и будет описывать угол отклонения реального направления спина от опорного.

 

В реальных взаимодействиях, в которых спин оказывает существенное влияние, всё происходит в соответствии с имеющимися реалиями.

 

Если предположить, что реальный спин всегда параллелен движению и может принимать только два значения, то для полного описания электрона необходимо знать вероятность этих двух значений, а это в используемой квантовой модели равносильно знанию волновой функции.

 

Однако в этом представлении возникают некоторые принципиальные трудности при описании спина частицы. Если частица неподвижна, то куда направлен её спин. Или, если известен спин неподвижной частицы, то как он поведет себя в начале движения в заданном направлении.

 

Если же спин является гироскопом, то для релятивистских частиц с  нулевой массой покоя и нулевым зарядом, спин физически становится равным нулю, но формально сохраняется равным 1/2. Этот антинаучный подход прививается в квантовую теорию, чтобы скрыть явный парадокс и связанное с ним ошибочное представление.

 

Открытие спина вскрыло ещё одну проблему квантовой теории, которая пока не решена, да и не поставлена в очередь для решения. Объявив постоянную Планка квантом действия, теоретикам, после открытия спина, пришлось ввести еще один, дополнительный, квант действия, а именно, приведенную постоянную Планка, или постоянную Дирака.

 

Обе постоянные определяют дискретность энергии фотонов, но при этом являются несоизмеримыми. Физический смысл этой несоизмеримости теоретиков ставит в тупик. Видимо, чтобы затушевать эту проблему, постоянная Дирака перестала упоминаться. Две же постоянные Планка вопросов не вызывают.

 

Часть 4.1

 

Освежив нашу информированность в отношении элементов, составляющих атом, попробуем сделать то же самое для атома в целом.

 

Для начала проведем мысленный эксперимент.

Поместим электрон на достаточно большом удалении от протона, и предоставим частицам полную свободу. Посмотрим, что же может произойти. Практически, такой эксперимент не осуществим. Но схожие ситуации в природе и в других экспериментах возникают.

 

В публикациях нет данных, свидетельствующих даже о подозрении, чтобы свободный электрон когда-нибудь упал на протон, сформировав при этом нейтрон или нечто иное. Но, если это так, значит, неизбежно в нашем мысленном эксперименте должен образоваться атом водорода.

 

Наш мысленный эксперимент позволяет утверждать, что идеальная плазма, состоящая из равного количества электронов и протонов, при естественном охлаждении в заданном объеме, непременно превратится в атомарный водород. При этом результат не будет зависеть от ориентации спина протонов и электронов; значит, можно быть уверенными, что при приближении к протону электрон закручивается по расширяющейся спирали, тормозит свое движение по направлению падения, и занимает позицию орбитального электрона. При этом, в общем случае, эта орбита изначально может быть не стационарной.

 

Процесс падения электрона на протон напоминает движение заряженных частиц в магнитном поле, когда легкие заряженные частицы начинают двигаться по спирали. Но наша ситуация богаче нюансами, локальное магнитное поле, связанное с легким электроном, падает в электрическом и магнитном поле относительно тяжелого, условно неподвижного протона.

 

Что можно сказать о магнитных свойствах и параметрах образовавшегося атома водорода? Из общих энергетических соображений следует, что суммарный магнитный момент атома должен стремиться к ближайшему энергетическому минимуму, если минимумы есть, или к нулю, если локальных минимумов нет, что не соответствует практике. Для этого, единственный переменный момент, момент орбитального движения электрона, должен компенсировать и собственный спин электрона, и собственный спин протона. А это значит, что спины протона и электрона не должны компенсировать друг друга, по крайней мере, в атоме водорода. Получается, что диаметр орбиты электрона в атоме водорода определяется минимум суммарного магнитного момента атома, т.е. его равенством нулю. Из чего следует, что орбитальный момент атома водорода должен быть близок к единице.

 

Всевозможные, хаотичные вариации орбитального момента в этом случае будут вызывать только увеличение внутренней энергии атома относительно его стационарного состояния.  Это значит, что тепловые и прочие возмущения, испытываемые орбитальным электроном, будут поддерживать его стационарную орбиту, не исключая при этом экстремальных ситуаций, сопровождаемых возможным падением электрона на ядро, например при К-захвате.

 

Атом явно, в квантовым формате  взаимодействует со смежным пространством в масштабе постоянной Планка. Но кроме этого внутренние и внешние процессы в каждом атоме происходят в иных, более малых, квантовых масштабах. То, что мы их пока не рассматриваем, не означает, что их нет. Привлечение фононов – недостаточное подспорье.

 

Часть 4.2

 

Учебники сообщают, что все атомы нейтральны. Эта прописная истина, примененная без уточняющих оговорок, формирует коварный стереотип, прививающий механистическое видение мира, собранного из нейтральных упругих шариков.

 

Рассмотрим атом водорода. Поместим пробный заряд (сторонний электрон) в плоскости орбитального спина, на расстоянии, равном двум радиусам атома. Какое поле зафиксирует пробный заряд? Совершенно очевидно, что не нулевое, и не постоянное. Поле будет не только переменным, оно будет знакопеременным. Нулевым оно станет только после усреднения по времени. Из этого очевидного положения следует огромное множество нюансов поведения отдельного атома в составе взаимодействующего ансамбля окружающих атомов.

 

Рассмотрим теперь два соприкасающихся атома, когда их орбитальные моменты параллельны.

 

В зависимости от положения электронов на орбите, т.е. от их фазовых соотношений, получим огромное множество возможных состояний, а значит и различных взаимодействий данных атомов. Квантовый подход предполагает очень большое, но счетное количество состояний. Классический подход предполагает бесконечное количество состояний. И то и другое  заставляет исследователей обращаться исключительно к статистическим методам.

Попробуем преодолеть это естественное желание.

 

Итак, два случайно сомкнувшихся атома предоставляют своим электронам возможность сблизиться. Но электроны на разрешенных стационарных орбитах смежных атомов будут избегать взаимного сближения, т.е. они своевременно изменят свои траектории соответствующим образом. Постулаты Бора запрещают электронам маневрировать на своей орбите. Казалось бы, тем хуже для противоестественных постулатов. Но их можно еще спасти. Ведь они сформулированы для свободного атома, а мы уже рассматриваем твердое тело, или процесс соударения атомов.

 

Так или иначе, это изменение траекторий электронов приводит к тому, что в точке касания геометрических границ смежных атомов поле перестает быть нейтральным даже после усреднения по времени.

Это и есть поле, создающее силы Ван-дер-Ваальса, природа которых считается неизвестной. Таким образом, силы Ван-дер-Ваальса возникают непредсказуемо, и именно в соответствии с ситуацией.

 

Получается, что в вещественных телах между атомами возникают силы сцепления, вызываемые специфическими конфигурациями силовых полей. Полей, которых до данного сближения атомов не было, т.е. эти силы возникают, в требуемом месте в результате взаимодействия, определяемого характером сближения атомов. Конкретное же значение этих сил определяется статистической корреляцией.

 

Таким образом, интегральное действие быстропеременных полей нейтральных атомов могут создавать стойкий эффект «клейкой» поверхности.

 

Чтобы ничего не упустить из характеристик атома водорода, вернемся еще раз к свойствам его элементов. Как известно, в процессе радиоизлучения электроны проводимости движутся в антенне ускоренно, возвратно-поступательно. Частота излучения при этом никакого отношения к величине ускоряющего потенциала не имеет. Частота излучения определяется частотой смены направления ускорения электронов. Нас учат, что увеличивая частоту радиоизлучения, мы увеличиваем энергию единичного кванта, т.е. радиофотона.

 

Чтобы повысить энергию излучения осциллирующих в решетке проводника электронов надо увеличить производимую им работу, которая определяется соотношением A=S·F=S·m·a. Это означает, что при равной амплитуде колеблющихся электронов, надо увеличивать силу, т.е. увеличивать их ускорение, а это приводит к уменьшению времени единичной осцилляции, что соответствует возрастанию частоты.

 

Таким образом, частота в формулах, выражающих энергию излучения, является только косвенным признаком главного энергетического фактора – ускорения, т.е. крутизны фронта процесса и его амплитуды.

 

Приведем пример аналогичной ситуации. Скорость ветра можно измерять частотой вращения метеорологического вертушка, и ввести эту частоту во все формулы и в размерности единиц измерения. Этот прием не вызовет снижения адекватности модели, но создаст сложности субъективного толка, а также  ухудшит наглядность модели, т.е. в конечном счете, все-таки при этом снижается степень адекватности модели, снижается комфорт модели.

 

Мы уже отмечали, что фотон не может быть осциллятором. Фотон, не имея массы, тем не менее, перемещается почти как частица, а именно, не изменяя пространственную конфигурацию своей структуры. Какой же параметр фотона может обеспечивать его реальную энергию, имитируя при этом его частотное представление. Таким параметром может быть крутизна фронта фотона.

 

Выбрав частоту мерилом энергии, Планк, уже вынужденно, получил эфемерную физическую единицу – квант действия. С позиций частотного критерия, электрон, колеблющийся с частотой 1 Гц, будет излучать кванты радиоволн, энергия которых равна кванту действия, деленному на продолжительность действия, равной 1 с. Однако продолжительность измерения является параметром метрологическим, назначаемым наблюдателем. А что случится, если электрон будет колебаться с меньшей частотой? Или просто мы выберем другой масштаб времени? Ведь это вполне допустимо. Ясно, что в этом случае изменится величина постоянной Планка. Но это значит, что в природе постоянная Планка, как природная сущность, не существует. Однако кванты энергии, переносимые фотонами, существуют реально. Размерность постоянной Планка можно выбрать любую. Например, размерность энергии, умноженной на длину. В этом случае функция-коэффициент при константе была бы 1/L, где L или длина волны фотона, или глубина фронта фотона.

 

Энергия в природе переносится (передается) не только фотонами. Есть и другие носители с другими энергетическими квантами. Одним из таких давно известных  квантов энергии и импульса является гравитон.

 

Еще один, известный носитель, не имеет пока даже названия. О нем не принято даже говорить – он изгой квантовой науки. Речь о кванте электрического поля.

 

Квант электрического поля осуществляет взаимообмен энергией и, кроме того, обмен импульсом движения, т.е. это не фотон. Энергоемкость этого кванта никто не знает. Однако известно, что сила кулоновского отталкивания двух электронов в 10 раз превышает силу их гравитационного притяжения.

 

Теоретики квантового описания мира претендуют на полноту квантовой теории, не определив ни одного параметра гравитона, и определив всего один параметр кванта силового электрического поля – скорость его распространения, равную С. При этом, как происходит взаимодействие электромагнитных квантов с электрическими квантами ни у кого нет ни малейшего представления.

 

Утверждается, если к одному концу длинного металлического проводника поднести заряд электронов, то фронт потенциала будет двигаться вдоль проводника произвольной формы со скоростью света.

 

Это значит, что электрический квант обладает свойствами, не свойственными ни гравитонам, ни фотонам. Гравитоны движутся сквозь вещество со скоростью много большей скорости света. И гравитоны не создают вторичных, эффективных полей, аналогичных магнитному полю. А магнитное поле — это самое сложное поле, которое нам известно.

 

Часть 4.3

 

Попытаемся уяснить роль пространства в формировании электрического и магнитного полей элементарного заряда.

 

Как бы ни трансформировалось поле движущегося заряда или поле заряда в составе твердого тела, его параметры для неподвижного состояния в свободном пространстве, точно воспроизводятся в любой точке пространства. Для сканирующих  полей, периодически испускаемых и втягиваемых, это свойство совершенно естественно. Исходя из этого, можно утверждать, что все параметры электрона, описывающие его состояние, и скорость в том числе, содержатся в изменяющейся структуре ядра электрона. Логичное утверждение.

 

А теперь еще раз, об этом же, но иначе и подробнее.

Величина скорости электрона, и её направление, постоянно имеют информационное отображение во внутренней структуре электрона, которая изменяется в соответствии с параметрами его движения, и сохраняется неизменной в случае отсутствия внешних воздействий.

 

То же самое относится ко всем движущимся объектам Вселенной.

Оглянемся на Ньютона. По его определению, инерция – свойство тел сохранять свое состояние в отсутствие внешних воздействий.

Сохранять можно только нечто, что существует. Это нечто сохраняют тела. Значит, это нечто телам и принадлежит. Но где же это нечто?

 

В атомной структуре тел ничего похожего обнаружить не удалось.

 

В устройстве атома – тоже ничего похожего.

 

Получается, что информация о состоянии тел зашифрована либо в элементарных частицах, либо в вещественных квантах, из которых состоят элементарные частицы.

Такое предположение, в качестве преодоления проблемной ситуации, мы можем сделать в настоящее время. А во времена Ньютона такой возможности не было. Вот и возникла мистическая инерция, и прижилась в форме фундаментального стереотипа.

 

Сейчас настало время вернуться к этому вопросу, потому что накоплено много новых знаний и возникли новые науки, такие как квантовая теория и информатика.

 

С точки зрения информатики, все природные взаимодействия являются движением информации, и процессом обмена информацией. Эта новая формулировка, соответствующая новому представлению, предоставляет новые возможности в познании окружающего мира. И первое, на что указывает новый подход это то, что первоэлемент, из которого созданы и вещество, и поле, не может быть примитивной сущностью, подобной максимально малой и абсолютно симметричной, аморфной точке. Более того, приходит понимание, что концентрированная сложность первичного элемента (материального кванта) соизмерима с распределенной сложностью Вселенной.

 

Так что же заставляет любое тело двигаться по инерции? Только сила инерции. Но у силы инерции в каждом теле необъятное поле реализаций. Каким образом происходит выбор и поддержание единственной, правильной силы? Ответ на этот вопрос один: структура всех материальных объектов постоянно содержит реальную информацию о параметрах своего движения. Набор этих сохраняемых параметров и есть инерция.

 

Законы сохранения констатируют факт недоступности параметров инерции для произвольной манипуляции ими. А это условие выполнимо только при недоступности внутренней структуры материальных объектов квантового уровня для вмешательства с верхних уровней.

 

Таким образом, универсальный материальный квант является объективным пределом чувственной делимости материи. У материи, организованной на основе универсальных, материальных квантов, нет средств для своего уничтожения или расщепления.

 

Таким образом, мы пришли к догадке (предположению), что квантовый мир реализует законы движения информации. Эта догадка не устраняет прежние наши достижения, она расширяет поле наших возможностей, оберегая нас от бесперспективных устремлений.

 

Законы движения информации включают в себя и математику, и геометрию, дополняя их операторным исчислением. И всё это должен знать квантовый физик.

 

Первопроходцы квантовой теории дошли до границ, определяемых математикой,  и даже преодолели их, осознав необходимость операторного представления, но вынужденно приостановились, не владея знанием кибернетики, и не подозревая о её значимости.

 

С квантовых позиций совершенно очевидно, что движущийся заряд должен отличаться по своей внутренней структуре от неподвижного заряда. Движущийся заряд создает магнитное поле в первичном (неподвижном) пространстве. Это поле, как известно, невозможно измерить, двигаясь вместе с зарядом, т.к. при этом соответственно меняются характеристики чувствительных элементов (сенсоров) измерительных приборов. Этот эффект линейного принципа относительности был ошибочно абсолютизирован Галилеем.

 

Однако, если Галилей просто промолчал по поводу границ применимости принципа, то Эйнштейн, введя нелинейные преобразования координат Лоренца, акцентировал безграничную абсолютизацию принципа относительности, но уже для нелинейного мира.

 

Практически все явления природы, включающие в себя круговое движение, могут экспериментально подтвердить ошибочность абсолютизированной относительности. Однако при бытовых скоростях эффект отклонения действительных параметров от прогнозов ТО так мал, что его долгое время не могли обнаружить. В настоящее время уже можно обнаружить несоответствие природных явлений прогнозам учения ТО. Можно, но научная дискуссия уже давно перестала быть научной и перешла в сферу интриг власть имущих, где действуют совсем другие законы.

 

Часть 4.4

 

Однако продолжим. В момент столкновения атомов, при сближении орбитальных электронов произойдет  изменение их траекторий, в строгом соответствии с возникшей ситуацией. Эта коррекция орбит реализуется во времени малыми порциями, которые, возможно, много меньше по сравнению с постоянной Планка, т.к. фотонного излучения при малых интенсивностях столкновений, похоже, не происходит.

 

Исходя из того, что в свободном состоянии атома орбиты его электронов реализуют некоторую динамичную, но устойчивую конфигурацию, ответственную за химический стандарт, будем относиться к вынужденным изменениям орбит под действием сторонних сил, как к упругой деформации.

 

Это, казалось бы, естественное соглашение требует осмысления.

Уберем внешнюю помеху (пробный заряд или соседний атом), т.е. уберем сторонние силы, вызывавшие деформацию, — и деформация исчезнет. И что дальше? Восстановит ли атом свое прежнее состояние? Если ожидать абсолютного восстановления, то вряд ли. Атом перейдет в новое, отличное от прежнего состояние, т.е. промежуточная деформация оставит свой информационный след. Возникает философский вопрос. Какова мера идентичности атомов с одинаковым составом нуклонов? Что поддерживает существующий в природе химический стандарт атомов, т.е. какие инвариантные параметры сохраняются в атоме для поддержания стабильных химических свойств?

 

Мы уже обращали внимание на то, что атом бережно несет свое ядро, оберегая его от экстремальных воздействий. Кроме того, мы знаем, что атомы одного элемента, с равным числом электронов в оболочке, но с разной конфигурацией ядра, изменяют свои химические свойства. Например, искусственно полученное, изомерное золото имеет зеленый цвет.

 

Таким образом, логично предположить, что за химический стандарт атома несет ответственность конфигурация атомного ядра.

 

Попытаемся мысленно сконструировать атом гелия. Для этого возьмем готовое ядро, т.е. альфа-частицу, запустим вокруг неё по произвольным траекториям два электрона, и поместим наш атом в гелиевую среду. Начнется чехарда сближений и отстранений электронов, сопровождаемая всевозможными их ускорениями, в том числе и продольными относительно линейной скорости электрона. Продольные, знакопеременные ускорения будут вызывать электромагнитное излучение, которое будет отнимать энергию электронов, и те будут соответственно изменять свои траектории.  Нам известно конечное состояние электронов оболочки и известен закон их поведения в составе стационарного атома, а именно: электроны обращаются вокруг ядра, излучают порциями (квантами) при скачкообразном переходе из возбужденного состояния на низшую, стационарную орбиту, и при этом, всевозможные возмущения траекторий электронов не приводят к падению электронов на ядро.

 

Параметры стационарных траекторий электронов реализуют энергетический минимум атомной системы. Из этого закона-предположения следует, что в результате, казалось бы, хаотического начального излучения возбужденные электроны займут такие орбиты, на которых они уже не излучают, т.к. не могут перейти на траекторию с меньшей энергией по причине её отсутствия, т.е. двигаются по своим стационарным орбитам с постоянной линейной скоростью, и могут в этом состоянии только поглощать стороннюю энергию.

Одно такое решение для атома гелия совершенно очевидно: оба электрона перемещаются по одной круговой орбите, находясь в её противоположных точках. То, что непозволительно для притягивающихся планет в планетарной модели, совершенно естественно для отталкивающихся электронов. Однако это естественное гипотетическое решение не вписывается в запрет Паули. Необходимо дополнительно произвести фазировку спинов для электронов, а именно, чтобы спины изменялись синхронно и в противофазе, что и должно соответствовать их минимальной энергии.

 

Предположим, что линейные скорости электронов в атоме гелия равны скорости электрона в атоме водорода. В этом случае, учитывая действие поля удвоенного заряда ядра атома, ослабленное полем противоположного, постоянно удаленного электрона, каждый электрон находится в поле эффективного заряда величиной 1,75е. Получается, что радиус атома гелия несколько меньше по сравнению с атомом водорода. Это подтверждается физическими свойствами гелия, например, именно гелий, а не водород, обладает максимальной проницаемостью.

 

Дополним ядро гелия ещё одним протоном и нейтроном. Получим ион лития, размер которого ещё несколько уменьшится по сравнению с атомом гелия, но это еще не размер атома, а только размер иона. А теперь предоставим иону лития возможность захватить недостающий электрон. На первой оболочке мы для него места не придумали, у природы это тоже не получилось. Значит, этот электрон начинает формировать вторую электронную оболочку.

 

Мы совершим ошибку, если будем рассматривать движение валентного электрона лития относительно его ядра, т.к. реально он движется вокруг иона, эффективный суммарный заряд которого всё время перемещается и меняется по величине. Так, какова же динамическая конфигурация атома лития?

Исследуя атом водорода, мы уже получили следующий результат: если вторая оболочка будет сферической, то её радиус будет отличаться от радиуса первой оболочки несущественно. При этом электронам будет сложно реагировать на конфигурацию ядра атома. Получается, что траектория электронов второй оболочки должна сместиться относительно ядра атома. Эта траектория может напоминать эллипс, а может и не напоминать, тем более, что траектория будет объемная.

Здравый смысл подсказывает естественное предположение – полностью избежать излучающих траекторий невозможно. Поэтому атомы и излучают почти непрерывно, не давая накапливаться энергии, отнимаемой от теплового движения  среды.

Мы получили вторую электронную оболочку с одним электроном, отличную от первой, и на этом наши возможности качественных оценок пока исчерпаны. Однако экспериментальные данные свидетельствуют о второй оболочке с восемью электронами. Нам явно не хватает дополнительных предположений.

 

Из решений уравнения Шрёдингера следует, что траектории электронов в атоме принципиально не могут быть ни круговыми, ни плоско-сферическими. Обращаясь вокруг ядра атома, электроны то приближаются к ядру, то удаляются.

 

Обстоятельство, что валентные электроны могут глубоко и регулярно проникать вглубь оболочки атома, интенсивно взаимодействуя с неоднородностями поля протонного ядра, утверждают нас в мысли о зависимости химического стандарта атома от конфигурации ядра. Это дает основание для поиска корреляции между пространственной конфигурацией ядра и динамичной структурой электронной оболочки, а в конечном счете с нюансами химических свойств данного атома. То же относится и к молекулам.

 

Можно из оболочки атома удалить почти все валентные электроны, но атом с гарантией восстановится, если при удалении электронов не было повреждено его ядро. Это подтверждает, что носителем химических свойств атома является ядро. При этом реализация этих свойств происходит посредством взаимодействия орбитальных электронов смежных атомов.

 

Чтобы корреляция конфигураций ядра и оболочки была устойчивой, необходимо постоянное и интенсивное взаимодействие электронов с ближним полем протонов ядра. Ясно, что круговые траектории электронов данных условий обеспечить не могут.

 

Интуиция подсказывает, что в обеспечении разнообразия химических свойств вещества симметрия электрических полей плохая помощница. Напротив, для поддержания высокого стандарта химических свойств атомов требуется устойчивая, детерминированная асимметрия. Необходимую стабильность химических свойств атома может обеспечить только устойчивая и вполне определенная, не изотропная конфигурация ядра атома.

 

А зачем, спрашивается, природе понадобилось несимметричное магнитное поле.

Всем уже ясно, что основой конструкции атомных ядер является связка протон-нейтрон, отвергающая сферическую симметрию. Это она определяет пространственную конфигурацию любого ядра. Мелочь, конечно, но атомарный водород – это изотоп дейтерия, а не наоборот. Но такие мелочи часто уводят в сторону от истины.

 

Исходя из структурной модели ядра, в основе которой лежит связка протон-нейтрон, становятся понятными некоторые уникальные свойства гелия. Принцип минимальности энергии равновесных состояний диктует для атома гелия нитевидную конфигурацию ядра с протонами на концах. Эта упругая, способная вибрировать, конструкция обеспечивает гелию и сверхтекучесть, и осмическую сверхпроницаемость.

 

Кроме того, видно, что при конструировании ядер тяжелых элементов из ядер дейтерия и ядер гелия, свобода в выборе конфигураций таких ядер весьма ограничена. А это и обеспечивает высокий стандарт для структур атомов каждого элемента. При современных исследованиях, и моделировании структур атомов выпадает из внимания фактор надежности и повторяемости природных атомных конфигураций.

 

Ажурная конструкция ядра предоставляет природе гораздо больше возможностей. Но если это так, то плотность атомных ядер должна быть заметно меньше нуклонной плотности, т.к. конфигурация атомного ядра должна быть достаточно просторной. Вот обширное поле деятельности экспериментаторам и теоретикам по выявлению пространственных структур ядер атомов.

 

Кроме того, ажурная конструкция ядер менее всего противится процессу холодного синтеза элементов, происходящего в биологических и других объектах. Холодный синтез, отрицая капельную модель ядра, встречает упорное сопротивление официальных структур, проявляемое в замалчивании явления.

 

Чем больше нуклонных пар в тяжелом ажурном ядре, тем менее жесткой становится объемная конструкция ядра. Естественная потеря прочности восполняется дополнительными связями — нейтронными вкраплениями. Это самое естественное предположение. Из этого предположения следует, что нуклоны должны быть способны множить свои магнитные полюсы, которые обеспечивают прочность межнуклонных связей. Это принципиально новая гипотетическая информация о свойствах нуклонов. Искусственное или случайное внедрение в структуру атомного ядра лишних нейтронов приводит к формированию случайных связей, которые искажают вибрационные характеристики ядер, вызывая преждевременный разрыв нуклонных нитей, что вызывает частичный распад ядра. Радиоактивный распад.

 

Теория строения ядра с учетом его естественной радиации уже давно нуждается в ажурном ядре, эта теория  фактически предрекла рыхлое атомное ядро [14]. Но творческой смелости авторов хватило только на кристаллическую решетку модели ядра.

 

Собственные колебания ажурной конструкции, в соответствии с распределением Максвелла, должны реализовывать (хоть и редко, но неизбежно) критические амплитуды колебаний элементов конструкции, которые и вызывают ядерный распад. Таким образом, все химические элементы, кроме водорода, можно считать радиоактивными. При этом, для значительной части элементов период полураспада запредельно велик.

 

Стройное, логическое построение теории ажурного ядра разбивается о постулат Стандартной Модели, предписывающий существование внутриядерных сил. Этот постулат требует, чтобы ядро было максимально компактным, т.е. оно должно иметь нуклонную плотность (капельное ядро). А еще этот постулат требует, чтобы кроме внутриядерных сил притяжения, существовали некие контактные силы отталкивания, которые согласованно противодействуют внутриядерным силам притяжения. Об этих силах говорить не принято, т.к. мысли на эту тему заводят в непролазные мистические дебри.

 

Чтобы прервать неизбежную цепь из притягивающих и отталкивающих сил, авторы Стандартной Модели изобрели принцип конфайнмента. В рамках этого принципа возможно существование сил с произвольной зависимостью напряженности полей этих сил от расстояния. Таким образом, сильное взаимодействие обеспечивает и ядерные силы притяжения, на требуемом расстоянии, и ядерные силы отталкивания на другом, меньшем расстоянии.

При сомкнутых нуклонах в ядре атома, ядерных сил нет. Однако стоит нуклонам раздвинуться, они появляются и растут с ростом расстояния, а затем круто исчезают. Очень необычное поведение силового поля, но иначе ничего не получается.

 

Предположим, что такие внутриядерные силы притяжения существуют. Тогда о них кое-что можно сказать, что и сделано в Стандартной Модели. Что же это за силы.

 

Это силы притяжения, которые действуют на расстоянии, т.е. это силы, создающие силовое поле.

 

Это поле является совершенно уникальным, т.к. его напряженность увеличивается при увеличении расстояния между нуклонами.

 

Эти силы не зависят от знака заряда, и в этом плане аналогичны гравитации.

 

Эти силы почему-то не действуют на электроны и позитроны. А это, учитывая выше изложенное, означает, что внутриядерные силы не зависят не только от знака заряда, но и от величины зарядов и величины массы, и значит, зависят от чего-то иного, о чем авторы нам не сообщают.

 

Предполагаемая конфайнментная зависимость интенсивности поля от расстояния не укладывается в логику обменных взаимодействий.

 

Закон сложения конфайнментных полей неизвестен и загадочен. Этот недостаток компенсируется универсальным квантовым принципом, принятым теоретиками на вооружение, а именно: всё происходит так, как происходит в природе, как установлено экспериментом и отображено в математической модели явления.

 

Часть 4.5

 

Анализ известных и предполагаемых свойств атома, а также  их обобщенный анализ усложняется тем, что пока ещё не создана удовлетворительная физическая модель силового поля. Целью философского осмысления является, либо выбор из предложенных гипотез одной модели, которая наиболее близка к истине, либо самостоятельное построение другой, отличной от всех модели, на основе предложенных гипотез.

 

В настоящее время наилучшей считается модель, предложенная разработчиками так называемой Стандартной Модели. Её создавали лучшие умы академической школы.

 

Для экономии сил и времени доверимся выбору академической школы, и согласимся, что Стандартная Модель является лучшей из всех, к этому моменту предложенных.

 

Стандартная Модель после того, как был обнаружен бозон Хиггса, была объявлена полностью завершенной, хотя ряд проблем в ней решены с привлечением мистики.

В природе всё естественно, и в этом смысле – всё просто. Это сентенция Ломоносова. А естественность является производным понятием от причинности. Естественно – значит, в полном соответствии с причиной и окружающими условичми.

 

В Стандартной Модели обменное взаимодействие является не сканирующим, а прицельным, хотя авторы его так не называют. Взаимодействующие частицы без промаха испускают друг в друга переносчиков энергии и импульса, обеспечивая своей меткостью законы сохранения.

 

Эйнштейн, еще до создания Стандартной Модели, осознавая, что напрашивающееся прицельное притяжение – это нелепость, попытался найти решение с использованием кривизны пространства-времени, не нуждающейся в прицельных характеристиках. Но в этом ключе задача оказалась тоже неразрешимой, а надуманное решение Эйнштейна получилось еще более нелепым, чем прицельное взаимодействие.

 

Более-менее скрываемая абсурдность и Стандартной Модели и ТО тем не менее проявляется в абсурде, который уже невозможно скрыть: в одновременной применяемости этих, якобы фундаментальных, но несовместимых моделей.

 

Авторы Стандартной Модели, следуя принципу наименьшего зла, при выборе из двух абсурдов (кривизна и прицельный обмен), предпочли обменное взаимодействие – и хотя оказались в тупике, но все-таки ближе к цели.

 

В Стандартной Модели, на первый взгляд, всё очень неплохо, кроме двух положений.

Непонятно, как удаленные объекты взаимодействия прицеливаются друг в друга специализированными частицами, например, глюонами, носителями сильного взаимодействия, или гравитонами,  носителями гравитационного взаимодействия.

 

Если допустить, что носители полей испускаются не прицельно, а веером, то куда деваются промахнувшиеся глюоны и гравитоны, и как восполняется их убыль в структуре частиц, участвующих во взаимодействии.

 

Вопрос этот в Стандартной Модели не замалчивается, но решается на уровне мистических, инфляционных постулатов. Постулируется, что в составе частиц собственно глюонов нет, а они черпаются из окружающего пространства в неограниченном, потребном количестве. На этом утверждении обоснование заканчивается, как бы предлагая оппонентам додумать всё остальное самостоятельно. Действительно, с этого места в обосновании явно заметна аналогия глюонов с фотонами, а фотоны, по поводу своей удаленной утилизации,  никаких вопросов не вызывают.

 

Атом тоже производит фотоны из пространства в неограниченном количестве. Но атом ведь не берет готовые фотоны, а производит их за счет сторонней энергии, участвующей в природном кругообороте. Глюоны же, черпаются без меры и беззатратно.

 

Для устранения явных недостатков Стандартной Модели позволим себе предложить её небольшую коррекцию, приводящую Стандартную Модель в разряд сканирующих. Авторы Стандартной Модели почему-то избегают затрагивать информационный аспект любого обмена. Попробуем устранить этот недостаток. Расширим возможности носителей поля. Пусть и гравитоны, и глюоны, и пр. переносят не только информацию о величине энергии и импульса, но и другую необходимую информацию.

 

Вдумаемся. Чтобы любая частица могла изменять свое состояние (в том числе и движение) сообразно окружающей обстановке, она должна каким-то образом «знать» эту обстановку. Обменное взаимодействие вроде бы решает эту проблему, но взамен ставит новую проблему – энергетическое восполнение. А чтобы снять и эту проблему, необходимо признать и ввести в научный обиход совершенно новый вид квантовых взаимодействий, а именно, таких, которые не требуют энергетических затрат.

 

Таким взаимодействием является предварительный, информационно-квантовый обмен, в котором всё происходит, как и в Стандартной Модели, только носители всегда испускаются во все стороны равномерно, и все носители обязательно возвращаются к исходной частице.  Эта частица после информационного обмена не изменяет состав своей структуры, а только сообразно обстановке изменяет её конфигурацию, готовясь к реализации энергичного действия. Это фундаментальное свойство квантового, информационного обмена, при котором возможное количество испускаемых носителей является инвариантной характеристикой исходной частицы.

 

После завершения фазы интегрального информационного обмена, материальный объект реализует соответствующее движение, которое уже имеет энергетическое обеспечение.

 

Повторим. Чтобы квантовые взаимодействия сложились в логически завершенный квантовый цикл, необходимо, чтобы переносчики информации не исчезали в бесконечности, а все возвращались к своей частице-носителю. После информационного, беззатратного обмена следует сбалансированное, т.е. соответствующее физическим законам, квантовое движение вещества и силовых полей.

 

Революционная новизна информационного квантового обмена состоит именно в том, что оно не требует энергетических затрат. Это обстоятельство непривычно, и теоретически недоказуемо. Это фундаментальный квантовый постулат метафизического свойства, подтверждаемый практикой.

 

Ни масса частиц, ни их заряды не изменяются во времени. А самое важное, что не меняются и их силовые поля в их исходном (начальном) представлении.

 

Силовые поля частиц не изнашиваются от интенсивного употребления. И с этим свойством материи на поприще практической науки мы встречаемся впервые. Ранее все обходились философским положением о вечности материи.

Сейчас возникает философский вопрос совсем другого плана: способна ли материя развиваться (эволюционировать) на квантовом уровне?

Вечна ли структура кванта, и постоянны ли её конфигурационные возможности в смысле их вариаций?

 

Часть 4.6

 

Вне Стандартной Модели, другие авторы предложили другой выход  из ситуации с энергетическим обеспечением обменных взаимодействий. Но им тоже не удалось избежать обращения к мистике. По мнению этих авторов, свободный электрон (а с ним и все элементарные частицы) как локализованный вещественный объект в природе не существует. В природе есть лишь волновая функция электрона, которая в момент взаимодействия рекомбинирует и коллапсирует в частицу. Данное представление в таком откровенном виде формулировать не принято, но суть его именно такова.

 

Виртуальная волновая функция любой элементарной частицы энергетических затрат не требует, и при этом в пространстве не ограничена. Таким образом, в мистической модели частиц, представленных волновой функцией, проблема с источником энергии решена.

 

Такая интерпретация волновой функции является ярким примером того, как ранее допущенная ошибка (возможно мелкая) вынуждает придумывать вычурные, ошибочные решения, которые затем внедряются в жизнь и становятся чудовищными, вредоносными стереотипами.

 

 

После устранения из Стандартной Модели одного внутреннего противоречия, связанного с судьбой испущенных носителей поля, остается не решенной еще одна проблема, касающаяся  ядерных сил; а именно, модель не увязывает сбалансированный комплекс сил и полей, с обеспечением другой официальной модели — модели термоядерной реакции, якобы позволяющей добыть дешевую энергию в практически неограниченном количестве.

 

Оценим ситуацию. Речь идет о термоядерной реакции синтеза гелия из атомов водорода. Представим, что необходимый комплект нуклонов для создания атома гелия, за счет всяческих ухищрений, и с огромной затратой энергии, собран на границе поля конфайнмента, т.е. границе поля ядерных сил или поля сильного взаимодействия. Но откуда эта граница возьмется физически, ведь на месте будущего ядра еще ничего нет. Значит, нуклоны надо сближать до границы их собственного ядерного поля, т.е. гораздо ближе, чем хотелось бы термоядерным энергетикам.

 

Представим, что инженерам-энергетикам удалось-таки  сблизить нуклоны. Что дальше? А дальше следует термоядерная фаза синтеза гелия. Нуклоны должны получить от силового поля внутриядерных сил импульс чудовищной величины, и с огромной скоростью устремиться навстречу друг другу. А путь-то у них крошечный, а энергию нужно накопить и затем непременно отдать не малую, да еще нужно корректно остановиться, чтобы обеспечить конечный результат термоядерного сжатия, а именно, ядро гелия.

 

С остановкой вроде бы есть надежды. При определенной дистанции между нуклонами внутриядерные силы в угоду авторам исчезают, а кулоновские силы продолжают действовать, и всё увеличиваются. Вот они-то и остановят протоны, которые сближаются с огромной скоростью. Именно на этом участке торможения должно происходить излучение гамма- квантов с гигантской энергией. В звездах, предположительно, эта энергия гамма-квантов постепенно понижается за счет многоступенчатого переизлучения. Как это осуществить в промышленном реакторе – никто не знает, и проблему не озвучивают.

Это всё относительно протонов.

 

А что остановит нейтроны? Получается, что нейтроны должны вступить в истинное контактное взаимодействие, и судя по конечному результату, должны либо упруго отразится, либо мягко остановиться.

 

Итак, протоны будут остановлены тормозным излучением, и согласно сомнительной теории тормозного излучения, излучат несколько штук (скорее всего два) гигантских гамма-кванта, освоить которые надо еще суметь.

 

У нейтронов судьба ни чуть не легче. Они вынуждены колебаться с гигантской частотой в воронке поля конфайнмента. Излучать при этом они не могут. В этом случае их вибрация является носителем очень высокой парциальной тепловой энергии, которая будет постепенно передаваться окружающей среде, что является положительным фактором при её освоении.

 

Остановимся на этом — и одумаемся. Зачем природе вся эта избыточная внутриядерная чрезмерность? Ну, преодолели ядерные силы силу кулоновского отталкивания, а зачем дальше-то ускорять и сталкивать нуклоны, да ещё с такой силой. Только затем, чтобы на ничтожном участке торможения выделилась энергия, многократно превосходящая по величине огромную кулоновскую (ядерную) энергию атома.

 

В рамках конфайнмента сверх избыточных сил можно избежать. И тогда, вроде бы, всё станет хорошо. А как же в этом случае с термоядерной, дешевой энергией? Про неё авторы Стандартной Модели похоже забыли.

 

Авторы термоядерных циклов в эволюции звезд должны доводить свои теории (гипотезы) до логического конца, которым является кругооборот вещества и энергии в природе. Добыв энергию из разрозненного водорода методом соединения его в гелий, авторы должны указать путь возвращения водорода в природу, иначе кругооборот прервется.

 

Вот и получается, что очень вредная эта наука – философия. Конструктивной помощи, практически — ни какой, а запретов всяких — хоть отбавляй.

 

Однако, может, и нет никакого сильного взаимодействия.

 

Тогда, что же удерживает протоны в ядре атома?

Подсказка содержится в структуре атомного ядра. Совершенно очевидно, что ядра атомов собраны из устойчивых и прочных модулей протон-нейтрон и альфа-частиц.

 

Проанализируем ситуацию в этом плане.

Никто не пытается придать электрическим полям уникальное свойство гравитации, а именно: невозможность её экранирования. Однако теорий с использованием экранируемых кулоновских полей тоже никто не развивает.

 

Как электрические поля экранируются, и какими эффектами сопровождается экранирование – никто в квантовой теории и в электродинамике, похоже, не озабочен. Но если принять, что электрическое поле протона, экранируемое нейтроном, представляет кардиоиду вращения, то сразу становится понятным природный принцип сборки атомного ядра из стандартных модулей протон-нейтрон. Действительно, если ядра собраны из модулей n+p, которые соответственно ориентированы и соответственно размещены в пространстве, то никаких специальных ядерных сил не потребуется, похоже, что вполне достаточно сил магнитного притяжения.

 

Ажурная конструкция ядра, собранная из протон-нейтронных пар, которые позволяют значительно уменьшить силы контактного отталкивания пар, практически не уменьшает общего потенциала кулоновского поля. Поля протонов в ядре атома аналогичны сжатым и защелкнутым пружинам, и несут огромную потенциальную энергию, готовую выделиться  при подходящих условиях.

 

Такая конструкция, собранная из элементов с полем в форме кардиоиды, реализует принцип арбалета. Почти всё, что необходимо для создания напряженного ядра, уже известно. Вот мнение академика А.А. Тяпкина, по поводу забытой идеи нобелевского лауреата Ю.Швингера  [15].

 

Цитата. «…Я могу сослаться лишь на гипотезу крупного теоретика, лауреата нобелевской премии за 1965 год Юлиана Швингера. Он в 1969 г. [16] высказал весьма неожиданное предположение о том, что магнитные заряды, которые безуспешно пытались обнаружить, на самом деле в виде дипольных моментов входят в основу любого вещества; они принимаются нами за особые коротко действующие ядерные силы, необычно большие по величине. Отметим, что эта удивительно красивая и смелая гипотеза прежде всего отвечает симметрии электрического и магнитного взаимодействия, заложенной в уравнениях Дж. Максвелла, а значительная величина магнитного заряда по сравнению с электрическим зарядом, как это было показано еще в 1931 году П. Дираком, непосредственно следует из законов квантования этих зарядов. Коротко действующими же эти магнитные силы оказываются в силу того, что в веществе они существуют только в виде сильно связанных магнитных диполей. Эта почти забытая физиками идея Ю. Швингера не только красивая, но и удивительно рациональная в своей основе, поскольку сводит ядерные силы к магнитным».

Конец цитаты.

 

Осталось только догадаться, как в природе реализуется сжатие нуклонов в дейтерий, а затем и во все тяжелые ядра. Однако и это уже не самый большой секрет.

 

Выдающиеся астрофизики современности: Амбарцумян, Арп и другие, — заочно пришли к согласию, что все галактики в наблюдаемых сейчас состояниях созданы из своих центральных ядер. Амбарцумян нигде не пишет, что нет ни каких Черных Дыр в центрах галактик. Не пишет потому, что он законопослушный ученый, а критика ТО директивно запрещена АН СССР в 1964 году. Но всё, что Амбарцумян пишет о ядрах галактик, свидетельствует (кричит), что Черных Дыр там нет.

 

Вот там, в ядрах галактик и должна быть кузница тяжелого вещества (тяжелее водорода),  которое астрофизики почему-то объединяют под названием металлы, см. [17]. Это тяжелое вещество разносится звездами по космосу, и служит источником жизни и в качестве конструктивного материала, и в качестве источника энергии.

 

Таким образом, с точки зрения природной целесообразности и наблюдаемой в мире гармонии – сильное взаимодействие не выдерживает ни какой критики.

 

Заключение.

 

Подведем итог.

Философский подход склоняет к мысли, что электрическое поле единичного заряда (любого типа) является импульсным и, следовательно, периодическим и сканирующим.

 

Ядро заряда, перемещаясь в пространстве квантовым образом, в состоянии фазовой неподвижности, изотропно испускает (генерирует) в смежное пространство определенное (достаточно большое) количество носителей электрического поля.

 

Максимально возможное количество испускаемых носителей является инвариантом элементарного заряда любой природы: или электрического, или гравитационного. Эти инварианты являются фундаментальными константами мироздания.

 

Носители поля, названия которым даже не придумано, заполняя собою смежное пространство, сферически или шарообразно, взаимодействуют со всеми сторонними  объектами. Затем, все обязательно возвращаются к своему носителю, передавая ему информацию с характеристиками текущей окружающей обстановки. Этой информации достаточно для реализации всех законов природы.

Принцип импульсно-периодического квантового взаимодействия описан в [1] на примере гравитационного взаимодействия, которое является простейшим вариантом полевых взаимодействий.

 

Однако когнитивное мышление приемлет только такие взаимодействия, в которых испущенный носитель поля непременно поглощается приемником, и становится его частью. Отсюда диктат терминологии: обмен носителями, обменные взаимодействия.

 

Первопроходцы-открыватели закономерно оставляют после себя научный продукт, не всегда доведенный до желаемой кондиции. Задачей последователей и продолжателей является доведение первичного научного материала до требуемых стандартов.

Однако это происходит не всегда.

 

А причина, видимо,  в чрезмерном преклонении и угодничестве чинопочитателей от науки перед научными авторитетами первопроходцев.

 

Если случайные ляпы авторитетов не устраняются даже после их обнаружения, то это вина научного сообщества. Это означает, что сообщество больно.

Но болезнь не вечна.

 

 

ИСТОЧНИКИ

  1. Леонович В.Н., Концепция физической модели квантовой гравитации. Интернет http://www.sciteclibrary.ru/rus/catalog/pages/10168.html.
  2. Теория бета-распада Ферми, Интернет, Википедия.
  3. Леонович В.Н., Соотношение неопределенности, и его профанация, Интернет.
  4. Леонович В.Н., Природа сверхпроводимости, Интернет.
  5. Леонович В.Н., Импульс фотона, фотонный двигатель и философия; Интернет .http://www.sciteclibrary.ru/rus/catalog/pages/13311.html.
  6. Леонович В.Н., Загадка космических аппаратов «Пионер», Интернет.
  7. Багров В.Г., Открытие неклассической логики поведения квантовых объектов — одно из удивительных достижений современной физики; Интернет.
  8. Филипс У.Д., Лазерное охлаждение и пленение нейтральных атомов. УФН, том 169, №3, март 1999 г.
  9. Леонович В.Н., БАК и решающая проверка ТО; Интернет http://www.sciteclibrary.ru/rus/catalog/pages/13174.html.
  10. Амбарцумян В.А., Нестационарные явления в мире звезд и галактик. Интернет.
  11. Арп Хальтон, «Слабые квазары дают неопровержимые доказательства не скоростной природы красного смещения». Интернет.
  12. Леонович В.Н., Интрига излучения Черенкова. Интернет.
  13. Трубин Виталий, Модель ядра атома – кристалл с ромбической сингонией. Интернет.
  14. Трубин Виталий, Генезис и структура ядер атомов. Интернет.
  15. Тяпкин А.А., Обнаружение аномальных свойств при исследовании Черенковского излучения. ОИЯИ, Дубна.
  16. Швингер Ю. Магнитная модель материи, //УФН, 1971, Т. 103, С.355.
  17. Леонович В.Н., Происхождение солнечной системы на основе квантовой парадигмы. Интернет http://www.sciteclibrary.ru/eng/catalog/pages/11553.html
  18. Форд К., Мир элементарных частиц, М., 1965.
  19. Физический энциклопедический словарь. М. Советская энциклопедия, 1983.

Нижний  Новгород,   февраль 2016 г.

 

 

Большой Адронный Коллайдер и одна из его тайн

Управляемые электрические и магнитные поля коллайдеров и прочих ускорителей не только ускоряют частицы, но и выполняют функцию стабилизации разгоняемого пучка. Одной из задач этой функции является компенсация гравитационного падения частиц. Этот естественный процесс вызывает ускоренное движение частиц в направлении Земли с ускорением g, вне зависимости  от массы частиц. Как всем известно из школьного курса физики, за первую секунду разгона, без компенсации, протон или изотоп свинца упадет на 5 м, что естественно является недопустимым. Но этого и не происходит. Сложная система магнитов формирует фокусирующее  магнитное поле, которое одновременно не позволяет протонам падать. Читать далее Большой Адронный Коллайдер и одна из его тайн

КОНЦЕПЦИЯ ФИЗИЧЕСКОЙ МОДЕЛИ КВАНТОВОЙ ГРАВИТАЦИИ

Леонович Владимир

Материал статьи в обработке

КОНЦЕПЦИЯ ФИЗИЧЕСКОЙ МОДЕЛИ КВАНТОВОЙ ГРАВИТАЦИИ

(Принципиально квантовая модель мира)

Четвертая редакция

Ключевые слова: гравитон, гравитация, принцип относительности, квантовая теория, теория относительности, прецессия, коллайдер.

В работе представлена концепция физической модели квантового гравитационного взаимодействия, реализуемого в физическом, принципиально квантовом пространстве.

Предлагаемая концепция является продуктом синтеза выверенных знаний и современных представлений о материи. Синтез произведен на основе принципиально квантового подхода и философского представления о гармонии мира.

Полученные в результате выводы, как правило, только расширяют традиционные представления об устройстве мира, но иногда все же противоречат общепринятым положениям, однако это обстоятельство не является разрушающим, т.к. предлагаемые новые положения полностью заменяют отрицаемые теории и концепции.

Предложенная модель не является законченным продуктом, и ждет коллективной доработки. Однако и в предлагаемом состоянии может применяться при решении многих научных и практических задач, а также при решении проблемных вопросов философии.

Например, в концепции вскрывается механизм замедления времени в движущихся объектах и логически обосновывается природа этого явления; объясняется мгновенное распространение гравитации; вскрывается физический смысл гравитационной постоянной;  предоставляется принципиальная возможность практического измерения скорости произвольной инерциальной системы (изолированной лаборатории) относительно абсолютного неподвижного пространства, воспринимаемого нами как система неподвижных звезд.

 

  1. ВВЕДЕНИЕ

 

Научный прогресс привел научное сообщество к общему признанию квантовых представлений, но еще не убедил научное сообщество во всеобъемлющем характере квантовых принципов устройства мира. Причина в том, что принципиально квантовое устройство мира теоретически доказать невозможно, а практических знаний для этого еще недостаточно. Оптимальность выбора философской позиции, представленной на уровне свода исходных постулатов, не может быть доказана только с помощью логических построений. Критерием истины мировоззренческой позиции является практика.

В сложившейся ситуации необходимо сделать следующий шаг к окончательному философскому выбору.

Или мир является принципиально квантовым, и в нем нет места бесконечному делению материи на подобные части; или квантовые явления существуют наравне с бесконечным делением материи.

Авторы квантовых теорий не делают соответствующих заявлений, но большинство из них, по содержанию их работ, явно склоняется в сторону компилятивного устройства мира. Как следствие, основательного теоретического анализа принципиально квантового устройства Вселенной — не существует. Компилятивный подход удобен и соблазнителен для фальсификаторов и карьеристов.

Предлагаемая концепция призвана положить начало к ликвидации этого белого пятна в системе знаний о квантовом устройстве мира.

  1. Общие положения и квантовая геометрия

2.1 Общие положения

Итак, ниже рассматривается модель материального квантового мира, состоящего исключительно из материальных квантов.

В рамках предлагаемой концепции квант материи  понимается в соответствии с философским представлением, воплощающим идею о всеобъемлющей дискретной структуре всего сущего. Все вещество, все физические поля, все свободное пространство вселенной состоит из взаимодействующих и неразрывных материальных квантов.

Определение кванта.

Материальный квант – минимальный, структурный элемент конкретной материальной сущности, обладающий всеми фундаментальными свойствами данной сущности.

Поясним, что понимается под минимальностью. Минимальность понимается как предел делимости в рамках данной сущности. Например, молекула воды является квантом сущности вода. Этот квант можно расщепить на атомы водорода и кислорода, но нельзя разделить на молекулы воды. Будучи расщепленным на атомы, квант воды перестает существовать как данная сущность, превращаясь в кванты атомарного водорода и кислорода.

Между квантами материи ничего нет, и быть не может.

Это положение равнозначно отрицанию абсолютной пустоты. В самом обобщенном смысле, данная точка зрения интерпретируется как принцип неразрывности материи. Объем материи всегда совпадает с геометрическим объемом, занимаемым материей.

Квантовый принцип распространяется и на более высокие уровни организации материи: элементарные частицы, атомы, молекулы, фотоны. Но только на первом, низшем уровне действует принцип неразрывности, не оставляющий места компилятивному подходу.

Квантовая концепция предполагает (не отрицает) наличие внутренней, динамичной структуры квантов на каждом из возможных квантовых уровней.

Например, каждый атом вещества, являющийся вещественным квантом, нельзя разделить на атомы данного вещества, но можно расщепить, превратив в нуклоны или в иные сущности, например, в другие атомы.

Таким образом, постулируя структурную динамическую природу материального кванта, предлагаемая концепция не отрицает беспредельную делимость материи, а лишь вводит естественные уровни делимости, позволяющие вести исследование материи на доступном уровне, не испытывая помех от искусственных философских парадоксов.

 

Объектом исследования предлагаемой концепции является пространственный квант.

Положения концепции не конфликтуют с существующими квантовыми теориями, т.к. пространственные кванты в этих теориях просто не рассматриваются.  За основу квантовой структуры материи в этих теориях выбрана постоянная Планка «h».     Постоянная «h» не является физическим квантом, т.е. минимальным элементом сущности, т.к. ни какую сущность не представляет. Кроме того, квантовые теории, использующие «h», оперируют физическими величинами, выражаемыми дробными значениями «h», что несовместимо с понятием кванта.

Постоянная Планка – это математический, универсальный квантовый масштаб широкого, но не всеобъемлющего, класса явлений.

Существующий мир, как развивающаяся система, состоящая из квантованной материи, не мог бы называться принципиально квантовым, если бы время тоже не было квантованным. Однако определять квант времени пока преждевременно, отложим эту процедуру, и ограничимся только утверждением о его существовании.

Квантовые структуры, как основа мироздания, с давних времен привлекали внимание мыслителей, которые достигли известных успехов в понимании квантовой организации. Не будем тратить время на изобретение велосипеда, и воспользуемся существующими достижениями в этой области.

Общепризнанно, что квантовое пространство неразрывно, а пространственный квант не может быть деформируемым; квант имеет конечный размер.

Эти три безобидных на первый взгляд положения, взятые вместе, приводят к удивительным следствиям.

Во-первых, и это наиважнейший логический вывод, который никто не хочет замечать: квантовое пространство является неподвижным (нешевелимым) в механическом понимании, и значит, условно представляет квантовый монолит.

Из этого, достаточно неожиданного для многих положения, следует следующий логический вывод.

Если относительное перемещение квантов невозможно, то всякое движение возможно только посредством передачи специализированных возмущений, т.е. обмена внутренней информацией кванта.

Вывод такой емкий, что на этом месте стоит приостановиться и подумать, как это может быть и как это можно соотнести с тем, что мы видим и ощущаем повседневно.

Общечеловеческий стереотип мышления, представляющий мир механическим ансамблем массивных объектов, так глубоко внедрен в наше подсознание, что даже под действием логики согласившись с новым, сформулированным принципом движения, человек будет сбиваться на стереотипное представление. Тем более, что этому будет способствовать (провоцировать) косноязычие, привившееся в научной терминологии. Например, множество цитат Эйнштейна никогда не сопровождаются пояснением, что для Эйнштейна понятие материя было синонимом понятия массивное вещество.

Проведем мысленный эксперимент. Представим пространство, состоящее из одинаковых кубиков Рубика, находящихся в начальном (нулевом) состоянии. Переведем один кубик в ненулевое состояние. Если кубики устроены так, что один кубик может перевести смежный кубик в свое состояние, и после этого самому перейти в нулевое состояние, то этот акт передачи информации внешне (в эффективном представлении) будет неотличим от механического перемещения помеченного кубика.

Почему этот принцип перемещения практически не обсуждается и не изучается?

Причин множество. Но главная причина одна – не пришло время.

Этот принцип ранее мелькал в работах некоторых мыслителей – и был отвергнут, т.к. идея требует ревизии всех представлений динамичных пространств, и отрицает установившееся механистическое мировоззрение. В этой ситуации, дабы сохранить мир и покой в научных представлениях о движении, непременно связанного с перемещением элементов вещества в пространстве, квантовое пространство исподволь подменили понятием эфир, одарив его некоторыми квантовыми признаками, которые делают его похожим на идеальную жидкость.

В создавшейся ситуации самым привлекательным качеством идеальной жидкости является то, что она не оказывает механического сопротивления движению тел. Здесь не обошлось без лукавства. Дело в том, что идеальная жидкость обеспечивает желаемую идеальную текучесть только в конечном объеме и обязательно без жестких границ, да еще непременным условием является малая скорость движения тела. Действительно, если мысленно поместить идеальную жидкость в абсолютно жесткий замкнутый сосуд, и мысленно промоделировать процесс перемещения несжимаемых элементов этой жидкости относительно сосуда, то каждый сразу поймет, что такое перемещение невозможно при любой форме квантов этой жидкости. Идеальная жидкость в жестком объеме становится абсолютно твердым телом. Этот простой и убедительный эффект для многих окажется неожиданным. Но он неизбежен. Кроме того, этот эффект реализуется и в открытом, но бесконечном пространстве, т.к. перемещение одного любого элемента требует перемещения бесконечного количества других элементов, а учитывая конечность времени единичного действия, любое перемещение становится невозможным.

Ни в одном учебном пособии, использующем понятие идеальной жидкости, автор не встречал описания этого простого и естественного эффекта (свойства).

 

Ещё одним  логическим выводом, следующим из свойства неперемещаемости квантов, является то, что в природе не может быть специализированных квантов различных сущностей. Это, при условии механистической неподвижности квантов, совершенно очевидно. А это значит, каждый пространственный квант должен своевременно представлять любую материальную сущность. А из этого, в свою очередь, следует, что все кванты устроены одинаково, т.е. квант из состава любого вещества устроен одинаково с квантом поля, а  также с квантом свободного пространства (хорошая аналогия с кубиком Рубика). Эти кванты различимы, пока содержат конкретную, и разную, информацию, и неразличимы при отсутствии информации.

Совершенно естественно, что квант с минимумом информации представляет свободное пространство, т.е. физический вакуум.

Автор просит читателя обратить внимание на количество новых, вызывающих протест положений, изложенных выше на одной странице, при почти полном отсутствии принципиально новых предположений. Всё изложенное является результатом вскрытия замалчиваемых фактов, и требует их тщательного логического осмысления.

Мысль об абсолютной универсальности материального кванта не раз посещала великих мыслителей, но всякий раз, упомянув эту идею и не найдя механизма её воплощения, они вынужденно откладывали её в долгий ящик.

Схожую идею А. Эйнштейн высказал в 1920 г.: «…общая теория относительности наделяет пространство физическими свойствами; таким образом, в этом смысле эфир существует… Однако этот эфир нельзя представить себе состоящим из прослеживаемых во времени частей; таким свойством обладает только весомая материя; точно так же к нему нельзя применять понятие движения» ([1], т. 1, с.682).

Смутно. Но видимо, яснее выразить своё интуитивное представление он не мог, как не смог развить и применить его в рамках своей теории.

Логика фактов привела нас к пространству, свойства которого сформулировал Лоренц. Вот его мнение по этому поводу:

«Действительно, одно из важнейших наших основных предположений будет заключаться в том, что эфир не только занимает всё пространство между молекулами, атомами и электронами, но что он и проникает все эти частички. Мы добавим гипотезу, что, хотя бы частички и находились в движении, эфир всегда остаётся в покое. Мы можем примириться с этим, на первый взгляд поразительным, представлением, если будем мыслить частички материи как некоторые местные изменения в состоянии эфира. Эти изменения могут, конечно, очень хорошо продвигаться вперёд, в то время как элементы объёма среды, в котором они наблюдаются, остаются в покое» [Г.А. Лоренц. Теория электронов. М.: ГИТТЛ, 1953, с.32].

Лоренц пришел к этому мнению, имея явный недостаток требуемой для этого информации, можно сказать – пришел гениально интуитивно. Он стоял на пороге величайшего открытия. Однако Эйнштейн, как сейчас видится, запустил прогресс на штрафной круг, в спортивной терминологии. Эйнштейна давно уже нет, а круг всё не кончается. Значит, не только в Эйнштейне дело.

 

Читателю, знакомому с устройством компьютера, непременно придет ужасающая мысль о предлагаемой виртуальности всего происходящего в квантовом мире. Не спешите с выводами, переход суммы качеств в новое гармоничное качество иногда дает потрясающие эффекты. Тем более, что перед нами не просто виртуальное действо, а эмуляция наших представлений о реальности, а это приводит к извечной проблеме: что первично?

Так или иначе, выводы, приведенные здесь, основаны на интуиции выдающихся мыслителей, подкреплены накопленными человечеством знаниями, логичны, и оспорить их невозможно — с ними можно только упрямо не соглашаться.

 

Перемещение информации в квантовом пространстве происходит по аналогии с передачей эстафеты. Хотя в таком представлении собственно передвижения квантов в бытовом, механистическом смысле не происходит, но и отличить кванты друг от друга после завершения процесса перемещения информации невозможно. Это позволяет условно представить этот процесс как механическое перемещение квантов. В этом случае привычное представление о движении сохраняется. Необходимо только отказаться от сопутствующего представления о раздвижении среды при движении тела.

Движение вторичных квантовых объектов — это перемещение сохраняющейся определенным образом информации, которая не имеет в современной науке даже адекватного названия, и традиционно называется косноязычно «возмущением». А возмущение – это специфический информационный образ, реализующий в своих преобразованиях все известные нам законы сохранения.

Примем это соглашение, чтобы не затруднять описание и сохранить привычное восприятие движения. Входя в пустую комнату, мы ангажируем соответствующую часть пространства для своей реализации, раздвигая при этом молекулы воздуха, ранее ангажировавшие это пространство. Пространство при этом не перемещается. Всё, как у Лоренца.

Здесь необходимо ввести некоторые естественные дополнения-ограничения к понятию кванта, соответствующие действующим законам сохранения.

Квант передает (транслирует) свою информацию только одному из смежных квантов, а после передачи — полностью её теряет (забывает), восстанавливая своё предшествующее состояние. Это положение, если его дополнить требованием полноты передачи информации, можно трактовать как самый общий закон сохранения — закон сохранения энергонесущей информации, из которого следуют все остальные, частные  законы сохранения.

Приняв закон о сохранении информации, можно начать изучение принципов её перемещения в квантовом пространстве. И здесь нас ждет много неожиданного, хотя и вовсе не нового.

Определенный выше принцип перемещения является прямым воплощением идеи Декарта о всепроникающем пространственном эфире. В его время идея не могла быть воспринята на конструктивном уровне, и четыре века повторялась  без критического анализа и без попытки представить её физическую реализацию в модели пространства.

Будучи неосознанным, но, тем не менее, действующим, — принцип всеобщей проницаемости физического вакуума порождает некоторые свойства вещественных объектов, которые постоянно ставят исследователей в безвыходный тупик, понуждая их выдумывать похожие на реальность, но ошибочные интерпретации. Накапливающиеся ошибочные интерпретации постепенно завели науку в безоглядный тупик, выход из которого есть, но он не очевиден. Так в науку проникает мистика.

В конце ХХI века проблема квантового перемещения в квантовом пространстве была формализована практически. Но по иронии судьбы решение было найдено в среде обособленных промышленных программистов, что привело к длительному неведению научного сообщества о случившемся факте.

Ноу-хау программистов приобрело известность только после воплощения этого принципа в теории клеточных автоматов, появившейся совсем недавно. Это событие, в плане появления математической модели квантового перемещения информации, видимо, еще не осознали ни квантовики, ни теоретики от кибернетики.

 

2.2 Квантовая геометрия

Квантовое пространство, которое, как уже выяснили, является нешевелимой структурой, к тому же естественно и с очевидностью является не изотропным. А это значит, что это пространство необходимо отображать в рамках специализированной квантовой геометрии.

Квантовая геометрия – это геометрия, в которой в качестве точки используется первичный квант, как базовый элемент с конкретными заданными параметрами. Примером может служить квантовая геометрия паркета. Законы квантовой геометрии паркета будут зависеть от параметров базовых элементов и от количества типов базовых элементов. Базовый элемент реального пространства, как было показано, у материи всего один.

При попытке рассмотрения реального пространства, как квантового образования, привлекает внимание очевидное противоречие, а именно, наблюдаемая изотропия реального евклидового пространства, и явная анизотропия предполагаемой  квантовой геометрии этого же реального пространства. Это противоречие кажется неразрешимым, если следовать стереотипу мышления, согласно которому в природе реализована только одна геометрия.  Логика фактов приводит к другому выводу: реальный квантовый мир должен отображаться двумя геометриями, одна из которых вложена (сформирована) в другую. В терминологии кибернетиков это формулируется следующим образом. Квантовая (первичная) геометрия эмулирует эффективную евклидову геометрию, которую мы и воспринимаем как единственно существующую.

Переход от квантовой геометрии к евклидовой происходит в результате статистических усреднений, происходящих на уровне больших квантовых ансамблей, образующих фотоны и первичные элементы вещества – элементарные частицы.

Статистическое преобразование геометрий будет более эффективным и нормированным, если одним из фундаментальных свойств элементарных частиц будет непреложное нормированное их движение, а именно: нормированное обязательное вращение, т.е. спин. Причем спин – это вращение в квантовом пространстве, реализуемое сразу вокруг всех квантовых осей, что и делает это перемещение элементарных частиц загадочным.

Таким образом, практическая евклидова геометрия, и её  математический аппарат, являются результатом статистического усреднения, т.е. описывающими статистические параметры реального квантового мира эффективными параметрами эффективного мира, тоже реального . А это значит, что в евклидовой геометрии ни одна математическая модель никогда не будет абсолютно точно описывать реальный квантовый объект.

Нам не дано измерить что-либо абсолютно точно, т.е. с нулевой квантовой погрешностью. Непонимание этого обстоятельства приводит к катастрофическим последствиям при интерпретации соотношения неопределенностей Гейзенберга, когда сплошь и рядом одно из сопряженных измерений полагают точным, а само соотношение неопределенностей из неравенства без оглядки превращают в предельное равенство.

Попыток структурировать Евклидову геометрию на основе базовой квантовой геометрией пока не предпринималось. Возможно, это и является причиной отсутствия продуктивных идей, способных объяснить механизмы реализации квантовых парадоксов.

 

Сформулируем несколько достаточно очевидных аксиом и определений квантовой геометрии, которые потребуются ниже при описании квантовой модели гравитации.

По аналогии с геометрией Евклида все положения квантовой геометрии будем формулировать для условно гладкой плоскости.

Фрагмент плоского слоя сотового квантового пространства изображен на рис. 1.

Обоснование выбора сотовой структуры приведем чуть ниже.

Рис.1. Пример наикратчайших равных линий в квантовом пространстве.

 

1) Точка – наименьший, неделимый объект квантовой геометрии, т.е. минимальный базовый квант материи.

Выводы.

В квантовом пространстве не существует объектов с размерами меньше базового кванта, и тем более, не существует объектов с нулевыми размерами.

Размер базового кванта является первичным эталоном протяженности и в квантовой системе метрологических единиц равен единице.

2) Линией называется неразрывная последовательность точек. Линия, соединяющая две произвольные точки, называется отрезком.

3) На заданном отрезке линии количество точек является счетным, и определяет длину линии (отрезка) в квантовом масштабе.

4) Линия, образованная последовательным переносом заданного отрезка, называется периодической линией, а переносимый заданный отрезок – ее условным (задаваемым) периодом.

5) Отрезок линии, соединяющий две произвольные точки, и имеющий наименьшую длину и наименьший период, называется лучом.

6) Через две заданные точки можно провести, либо несколько лучевых линий, количество которых конечно, либо всего одну. Если лучевая линия одна, то она в этом случае называется гладкой.

7) Кратчайшая линия называется лучом, и соответствует прямой линии в эффективном представлении, если она является периодической и её период есть наименьший из всех возможных периодов.

 

Из всех возможных квантовых структур, и соответствующих им геометрий, в данной модели рассматривается только условно сотовая, с одним базовым элементом, являющимся деформированным ромбическим додекаэдром, что в дальнейшем будет обосновано. Однако читатель может выбрать любой другой базовый элемент, например, куб и вести параллельное исследование альтернативной структуры. Читателя ждет разочарование, т.к. его параллельное исследование зайдет в тупик.

 

Кванты на рисунке условно изображены круглыми, хотя по условиям непрерывности должны быть либо двенадцатигранными (в плоскости – шестигранными), либо шарообразными, но тогда они должны быть условно  взаимопроникающими.

Правильных двенадцатигранников, складывающихся в неразрывное пространство, в природе не существует, таким образом, наш двенадцатигранник будет соответственно деформированным, что не имеет существенного значения для геометрических свойств квантовой структуры.

На рис.1 изображены три типа отрезков: 1-2 – кратчайший, гладкий отрезок или иначе луч с периодом «1»; 1-3 (черный и серый) – два равных кратчайших отрезка с длиной 16, черный отрезок это луч с периодом «3».

В данном примере через точки 1 и 3 можно провести три параллельных луча, смещенных на 1 по направлению 2→1, кратчайших отрезков можно провести больше.

Квантовый луч, кроме направления может иметь дополнительные квантовые характеристики: плоскость поляризации; период и пространственную фазу. Возможно, эти характеристики для официальной квантовой теории определяют как раз те самые скрытые параметры, о которых говорил Эйнштейн.

В приведенном примере, поляризация луча совпадает с плоскостью рисунка.

Произведенный краткий анализ особенностей квантовой геометрии уже позволяет выявить важнейший параметр перемещения любого квантового объекта в пространстве. Из естественного предположения, что за один квант времени объект может переместиться только на один пространственный материальный квант, следует вывод о принципиальной невозможности скорости перемещения информации в квантовом пространстве, превышающей скорость Vф=dX/dT=1, где  dX – пространственная протяженность кванта, равная единице, а dT – протяженность временного кванта, также равная единице. Эта скорость является фундаментальной константой, близкой к скорости света. Таким образом, наличие максимально возможной скорости перемещения является естественной и специфической характеристикой любой принципиально квантовой структуры.

Vф заведомо больше скорости света, но совсем незначительно. Это утверждение следует из того, что фотон при своем квантовом перемещении в пространстве должен реализовать фундаментальное (безпричинное) спиновое вращение. А спин для всех объектов формируется идентично, если его рассматривать в собственной условной ИСО.

Из анализа соотношения вложенных геометрий совершенно ясно, что скорость света C не может быть равной фундаментальной константе Vф, а должна быть несколько меньше, т.к. скорость света изотропна относительно направления, и значит, является результатом статистического усреднения, учитывающего спиновое вращение.

Максимальная скорость распространения в квантовом пространстве может быть реализована только объектами, не имеющими спина, или имеющими единичный размер, например, гравитонами.

Существование предельной скорости перемещения информации, в квантовом представлении является азбучной истиной. Вне квантовых представлений, это явление приходится постулировать и придумывать для этого экзотические механизмы реализации.

 

Принимая во внимание полученные выше теоретические выводы, можно сделать очень важный практический вывод: факт существования предельной скорости распространения в реальном пространстве свидетельствует в пользу квантового устройства мира и квантового мировоззрения.

 

Субъективно неощутимый переход от квантовой геометрии к классической возможен только при наблюдении достаточно крупных квантовых образований. Чем меньше квантов в элементарной частице или в ее осколках, тем явственнее должны проявляться переходные и остаточные свойства, присущие квантовой геометрии. Именно на легких частицах наиболее отчетливо обнаруживаются «странные» явления, которые не укладываются в привычные представления классической физики и классической геометрии. К таким явлениям относится интерференция электронов, реализующаяся в одиночной последовательности частиц, называемых когерентными.

Поскольку природа связей и сил, обеспечивающих образование элементарных частиц из квантов, пока неизвестна, то нельзя исключать возможность колебательных процессов собственно в самих частицах. Это следует из того, что любая абсолютно жесткая пространственная конструкция из квантов (т.е. элементарная частица)  в нешевелимом квантовом пространстве распространяться не сможет, если не будет варьировать свою квантовую конфигурацию. При перемещении заданной пространственной конфигурации, она неизбежно должна испытывать эффект принудительных вариаций конфигурации квантов, как бы вибрацию формы и всей структуры элементарной частицы, вызываемую сотовой анизотропией пространства.

Скорее всего, наблюдаемые, якобы волновые, свойства электронов, являются следствием собственных колебаний электронов и их полей, которые взаимодействуют с явно колеблющейся границей (за счет теплового движения и обращения электронов) используемых отверстий — диафрагм. Эти границы сформированы электронами оболочек поверхностных атомов. Однако во многих интерпретациях опытов с интерференцией, диафрагмы описываются и анализируются как идеальные геометрические отверстия.

Наверное, здесь уместно уточнить особенность квантовой формы движения элементарных частиц, т.е. спина. Поскольку спин необходим природе для реализации вложения двух геометрий, то спин должен быть неотъемлемым свойством элементарных частиц. А это значит, что спин не должен участвовать в обменных взаимодействиях частиц только опосредственно, что и обнаруживается в экспериментах.

Необычное поведение спина частиц при экспериментальных измерениях, наталкивает на мысль, что спин свободных частиц не имеет фиксированного направления. А это означает, что спин является всенаправленным, т.е. частицы вращаются вокруг всех возможных осей вращения последовательно. При этом в конкретных измерениях всегда реализуется вариант, определяемый используемой метрологией.

 

  1. Квантовые взаимодействия

Получив некоторые начальные представления о квантовой геометрии, можно приступить к исследованию особенностей собственно квантовых взаимодействий.

Общее состояние кванта описывается оператором, содержащим аналитические  функции только в качестве отдельных аргументов. Состояние кванта изменяется в соответствии с присущими ему алгоритмами.

Состояние кванта может изменяться в результате внешних воздействий и в результате внутренних квантовых процессов.

Всякое квантовое взаимодействие для рассматриваемого кванта реализуется только с одним из 12-и соседних квантов.

Дальнодействие реализуется методом эстафеты.

 

Дальнейшее изложение материала требует введения дополнительного признака классификации явлений. Признака, разделяющего их на реальные физические и реальные метафизические явления.

Употребляемое понятие «метафизический» имеет множество смысловых значений. Чтобы не плутать в терминологии, будем ориентироваться на свое определение, взяв за основу квинтэссенцию определения Аристотеля: метафизика — это бытие «после физики».  «После» в данном случае надо понимать как «вне», а не как порядок следования.

Метафизика — это недоступная для нашего восприятия и вмешательства реальность. Реальность, о которой мы только догадывамся, и которой не может не быть, т.к. известны следствия, вызываемые её причинным воздействием.

Метафизическое явление, принципиально не допуская активного вмешательства исследователя, безусловно реализует принцип причинности.

Отношение к понятию «метафизический» отдаленно схоже с отношение к понятию «черный ящик», но таковым не является.

Предполагаемая далее, динамичная структура кванта является абсолютно и принципиально недоступной для вмешательства и для непосредственного наблюдения, и таким образом относится к метафизическим объектам.

Все последующие описания структуры универсального кванта являются сугубо функциональными, (т.е. без конкретизации механизма реализации) и гипотетическими.

Истинность произведенного выбора подтверждается адекватностью поведения модели по отношению к реальным процессам.

 

Введем несколько определений.

Единичное квантовое событие — квантовое взаимодействие, вызывающее согласованное изменение состояний двух контактирующих квантов.

Квантовое действие — квантовое взаимодействие, приводящее  к изменению внутренней, информационной структуры квантов, но не вызывающих согласованного изменения состояний двух контактирующих, взаимодействующих квантов.

Событие всегда вызывается действием, но не всякое действие вызывает событие.

Вот теперь, на основе сформулированных определений, можно определить и квант времени.

Квант времени – это минимально возможный интервал ожидания между двумя последовательными событиями, относящимися к одному материальному кванту.

Обратим внимание, дав строгое определение кванта времени, мы не опирались на официальное определение времени.

Официальное определение времени сформировано на интуитивном представлении авторитетов, не владевших основами квантовой теории.

Кроме того, данное нами определение, несмотря на его формальную строгость, недостаточно конкретно в смысле практического применения. Но в рамках модели, приведенной в действие, оно приобретет конкретный и естественный смысл, который поможет нам понять и множественную суть пользовательского времени.

 

События являются одновременными, если относятся к одному кванту времени, т.е. произошли в один и тот же квантовый интервал. Это, формально простое определение, имеет очень глубокий физический смысл, который выяснится в процессе анализа гравитационного взаимодействия.

Из приведенных выше определений следует, что в модели нет места бесконечно малым величинам. Ноль в квантовом представлении означает отсутствие, и не более. Деление на ноль недопустимо, т.к. бессмысленно, – и, значит, не влечет появление бесконечности.

Попробуйте разделить три яблока на присутствующих, если их число меняется от трех до нуля. Каким образом здесь можно получить бесконечность?

Манипуляции с инвертируемыми бесконечностями – это удел фальсификаторов и абстрактной математики.

 

Природные, первичные эталоны в физическом представлении недоступны непосредственному субъективному восприятию, но косвенно могут быть количественно оценены благодаря вторичным природным эталонам и фундаментальным, измеряемым константам. Таким образом, некоторые количественные параметры кванта могут быть количественно определены в заданной системе макро единиц, с соответствующим масштабом и доступной погрешностью. Так, например, экспериментально установлено, что dT≈10-46с.

Субъективное восприятие формируется суммарным квантовым воздействием, воспринимаемым через посредство цепи физических сенсоров, заканчивающейся нашими органами чувств, а это означает, что субъективное восприятие является результатом усредненного множественного квантового воздействия. Таким образом, квантовая структура и квантовое устройство мира — это объективные реалии, а наше статистическое восприятие в формате классической геометрии – это субъективно воспринимаемый, реальный, но только эффективный (чувственный) мир, который допускает неадекватное (искаженное или ошибочное) субъективное восприятие.

Осознать смысл эффективности воспринимаемого нами мира, можно хотя бы на примере цветных фотонов, цвет которых не существует в природе в наше отсутствие.

 

Эволюция на выживание формирует в человеке приемы мышления, определяемые нами как «принцип экономии мышления», следствием которого являются стереотипы мышления. Кардинальное изменение представлений об устройстве мира, связанное с осознанием квантовой структуры материи, требует сознательной, кропотливой ревизии сложившихся стереотипов. Без этой ревизии легко попасть в ловушку самообмана.

Одним из устойчивых стереотипов  является представление о пространстве как о невесомой и несжимаемой идеальной жидкости. Если при описании пространства пользоваться аналогиями, такими как эфир или идеальная жидкость, то отдаленной (и не желательной) аналогией свободного квантового пространства может быть бесконечный монокристалл из квантов.

Квантовая природа свободного пространства осознается не каждым и не сразу, но и согласившись с этим положением, не все до конца понимают, к чему это приводит. Если материальное, свободное пространство состоит из квантов (образовано квантами, по определению), то может ли быть что-нибудь между квантами, кроме других таких же квантов? Если – да, то перед нами комплексное пространство, состоящее из материальных квантов и из промежуточного нечто, обычно понимаемого как геометрическое, абсолютно пустое пространство или пространство, заполненное аморфной неструктурированной материей. Выбор принципиальной позиции – это философский выбор.

 

Учитывая обстоятельство, что мир был квантовым всегда, и незнание этого факта не мешало адекватному (в основном) восприятию окружающей действительности, можно понять, почему с приходом квантовых представлений сложился еще один, псевдонаучный стереотип. Этот стереотип состоит в уверенности, что квантовые эффекты проявляются только в микромире, и несущественны для макромира. Однако, это не всегда так.

Дело в том, что следствием признания квантовой природы мира, должно быть признание факта отсутствия в природе бесконечно малых физических величин и бесконечно малых силовых полей. А это, в свою очередь, приводит к выводу об отсутствии радиальных полей бесконечной протяженности. Осмысление этих обстоятельств, должно приводить к формированию новых представлений о макромире,  выявляющих совершенно новые проблемы. Например, возникает вопрос, который ранее просто не мог возникнуть перед исследователем.

Есть ли принципиальное различие для гравитационного взаимодействия большого и малого тела в следующих ситуациях:

  • каждое из двух тел находится в силовом поле другого тела;
  • малое тело находится в поле большого тела, а поле малого тела не достигает границы большого тела;
  • ни одно из тел не попадает в поле другого тела, но поля имеют общую область;
  • силовые поля двух тел не имеют общих областей.

 

Ситуация, при которой тела находятся на расстоянии, при котором их силовые гравитационные поля не пересекаются, имеет самый простой и формально очевидный ответ: взаимодействие полностью отсутствует. Но ведь так не было никогда. Этот простейший вывод служит причиной возникновения серьезной проблемы. При полном отсутствии взаимодействия, идеи теории относительности из разряда спорных переходят в разряд мистических, т.к. непонятно: как «узнают» тела о своей относительной скорости при отсутствии всякого взаимодействия.

4. ГРАВИТАЦИОННЫЕ ВЗАИМОДЕЙСТВИЯ

При построении модели гравитации использовались следующие исходные положения, рассматриваемые как непреложные истины, т.е. как постулаты:

  1. Мир материален и познаваем. Свободное пространство материально.
  2. Материя имеет квантовую структуру и неразрывна. Физическая сущность кванта материи неизменна во времени и в пространстве в пределах Вселенной.
  3. Движение — неотъемлемое свойство материи, и является мерой ее изменчивости.
  4. Время – обобщенная универсальная характеристика изменчивости материи, устанавливающая причинно-следственную связь, как невозможность реализации следствия одновременно с причиной. Время однонаправленно и необратимо.
  5. Взаимодействия материальных объектов реализуются только посредством контактирующих квантов. Дальнодействие существует только как эмуляция эффективного восприятия.
  6. Материя, обладающая характеристикой массы (вещество), испытывает взаимное гравитационное притяжение, которое невозможно экранировать с помощью промежуточных экранов.
  7. Основой существования неограниченных во времени процессов являются циклы.
  8. Вселенная представляет устойчивую информационную систему, в которой во всем пространстве обеспечивается абсолютная реализация: законов сохранения информации (в том числе импульса и энергии), реализация законов диалектической логики, а также реализация всех других фундаментальных физических законов. Устойчивость Вселенной обеспечивается её гармонией.

 

Последний постулат может показаться неожиданным и спорным по отношению к приоритету информации.

Однако выводы, следующие из  данного постулата, наблюдаются во все времена в форме конкретных законов. Речь идет об известных законах сохранения, и ещё законе всемирного тяготения, которые выполняются в любой точке вселенной с нулевой погрешностью. Но это и означает, что любое событие можно и нужно рассматривать как акт взаимного обмена информацией, осуществляемого в рамках законов сохранения информации.

Вне законов квантовой информатики невозможно сформулировать корректное определение одновременности, а также невозможно описать или реализовать никакой процесс, в котором обеспечивается абсолютно точное исполнение законов сохранения.

 

Абсолютная прозрачность свободного пространства и абсолютное отсутствие сопротивления любому инерционному движению диктуют единственный способ реализации перемещения в монолитном квантовом пространстве — это принцип эстафеты, где в качестве эстафетной палочки от кванта к кванту передается только информация.

Можно сопротивляться этому представлению, но только при наличии другого адекватного, но альтернативного варианта. А его нет.

Если признать, что квант времени dT не изменяется с течением времени, и не изменяется при переходе из одной области пространства в другую, то из факта постоянства скорости света относительно пространства следует, что квант dT является инвариантом  и общесистемным параметром Вселенной.

При этом нам известно, что все объекты Вселенной, независимо от вещества, из которого они состоят, имеют одну и ту же предельную скорость перемещения, а именно:

dX1/dT =…=dXn/dT=C.

Учитывая оба этих обстоятельства, приходим к строгому и очень важному выводу, являющимся первым экспериментальным подтверждением нашего теоретического предположения о квантовой структуре мира.

Все возможные типы вещественных и полевых квантов, в качестве эталонов протяженности являются идентичными, т.е. все имеют одинаковый размер.

 

Для реализации перемещения по принципу эстафеты материальные кванты должны иметь не просто одинаковое устройство и одинаковый размер, но также должны иметь способность изменять состояние своей внутренней структуры в полном соответствии с реализуемым в данный момент материальным объектом (полем, частицей или свободным пространством). При этом сохраняются общие качества, присущие всем квантам в плане последующих структурно-функциональных реализаций.

Таким образом, повторим еще раз, любой материальный квант, перестраивая свою внутреннюю структуру, может представлять все возможные формы существования материи. А этих форм, на уровне элементарных частиц, оказывается не так уж и много.

Признание этого, может быть неожиданного, но совершенно логичного вывода, приводит к следующему, чрезвычайно важному обобщению.

Все пространство вселенной равномерно и неразрывно заполнено квантами идентичными по устройству, способными трансформировать свою внутреннюю структуру в зависимости от реализуемого в данный момент объекта. Текущее различие или идентичность, рассматриваемых квантов определяется только их информационным наполнением. Таким образом, все кванты идентичны по возможности своих трансформируемых реализаций.

 

Квант-трансформер представляется объектом поразительно сложным. Универсальность единой конструкции кванта диктует необходимость философского переосмысления установившегося представления об отношении информации и материи.

Традиционно, любая информация об объекте воспринимается как характеристика, которая может быть условно отчужденна от данного объекта. Иначе говоря: вещество и поле – материальны и первичны, а информация о них – не материальна и вторична.

В формате рассматриваемой концепции, информация, передаваемая от кванта к кванту, предстает в качестве взаимодействующего объекта, а первичная материя, не участвуя ни в каких относительных перемещениях, только изменяя свое внутреннее состояние в допустимых пределах, сохраняя при этом свои базовые свойства, является универсальной средой.

Эта среда обеспечивает процесс (технологический алгоритм) информационных взаимодействий.

Здесь уместно привести еще одну цитату из речи Эйнштейна в Ноттингеме в 1930 году: «Мы приходим к странному выводу: сейчас нам начинает казаться, что первичную роль играет пространство; материя же должна быть получена из пространства, так сказать, на следующем этапе. Пространство поглощает материю. Мы всегда рассматривали материю первичной, а пространство вторичным. Пространство, образно говоря, берёт сейчас реванш и «съедает» материю. Однако всё это остаётся пока лишь сокровенной мечтой» ([1], т. 2, с.243). Конец цитаты.

Ясно, что здесь под материей Эйнштейн понимал вещество, как и во всех своих работах.

Конверсия материального механистического взаимодействия в информационную реализацию снимает ряд физико-философских проблем.

В информационном представлении практически исчезает проблема прочности и износоустойчивости вещества, т.к. при любом взаимодействии, даже при взрыве ядерной бомбы, собственно кванты никаких нагрузок, кроме информационно-нормированных, не испытывают.

Все физические процессы предстают всего лишь объективной интерпретацией (эффективным представлением) информационных взаимодействий с их результатами. Это означает, что каждому физическому закону, сформулированному в макро представлении, соответствует информационно-квантовый закон.

Таким образом, в дальнейшем под информационными взаимодействиями будем подразумевать любые взаимодействия, рассматриваемые в формате предлагаемой квантовой модели.

 

Очевидно, что произвольно взятый квант, находящийся в состоянии с наибольшей симметрией, т.е. с наименьшей информативностью, должен представлять свободное пространство. Назовем это состояние кванта – исходно нулевым, а квант в этом состоянии – пространственным, подразумевая только его состояние, формирующее свободное пространство.

Таким образом, логически приходим к тому, что наш материальный мир является гармоничной информационной системой, реализующей все взаимодействия и процессы по законам, присущим этой системе.

Обозначенные контуры модели квантового пространства в сочетании с уже выявленными характеристиками, которые оно должно реализовать, сами начинают диктовать дополнительные свойства, которыми должен обладать материальный универсальный квант.

Так, для реализации движения в формате передачи эстафеты, квант должен обладать свойствами копирующей матрицы, создающей свою копию в смежной области пространства, т.е. в смежном кванте.

Создав копию в смежном кванте, информационная структура транслирующего кванта должна перейти в нулевое состояние. Способность создания копий в смежной области пространства, влечет еще одно обязательное свойство универсального кванта – это взаимное проникновение смежных квантов (принцип молекулы ДНК). В противном случае информация об объемной структуре кванта должна передаваться через поверхностный контакт, что не рационально.

Кроме того, для реализации инерционного движения вещественный квант должен непременно иметь в своей структуре информационные признаки величины скорости и направления перемещения, а также должен иметь структуры, обеспечивающие реализацию гравитационных, и всех других типов взаимодействий.

Несколько шокирующим обстоятельством предлагаемой концепции является то, что обилие функций, реализуемых универсальным квантом, делают его похожим на компьютерный модуль. Это действительно так. Мы не можем знать, каким образом реализован природный квант материи, но он реализует именно такие функции и такие свойства, а формат описания адекватной модели черного ящика не имеет значения и может быть уже произвольным. В предлагаемой концепции — это умозрительный модуль с компьютерными свойствами.

В противном случае, мы должны верить, что такой чудесный мир создан из аморфной материи, типа глины, но всё наблюдаемое разнообразие функций материи должно быть этой глиной реализовано.

 

Законы гравитационного взаимодействия достаточно хорошо изучены. Они весьма не тривиальны и даже загадочны, но неизбежно должны иметь конкретный и доступный нашему пониманию квантовый механизм реализации, не требующий вмешательства сверх естественных сил или могущественного наблюдателя. Таким образом, поиск механизма гравитации сводится к решению задачи, которая гарантированно  имеет решение (а это очень важное условие).

Решение представлено в следующей главе.

4.1 Описание механизма гравитационного взаимодействия

Для обеспечения строго дозированного гравитационного взаимодействия все кванты массивного вещества, составляющие взаимодействующие объекты, должны постоянно обмениваться информацией о своей массе и местоположении. Поскольку все вещественные кванты имеют одинаковую массу, то вопрос о массе тела сводится к вопросу о количестве вещественных квантов в данном теле. Таким образом, для осуществления всемирного притяжения необходимо знать распределение всех вещественных квантов в пространстве, и знать это надо в каждый момент времени.  А кто это должен знать? Математик.

Задача представляется непосильной даже в плане её постановки, а ведь кроме постановки, задачу надо решить. Решить и исполнить. А исполнение не должно иметь погрешности, иначе гармоничная система Вселенной превратиться в хаос.

Обозначенную задачу природа решает с помощью локационного обследования испускаемыми гравитонами. Это гравитоны добывают и поставляют всю необходимую информацию.

Не нужно только путать используемый природой формат информации с привычной для нас, адаптированной информацией в координатах и расстояниях.

В природе всё иначе. Не надо забывать, что гравитон это квантовое образование. Чтобы получать от гравитонов количественную информацию, их надо считать. Вот квинтэссенция любых квантовых взаимодействий – счет квантов!

Как в природе происходит счет квантовых носителей информации (гравитонов, глюонов и пр.)? Для любого теоретика это очень неудобный вопрос. Ну, как вещественная материя в формате энергетических сгустков и вихрей (КТП) будет реализовать счет квантов? Проще не задавать себе таких вопросов. Теоретики КТП и не задают.

Мы не знаем, как в природе происходит дискретный счет квантов. Но материалист-философ знает, что счет ведется, и если он не авторитетный чиновник, то должен признать свое незнание, а не придумывать математические фантасмагории, прикрывающие убожество мысли.

Итак, мы вынуждены признать, что универсальный квант, кроме многих своих сложных функций, о которых мы догадываемся, может еще считать, т.е. реализует в своей структуре счетные регистры.

Для реализации этих необходимых функций можно было бы рассмотреть несколько принципиально разных представлений, но многие из них уже апробированы и отвергнуты в существующих гипотезах других авторов, которые нет смысла повторять. Следует только отметить, что интуиция подсказывает: вне квантовых представлений, трудности, связанные с реализацией абсолютно точного исполнения законов сохранения, не могут быть  преодолены.

Отметим также, что камнем преткновения всех гипотез притяжения, является скорость распространения гравитации, которая по экспериментальным оценкам многократно превосходит скорость света.

К этому следует добавить, что все расчеты траекторий космических объектов производятся, исходя из предположения о бесконечной скорости гравитации, и эти расчеты дают самые верные результаты.

Второй, неразрешимой проблемой гравитации, является неизвестный природный метод реализации именно притяжения, т.е. фактической передачи (обмена) отрицательного импульса, измеряемого относительно направления распространения носителей – гравитонов. Это обстоятельство усугубляется проблемой невозможности экранирования сил притяжения.

Ключом к предлагаемому здесь решению проблемы послужила идея  Фейнмана, сформулированная им для электрического поля, и состоящая в том, что электрическое поле неподвижного заряда является результатом суперпозиции излучения, обладающего замечательной особенностью, а именно, излученная энергия, не принявшая участия во взаимодействии, непременно возвращается к первоисточнику [6].

Это интуитивное предположение естественным образом следует из законов сохранения и законов гармонии, но пока еще неизвестны  способы реализации применительно к аморфной структуре вещества.

Фейнман также не выдвинул никаких идей по возможной физической реализации. Дело в том, что официальная интерпретация геометрии Евклида привила всем безразмерно-точечное представление о веществе. Это произошло потому, что официальная геометрия по своей сути не является Евклидовой. Судите сами, сравнив два определения геометрической точки.

Определение по Евклиду: точка – объект, не имеющий частей.

(Обратим внимание на то, что точка это объект. А безразмерных объектов не бывает.)
Официальное определение ссылается на две трактовки: точка – абстрактный объект, не имеющий размеров; и точка – объект, не имеющий определения, свойства которого описываются его аксиоматическими свойствами в составе геометрических фигур.

Вторая, официальная трактовка настолько смутная, что все пользуются исключительно первой, понятной, но противоестественной, антифизической формулировкой.

Определение Евклида кроме общепринятой точки зрения допускает и квантовые варианты геометрий, возможности которых остаются по сей день не исследованными.

Предлагаемая квантовая концепция призывает преодолеть эту, искусственно созданную, тупиковую ситуацию.

 

На основании ранее произведенного вывода о конечности всех силовых полей, можно сделать следующий логический вывод.

Все виды полевых, стационарных взаимодействий являются принципиально локализованными и локационными по методу реализации, общим свойством которых является возвращение всех испущенных носителей поля к источнику.

Таким образом,  за пределы системы взаимодействия (т.е. в бесконечность) ничто не излучается.

Только таким образом  можно обеспечить природную реализацию всех законов сохранения.

 

Логично предположить, что безостановочное движение, как основное свойство материи, реализуется циклической, с периодом dT , сменой фазовых состояний  кванта, при этом каждая фаза обеспечивает свой тип взаимодействия. Смена фаз происходит вне зависимости от того, есть внешний объект для взаимодействия, или его нет.

В первой фазе (порядок условный) происходят исключительно гравитационные взаимодействия. В следующих фазах –  электрические и фотонные взаимодействия. В последней фазе реализуются пространственные перемещения информации из кванта в квант, происходящие в соответствии с новой информацией, которая получена в предшествующих фазах данного цикла взаимодействия.

Возможно существование и других фаз, связанных с реализацией взаимодействий, которые нам ещё не известны.

Внутренние фазовые процессы реализуются в квантовом формате и происходят с некоторой квантовой ритмичностью dt, причем  dT ≥∑dti . Смысл этой ритмичности будет раскрыт далее. Продолжительность каждого фазового цикла является виртуальной неопределенностью, не влияющей на конечные результаты взаимодействий в макромире. Полный квантовый цикл, включающий в себя все временные фазовые составляющие, формирует интервал-период dT, который является квантом системного времени эффективной Вселенной.

Если этот интервал dT является общим для всех объектов Вселенной, то в этом случае dT суть квант единого времени Вселенной.

За этим простым формализмом стоит физический и философский принцип огромной значимости. Этот принцип утверждает истинность всеобщего интуитивного чувства одновременности, которое мы распространяем на всю Вселенную и которое, оказывается, полностью адекватно действительности в квантовом представлении.

Субъективное восприятие эффективной продолжительности dT  не совпадает с реальной продолжительностью метафизических, внутри фазовых процессов, недоступных нашим ощущениям. Эффективная продолжительность dT  является для нас первичным эталоном времени. Первичный эталон, по своей сути, ничему не равен, он – единица измерения, и он самодостаточен. Это несколько необычно для некоторых только потому, что мы привыкли иметь дело с вторичными эталонами, т.е. искусственными масштабами, для нас удобными. Всякий первичный эталонный масштаб можно приблизительно выразить через любой искусственный масштаб методом множественных измерений природных инвариантов.

На этом месте автор опять рекомендует приостановить чтение статьи, и вдуматься в суть временных отношений в происходящих квантовых процессах. А именно: осознать взаимосвязь двух квантов времени: dT и dt, где dT – реальный физический квант эффективного времени, а dt – реальный метафизический квант истинного времени, который в эффективном мире необходимо условно рассматривать как виртуальный, т.к. этот интервал времени нашим ощущениям недоступен, также как он недоступен всей неживой природе макромира.

Наглядно это квантовое взаимоотношение можно представить на примере гравитационных взаимодействий следующим образом.

Чтобы все массивные объекты Вселенной взаимодействовали сообразно установленному закону всемирного притяжения, каждый массивный квант должен знать свое положение относительно  других массивных квантов. Чтобы реализовать это знание, каждый массивный квант испускает нормированное количество гравитонов равномерно во всех направлениях, и таким образом  сканирует окружающее пространство. Как происходит сканирование, опишем далее. А  сейчас предварительно акцентируем внимание на следующем обстоятельстве. Чтобы реализация законов сохранения была естественной, без мистических условностей, необходимо чтобы все испущенные носители гравитационного взаимодействия (гравитоны) всегда возвращались к своему кванту. Это очевидное условие постоянно отвергается всеми разработчиками обменных взаимодействий. Но без этого условия ни одну модель с законами сохранения построить нельзя, чтобы не использовать мистический безмерный океан энергии в качестве источника гравитонов.

Квантовая модель позволяет найти естественное решение с возвращающимися гравитонами.

В интервале времени, когда по всему пространству распространяются гравитоны, все остальные квантовые представления реализуют режим стоп-кадра, что и делает распространение гравитонов метафизическим. Именно этот прием-особенность гравитационного процесса делает его скорость распространения мгновенной, т.е. любое расстояние гравитоны преодолевают за один эффективный квант времени. И другого способа реализации мгновенной скорости не просматривается.

Таким образом, мы пришли к выводу, что гравитационные взаимодействия являются систему образующими, и время образующими взаимодействиями.

Доступный нашим ощущениям и восприятию мир начинается с кванта dT и с универсального материального кванта dX. Всё, что реально происходит в рамках внутренних структур этих квантов, является для нас метафизической сущностью. Метафизический мир неподвластен нашему вмешательству, но опосредствованно наблюдаем и, значит, познаваем.

По Аристотелю, понятие метафизика обозначает изучение того, что лежит за пределами физических явлений, и лежит в основании их. Этот смысл термина, который использован здесь, сохранился в глубине и основании общего сознания, хотя за 2.5 тыс. лет претерпел множество вариаций, которые интересны только узким специалистам по этимологии.

 

Как всего лишь одного факта существования единой для всех, максимально возможной скорости движения всех тел Вселенной, нам было достаточно для того, чтобы осознать квантовую структуру мира, так и факта моментального распространения сил гравитации достаточно для того, чтобы установить взаимосвязь гравитационных взаимодействий с самыми общими временными процессами Вселенной.

Авторитеты решили, (а научное сообщество вслед за ними уверовало), что мгновенное распространение информации невозможно. Но, как ни странно, всё происходит сообразно мгновенному распространению полей. Чтобы такое было возможно, в метафизической фазе кванта dT должны происходить : одно результирующее событие, для каждого кванта; и множественные полевые взаимодействия. Тогда, в эффективном представлении,  на протяжении каждого кванта dT будут происходить миллиарды и миллиарды событий, требующих миллиардов лет безразличного для нас времени (метафизического), которое мы не замечаем, т.к. в нем не участвуем. В котором реализуется фаза гравитационного взаимодействия, когда всё, кроме гравитонов и их счетчиков, находится в полной временной неподвижности.
Таким образом, физическая невозможность реализации моментальной скорости, преодолевается особенностью эффективного восприятия взаимодействий объектами макромира, способного реализовать фазовый режим стоп-кадра.

Квант времени, введенный нами, являет пример диалектического единства и борьбы противоположностей. Действительно, в макромире продолжительность этого кванта соответствует  понятию моментальности, тогда как в микромире эта продолжительность соответствует огромному циклу, вмещающему в себя продолжительность всех единичных (но не более) квантовых событий Вселенной. Если бы наш наблюдатель смог участвовать в движении гравитонов, то для него наш миг длился бы столько, сколько понадобилось бы времени гравитонам, чтобы от центра Вселенной достичь её границ и вернуться обратно, т.е. по современным представлениям более 30 млрд. лет. И всё это — об одном и том же квантовом событии.

Вдумаемся в грандиозность процесса всемирного тяготения.

Для реализации гравитационного взаимодействия каждый вещественный квант должен действовать точно в соответствии с информацией о массе и нахождении каждого тела Вселенной.

Как все это организовать в рамках вихрей и волн полевой квантовой теории (КТП), обеспечивая законы сохранения? Авторы соответствующих теорий даже не пытаются искать соответствующие механизмы гравитации.
В предлагаемой квантовой модели такая сверх задача имеет достаточно простое решение. То, что это решение так долго не могли найти, является следствием непомерной гордыни и чванства чиновников от науки, абсолютизирующих либо свою точку зрения, либо точку зрения своих хозяев.

Не будем аргументировать этот тезис, и перейдем к описанию решения.

 

Необходимую информацию о массе каждого стороннего тела и направлении на него приносит ансамбль Nисп гравитонов, испускаемых каждым квантом рассматриваемого тела при гравитационных взаимодействиях.

Гравитон — это виртуальный  квантовый объект макромира, являющийся одновременно реальным объектом мира метафизического, сформированный средствами универсального кванта.

Информация, заложенная в конкретную конфигурацию испущенного кванта-гравитона, при попадании в сторонний вещественный квант, воспринимается очень специфично. Ведь в этой информации нет данных о массе ни одного из рассматриваемых тел, нет данных о расстоянии между телами, и нет данных о точном направлении на эти тела, и с какой скоростью тела движутся относительно друг друга и относительно пространства. В общем, нет тех данных, которые нужны математикам для решения задачи о силе притяжения двух движущихся тел.

И, несмотря на отсутствие такой информации, гравитационное взаимодействие обеспечивает реализацию безошибочно верного поведения, соответствующего математическому закону всемирного тяготения, являющимся по отношению к реальности приблизительным.

Далее будет представлен алгоритм, реализующий всемирное притяжение в условиях квантового неперемещаемого пространства.

Безразмерный параметр Nгр, равный числу испускаемых квантом гравитонов для реализации гравитационного сканирования пространства, характеризует массу кванта в масштабе dm, и является фундаментальным параметром, определяющем совместно с объемом кванта, постоянную гравитации. Но об этом тоже позже.

Количество гравитонов, испускаемых квантом очень велико и, как будет показано, его максимум является инвариантом. Но квант не обязан быть складом гравитонов, как атом не является складом излучаемых фотонов. В структуре кванта может присутствовать только образ-матрица, штампующая гравитоны, да соответствующий набор счетчиков, наличие которых обязательно.

Вещественный, неподвижный квант с инвариантной массой Nгрdm , или просто Nгр, в квантовом масштабе,  в фазе гравитационного взаимодействия последовательно испускает гравитоны, заполняя ими смежное пространство равномерно по всем направлениям. Заполнение реализуется как генерация в окружающее пространство Nгр гравитонов, по 12 штук за dt.  Количество 12 определяется свойствами сотовой геометрии пространства. При этом каждый испущенный гравитон использует (занимает) область одного пространственного кванта. Суммарный, условный импульс «излученных» таким образом гравитонов равен нулю.

У конкретного гравитона нет информации о точном направлении движения, но есть признак телесного угла, в котором он распространяется. Таких углов 12.

Гравитоны распространяются по алгоритму, обеспечивающему их распространение неразрывным, однородным квазисферическим слоем. Нам нет нужды угадывать этот реальный алгоритм, достаточно продемонстрировать, что такой алгоритм возможен.

Вот один из возможных вариантов.

Гравитоны распространяются по закону-алгоритму, выполняющему три условия:

  1. Разрешено только удаление от источника генерации по одному из 12-и, уже заданным при испускании направлении, при условии, что по этим направлениям имеются смежные кванты, не занятые гравитонами.
  2. Гравитон остается на том же месте, если впереди свободных вакансий нет.
  3. Продвижение вперед происходит только при наличии соседнего гравитона. Процесс Удаления сразу прекращается при отсутствии смежных напарников. При этом направление распространения гравитонов изменяется на противоположное.  Этим самым реализуется эффект отражения гравитонов без наличия внешней преграды или пограничного признака.

Этот эффект самоотражения и есть тот камень преткновения, который не позволял теоретикам решить проблему возвращения носителей взаимодействия, уносящихся в бесконечность.

Эффект отражения без преграды и значимых границ, вне квантового представления, реализовать невозможно.

Таким образом, при гравитационном взаимодействии, ни один информационно возбужденный квант, а фактически – никакая  информация, не может покинуть пределы Вселенной.

Видимо, и при других типах взаимодействий реализуется аналогичное положение.

В результате, согласованное распространение гравитонов от массивного тела произвольной формы, происходит сферообразным слоем, максимальный радиус которого всегда имеет конечный размер.

Процесс испускания-генерации гравитонов в гармоничной Вселенной самопроизвольно начаться не может, и происходит только при наличии некоего условия, формируемого механизмом единого времени Вселенной, о котором опять несколько позже.

После завершения генерации Nгр гравитонов, их дальнейшее радиальное распространение происходит без увеличения их количества, и инициируется только при наличии признака №3 действующего алгоритма, который можно назвать признаком «напарника». Таким образом, радиальное расширение продолжается до тех пор, пока каждый квант-гравитон ни окажется в одиночестве, т.е. без контактирующего соседства.

В процессе распространения гравитоны воспринимают пространство, «занятое» любой другой формой материи, как свободное пространство – этим самым реализуется условие невозможности экранирования гравитационного взаимодействия.

Как только гравитоны образуют разреженный слой одиночных гравитонов, дальнейшее их расширение прекращается, признак направленности инвертируется, и гравитоны начинают обратное движение.

Таким образом, реализуется полное отражение гравитонов от условной, ничем не обозначенной границы гравитационного поля. Этот гипотетический эффект является ключевым при построении, как механизма гравитации, так и механизма электрических взаимодействий. Кроме того, из этого эффекта следует, что ритм, задаваемый квантом  dt, является непреложным свойством каждого кванта Вселенной.

Эффект, совершенно естественный в рамках физической квантовой модели, практически недоступен, даже для интуиции, в рамках абстрактного математического моделирования, чем видимо и вызвано длительное отсутствие решения этой проблемы, хотя законы сохранения чуть ли не кричат, что излученные носители поля обязаны возвращаться к своим источникам.

Конкретная реализация механизма отражения носителей поля не имеет значения, она может быть любой, и даже навсегда может оставаться для нас неизвестной. Дело в том, что мы анализируем только функциональные возможности метафизических процессов Вселенной. Большего нам не дано. Конкретное же устройство объектов Вселенной должно удовлетворять требованиям логики диалектического материализма. Любая дискуссия с приверженцами идеализма и мистики в рамках предлагаемой концепции является неуместной.

Предлагаемое решение с отражением и возвращением носителей поля влечет неизбежный вывод о конечности Вселенной, что, однако, не требует изменения философских концепций, касающихся бесконечности мирового пространства. В предлагаемой модели материальное пространство не кончается на границе Вселенной, материальный мир остается беспредельным. Конечность нашей Вселенной приводит лишь к выводу о бесконечном количестве иных вселенных.

В процессе возвратного перемещения гравитоны уже не воспринимают барионное вещество как свободное пространство, а взаимодействуют с ним,  сообщая его квантам  так необходимый для закона всемирного тяготения отрицательный импульс.

 

Предложенный принцип распространения и взаимодействия гравитонов не требует дополнительной информационной нагрузки на структуру кванта для обеспечения необходимой адресации распространения гравитонов, но тем не менее, как далее станет ясно, обеспечивает абсолютное соблюдение закона сохранения количества движения.

Из закона всемирного тяготения и законов сохранения известно, что после полного завершения цикла гравитационного взаимодействия, каждый вещественный квант должен сохранить информацию о своей массе и получить новую информацию о соответствующем изменении своего импульса движения. При этом суммарный импульс изолированной системы должен остаться неизменным.

В процессе обратного перемещения, каждый гравитон, встретив на пути вещественный квант, взаимодействует с ним по жестко определенному алгоритму гравитационного взаимодействия, и в этом алгоритме каждый гравитон является единицей (битом) обрабатываемой информации.

 

В этом месте описания квантового мира, уже можно сообщить читателю, что  одним из главнейших отличий квантового метафизического  мира от нашего эффективного мира состоит в том, что в метафизическом мире нет энтропии, — она там не нужна.

Квантовым миром движет спаренный тандем: причина неизбежно порождает следствие, а следствие неизбежно становится причиной.

Это диалектическое положение в формате рабочего инструментария приобретает вид закона сохранения бита информации. Этот закон сохранения бита, в свою очередь, в условиях макромира трансформируется в пакет законов сохранения.

Единичное квантовое событие не имеет погрешности, но имеет возможность «выбора» из предоставляемых ему вариантов преобразования.

С точки зрения макромира квантовый мир является вечно движущимся устройством. Не путать с вечным двигателем, производящим энергию .

В квантовом мире количество битов информации сохраняется неизменным.

 

Опустим логику построения внутренней структуры кванта, она может быть различной, и приведем лишь её необходимый функциональный набор, как результат наших исследований и наблюдений.

Чтобы реализовать законы гравитации и законы сохранения, в структуре кванта должно быть не менее 3-х специализированных наборов регистров-определителей, т.е. 3-х счетчиков.

            Счетчик №1 отслеживает количество гравитонов, испущенных и затем принятых в данном квантовом цикле. Квант не может принять большее количество гравитонов, чем испустил. При этом механизм испускания обеспечивает условие, по которому суммарный импульс излученных гравитонов строго равняется нулю. Суммарный импульс принятых гравитонов равняется величине приращения импульса, т.е. соответствует реализованному импульсному воздействию по данному направлению.

Так как количество испущенных гравитонов Nгр влияет на интенсивность данного взаимодействия, то, предполагая изменение этой интенсивности в зависимости от скорости движения вещественной частицы, испущенное количество Nгр гравитонов может только уменьшаться с возрастанием скорости. Это уменьшенное значение массы частицы можно назвать «динамической (переменной) гравитационной массой» кванта с исходным (начальным) значением, равным Nгр, являющимся инвариантом.

Неограниченное увеличение количества гравитонов, чем бы оно ни было вызвано, является противоестественным и невозможным, т.к. счетчик с бесконечной емкостью даже немыслим.

Логика этого утверждения не является исключительным достоинством квантового представления, но она в этом представлении наиболее наглядна. В природе не может быть локальных объектов и процессов с бесконечными параметрами. Это аксиома материализма.

Счетчик №2 суммирует и хранит сведения, в формате суммы гравитонов, о накопленном приращении импульса кванта по 12-и опорным направлениям, или по 6-и, если использовать признак минуса. Результирующее значение всех 12-ти регистров счетчика №2 определяет направление и скорость перемещения кванта. Назовем этот счетчик «показателем импульса».

Логика суммирования и разложения импульса по 12-ти направлениям приводит к тому, что в любой момент значащими будут только три смежных направления, полностью описывающих перемещение кванта. Остальные 9-ть должны быть равны нулю.

От того, каким образом в кванте используется информация счетчика №2, возможна реализация трех принципов взаимодействия, из которых только один использован природой.

Если Nисп является константой, равной Nгр , не зависящей от значения счетчика №2, то реализуется классический вариант инвариантной массы гравитации, а заодно и принцип эквивалентности масс, постулированный Эйншиейном.

Если Nисп  увеличивается с ростом показаний счетчика №2, и равна Nгр ·β, где β – релятивистский фактор, который всегда >1, то моделью реализуется мистический принцип Эйнштейна: рост массы при возрастании скорости.

Если Nисп  уменьшается с ростом показаний счетчика №2, то реализуется принцип здравого релятивизма, и точка зрения автора предлагаемой концепции. В этом случае масса гравитации тем меньше, чем больше абсолютная скорость частицы. Закон уменьшения необходимо установить экспериментально. Мы же пока примем за этот закон преобразование Лоренца применительно ко времени.

В первом и третьем вариантах масса инерции является инвариантной.

Отметим, что опорные направления (6-ть координатных осей) жестко связаны с квантовой структурой пространства. При окончательном суммировании импульса перемещения, действует векторный закон сложения сотовой геометрии, на основании которого импульс по одному из координатных направлений можно представить как сумму двух равновеликих импульсов по смежным направлениям, лежащим в одной плоскости. Благодаря этому правилу, любой импульс в окончательном представлении описывается тремя (и менее) значениями смежных регистров скорости.

Все регистры имеют признак  наполнения, равный значению Nгр.

Счетчик №3 является накопителем инерционного импульса, инициирующего перемещение кванта по всем 12-и направлениям раздельно. В рамках принятых определений, регистры этого счетчика являются накопителями направленного «действия». Назовем этот счетчик «накопителем-инициатором», по функции, которую он выполняет.

Чтобы разобраться в действии алгоритма перемещения вещественного объекта, нужно рассмотреть наглядный пример.

Пусть твердое тело покоится в пространстве и ни с чем не взаимодействует. В этом случае тело в каждый квант времени (квантовый цикл) излучает максимально возможное количество гравитонов, которые все возвращаются, и не изменяют импульс тела, которое остается покоящимся.

Изменим ситуацию. Сообщим телу некоторый импульс, и после этого прекратим воздействовать на тело.

В счетчике №2 отобразится наш импульс, и одновременно соответственно уменьшится значение Nисп , которое станет равным Nгр минус значение счетчика №2. Таким образом, следующее гравитационное взаимодействие нашего тела потенциально ослабнет (уменьшится) пропорционально. Но взаимодействие отсутствует, и следующее приращение импульса будет равно нулю.

Когда квантовый цикл, соответствующий кванту времени dT, закончится, накопитель №3 увеличит свое значение на величину импульса, отображенного в счетчике №2.

При этом массивный квант, сохраняя признак перемещения, останется на прежнем месте, если значение его суммарного импульса не достигло величины Nгр .

Так будет продолжаться до тех пор, пока в накопителе №3 не сформируется значение, равное или большее Nгр . Как только это случится, наш квант скопируется (как бы переместится на один корпус) в соседний квант по направлению переполнившегося счетчика. При этом значение переполнившегося накопителя №3 уменьшится ровно на Nгр , а все остальные параметры останутся неизменными.

Локальное, единичное перемещение одного кванта в пространстве и во времени соответствует скорости света. А усредненная подвижка, учитывающая время ожидания наполнения счетчика №3, соответствует реальной макроскопической скорости.

Таким образом, в квантовом мире существует только две скорости перемещения. Это скорость света и нулевая скорость.

Эффективный макромир, в котором мы живем, реализует огромный диапазон скоростей, который распадается на два поддиапазона. Первый (традиционный), от 0 до С; и второй (метафизический), от С до Vмгн.макс=D/dT, где  D – это диаметр Вселенной, а dT – эффективный квант времени.

Vмгн=S/dT, где S есть расстояние меду взаимодействующими объектами, это так называемая моментальная скорость, которая всегда имеет конкретное значение, но оно так велико, что ему всегда присваивают бесконечное значение, без вреда для результатов вычислений.

Все известные поля, а достоверно их всего три: гравитационное, электрическое положительное и электрическое отрицательное,- распространяются с моментальной скоростью. Магнитное поле, будучи в определенном смысле производной от электрических полей, тоже перемещается моментально.

 

Каким же образом изменяется масса гравитации при изменении скорости тела? Ответить на этот вопрос только на основе созданной модели нельзя, т.к. модель сознательно строится, опираясь на фактические данные. Однако создаваемая модель допускает апробацию любых вариантов реализации. Требуемый ответ можно получить методом вариации, исследовав все допустимые варианты, и сравнив выводы, полученные для каждого варианта теоретически, с имеющимися данными, полученными опытным путем. Для уже сформированной к этому моменту конструкции модели допустимыми являются два вида гравитационного взаимодействия.

Первый вариант предполагает излучение гравитонов в неизменном количестве, всегда равном полной емкости счетчика №3, т.е. массе инерции, вне зависимости от скорости тела. Этот вариант реализует принцип инвариантности массы, принцип эквивалентности масс инерции и гравитации, а также законы классической механики со всеми известными последствиями и недостатками, главные из которых – отсутствие ограничения на скорость перемещения тел и несоблюдение Лоренц-инвариантности.

Второй вариант предполагает излучение гравитонов в количестве равном остатку начального значения счетчика №1, после того как из него отнимутся гравитоны, идущие на формирование приобретенного импульса. Этот остаток условно можно рассматривать как  гравитационную массу. Этот вариант реализует взаимодействие, в котором масса гравитации (гравитационного взаимодействия) уменьшается при увеличении скорости тела, при сохранении неизменной  массы инерции.

Вариант не соответствует принципу эквивалентности и, значит, отвергается и не рассматривается официальной наукой.

В этом случае масса гравитации асимптотически уменьшается до нуля при приближении скорости тела к скорости света. Физически правильнее рассматривать это явление как уменьшение интенсивности гравитационного взаимодействия для всегда инвариантной массы вещественного тела.

Так как публикации об исследованиях взаимодействий в рамках второго варианта отсутствуют, то теоретический анализ этого варианта модели является необходимым — и представлен далее.

 

Ниже приводится достаточно подробное описание алгоритма квантового механизма гравитации, осуществляемого по второму варианту.

Восприятие алгоритма предполагает некоторую осведомленность в области компьютерной логики.

Однако знакомство с описанием алгоритма может быть опущено без большого вреда для дальнейшего ознакомления с концепцией. Важно лишь понять функции, которые реализуются алгоритмами, а они раскрываются при дальнейшем описании.

При этом конкретное описание алгоритма все-таки необходимо, т.к. . представляет собой доказательство того, что закон всемирного тяготения данным алгоритмом реализуется.

 4.2 Алгоритм квантового гравитационного взаимодействия

Покоящийся квант, как уже определили, понятие условное, означающее неподвижность информационного образа материального кванта относительно окружающего  пространства. Признаком пространственного покоя кванта является только его нулевая скорость, определяемая по значению счетчика №2. Кратковременная (на время накопления счетчика №3) неподвижность вещественного кванта при наличии не нулевой скорости вещественной частицы, не является признаком истинной неподвижности (покоя) активированного кванта.

Начальное значение регистров инициатора активированного кванта могут быть любыми, они зависят от предыстории кванта.

При описании алгоритма, начальное значение активируемого кванта удобно принять равным нулю, без ущерба для сути алгоритма.

Для удобства изложения алгоритм представлен фрагментами.

 

Фрагмент 1. Получив признак начала фазы гравитационного взаимодействия, а это может быть любой сторонний гравитон, вещественный квант сначала ретранслирует (пропускает через себя) все сторонние гравитоны, уже испущенные другими квантами, а затем начинает генерировать в окружающее пространство, собственные гравитоны по 12 шт за dt. Счетчик №1 при этом соответственно уменьшает свое значение, и когда  оно станет равным нулю, генерация гравитонов квантом прекращается.

 

Фрагмент 2. После окончания фазы испускания,  гравитоны, взаимодействуя только между собой, продолжают распространение в пространстве, пока общий слой не сформирует  условную границу распространения, и гравитоны сменят знак направления своего перемещения на противоположное, изменив в себе признак «испущенный» на признак «возвращенный».

При отсутствии взаимодействия все гравитоны, вернуться к своим квантам и поглотятся ими, регистрируясь счетчиками №1 и №2, конечные значения которых совпадут с исходными значениями. При этом признака свой/чужой ни у гравитонов, ни у квантов нет.

 

Фрагмент 3. В общем случае, т.е. при наличии стороннего взаимодействия, каждый возвращающийся гравитон, встретившись с чужим вещественным квантом, поглощается им. При этом значение соответствующего регистра счетчика скорости чужого кванта изменяется на единицу. Если одновременно, или с задержкой во времени, поглощается гравитон противоположного направления, то показания двух регистров скорости взаимно компенсируются на единицу, а значение  счетчика №1 (гравитационной массы) при этом увеличивается на две единицы. Так продолжается до тех пор, пока суммарное количество гравитонов, заполняющих  счетчик массы и счетчик скорости, не достигнут значения N.  С этого момента алгоритм процесса несколько изменяется.

Обращаем внимание на то обстоятельство, что суммарное значение счетчиков №1 и №2 не может превышать значения N.

 

Фрагмент 4. После того как сумма значений счетчиков №1 и №2 стороннего кванта станет равной N, при поглощении следующего (избыточного) гравитона, счетчик №2 (его соответствующий регистр)  увеличивается на единицу, а от счетчика массы отчуждается одна пара гравитонов, которым присваиваются взаимно противоположные направления, т.е. с нулевым суммарным импульсом. Один гравитон с направленностью, совпадающей с последним поглощенным гравитоном, пополняет соответствующий регистр скорости. А второй, с противоположной направленностью излучается в смежное пространство по направлению движения поглощенного избыточного гравитона. В конечном результате счетчик массы уменьшится, а счетчик скорости увеличится на две единицы. Сумма значений счетчиков №1 и №2 после каждого  поглощения избыточных  гравитонов не изменяется, оставаясь  равной N.

Если же при поглощении избыточного гравитона счетчик №2 уменьшает свое значение, то счетчик №1 увеличивает свое значение на одну пару и излучает один избыточный инвертированный гравитон. Функционально, алгоритм сохраняется, и сумма значений счетчиков №1 и №2 остается неизменной.

Процесс может продолжаться до полного истощения счетчика гравитационной массы, после чего сторонние гравитоны уже не поглощаются квантом, а ретранслируются. Сам квант становится нейтрино подобным, т.е. имеющим массу инерции и не имеющим массу гравитации, перемещающимся со скоростью света, и не принимающим участия в гравитационных взаимодействиях. Но это только при условии, что наш квант изначально был свободным радикалом, что, видимо, невозможно, т.к. вещественный квант всегда входит в состав некоторой связной системной структуры.

Ситуация с полным истощением массы гравитации, видимо, практического смысла не имеет.

 

Фрагмент 5. Регистры счетчика №3 в конце каждого цикла, завершая фазу гравитационного взаимодействия, прибавляют к своему предыдущему значению полное действующее значение счетчика скорости по данному направлению. Если после этого ни один из 12 регистров счетчика №3не превысит значения Nгр, то в фазе квантовых  перемещений этого цикла dT квант остается в том же пространственном положении. Как только один из регистров счетчика-инициатора по одному из 12 направлений станет ≥ N, то инициируется перемещение кванта в смежную область по данному направлению, т.е. на один квант. При этом значение переполнившегося регистра   уменьшается на N. Это не означает, что счетчик этого направления обнуляется, т.к. он может иметь остаток. Определить значение этого остатка, исходя из условий проводимого эксперимента, нет возможности, т.к. он зависит от всей предыстории этого вещественного кванта.

Кажущаяся сложность описания алгоритмов гравитационного взаимодействия вызвана намеренной скрупулезностью описания, с целью продемонстрировать, что все алгоритмы для своего выполнения не требуют интеллектуального вмешательства.

Рассмотрим ситуацию при взаимодействии двух тел (большого и малого), когда гравитационное поле малого тела не достигает собственно квантов большого тела.

Фрагмент 6. В результате взаимодействия с малым телом, по алгоритму фрагментов 1- 3,  к большому телу взамен собственных гравитонов излучаются дважды инвертированные гравитоны, т.е. не инвертированные, количество которых будет точно равно количеству поглощенных малым телом сторонних избыточных гравитонов большого тела. Таким образом, второму взаимодействующему телу (большому) будут возвращены сторонние для него инвертированные гравитоны, которые при поглощении большим телом образуют со своими бывшими антиподами однонаправленные пары и отложатся в счетчике скорости большого тела. В результате представленного взаимодействия оба тела, и большое, и малое, сохранят общее  количество гравитонов; получат равное, но противоположное по знаку, приращение импульса, хотя поле малого тела может не достигать массивных квантов (т.е. границы) вещества большого тела.

Если в процессе этого взаимодействия массу малого тела плавно увеличивать, то в некоторый момент времени поле малого тела достигнет квантов большого тела, и к рассмотренному взаимодействию добавится еще одно, точно такое же, но с другими константами.

Таким образом, любое гравитационное взаимодействие двух тел необходимо рассматривать как сумму двух взаимодействий: первого тела со вторым и второго тела с первым. Несколько далее рассмотрим этот нюанс более подробно.

Совершенно ясно, что возможны ситуации, когда слабый поток гравитонов, обеспечивающий взаимодействие таких тел, и инвертированный малым телом, не смогут распределиться по квантам большого тела равномерно.

В этом случае внутри тела возникают слабые межквантовые напряжения, которые уже механически распределяют добавочный импульс (приращение) по всему объему большого тела равномерно. А если гравитонов добавочного импульса не хватит на все кванты большого тела,  чтобы распределиться равномерно, то импульс становится блуждающим.

Конец описания алгоритма гравитационного взаимодействия.

 

Идея и соответствующая методика измерений поля пробным телом (пренебрежимо малым) скрывает влияние малого тела на интенсивность взаимодействия.

В случае взаимодействия соизмеримых тел, находящихся полностью в силовых полях друг друга, взаимодействие, реализованное по методике пробного тела, должно быть отнесено к обоим телам, и затем суммировано. В результате, в формулу расчета силы притяжения должен быть введен коэффициент 2.

Если этот фактор не учитывается последовательно при измерениях и константы гравитации и силы притяжения реальных тел, то удвоение импульса естественным образом входит в гравитационную константу, определяемую экспериментально, и учитывается в дальнейшем  автоматически, не влияя при этом на конечный результат практических расчетов. Однако, для определения истинного значения постоянной гравитации, используемого в других фундаментальных законах, учет удвоения принципиален.

Алгоритм представленного взаимодействия гарантирует сохранение количества движения любой изолированной системы, причем, сохранение реализуется с нулевой погрешностью.

Проследив полностью алгоритмы взаимодействия большого и малого тела, при всевозможных вариантах их взаимного расположения, можно убедиться, что ситуацию, при которой поля имеют общую область, но не достигают ни одного из двух тел, необходимо рассматривать как отсутствие взаимодействия. В остальных ситуациях, при которых сами излучающие тела находятся в области эффективных гравитационных полей, происходят взаимодействия, реализующие требования законов сохранения импульса и энергии.

Предложенный алгоритм взаимодействия обеспечивает закон сохранения энергии только в случае, если значение счетчика №1 уменьшается при увеличении значения счетчика №2 соответствующим образом. Другими словами, масса гравитации должна уменьшаться с ростом скорости тела.

Таким образом, представленная модель реализует закон сохранения импульса и массы при характеристиках гравитационного взаимодействия полностью совпадающих с реальными. Динамика процесса очень наглядна для компактных тел, например, для ядер атомов.  В режиме гравитационного взаимодействия вещество ядра испускает в пространство строго определенное количество гравитонов. Эти гравитоны формируют однородный сферический слой, объем которого, а точнее, количество гравитонов в нем, остается все время неизменным. Сферический слой,  расширяясь, достигает  своего максимального радиуса при минимальной толщине слоя, соразмерной с dx.

При возвращении гравитонов происходит взаимодействие с веществом других атомов. Это взаимодействие формирует поле эффективной напряженности. Усредненное значение эффективной напряженности пропорционально толщине слоя L, которая легко рассчитывается из условий постоянства объема слоя.  Эти условия записываются как:

4π(r+L)3/3 — 4πr3/3 = MквNгрdv,                                                                                                       (4.1.1)                          где dv – объем единичного кванта, а Mкв – количество квантов в теле.

Из данного выражения получаем значение толщины слоя L в зависимости от радиуса сферы, на которой находится пробное тело, т.е. зависимость L от расстояния между взаимодействующими телами:

4π(r+L)3/3 = MквNгрdv +4πr3/3

(r+L)3 =3 MквNгрdv/4π +r3

r + L  = (3 MквNгрdv/4π +r3)1/3

L  = (3 MквNгрdv/4π +r3)1/3— r                                                                    (4.1.2)

Теперь найдем диаметр сферичного поля гравитации одиночного кванта в момент, когда заканчивается генерация квантов, т.е. диаметр шарового объема испущенных гравитонов. Это математически очень просто:

4πr3/3 = Nгрdv, откуда

D = 2 r = 2(3Nгрdv/4π)1/3,                                                                             (4.1.3)

это размер гравитационного поля одного вещественного кванта. Константа явно фундаментальная.

Эта, относительно более точная, формула неудобна ни для практического применения, ни для качественного анализа. Еще труднее выявить ее на основании экспериментальных измерений. Однако, для относительно больших расстояний между телами, когда выполняется условие  r>> d, где d – диаметр шара с объемом, равным объему сферического слоя, может быть представлен приблизительной зависимостью, а именно: произведением площади сферы 4πr2 на толщину слоя L, откуда с некоторой известной погрешностью получаем:
L= Mкв Nгр (dv) / 4πr2 .

В зависимости 4.1.4 мы узнаем признак всем известного закона всемирного притяжения – это зависимость .

Хотя эта зависимость является приблизительной, но именно она выявляется в результате экспериментальных исследований, т.к. выявить реальную зависимость (4.1.2) практически невозможно. Если теперь формулу истинной зависимости разделить на приблизительную, то получим безразмерный функцию-коэффициент, при умножении на который из приблизительной зависимости будет получаться истинное значение. Таким образом, традиционная формула закона всемирного притяжения дополняется безразмерным коэффициентом k, значение которого обычно близко к единице.

k=[{3Mкв Nгр (dv) / 4π + r3}1/3 — r] / [Mкв Nгр (dv) / 4πr2]       (4.1.5 )

При этом традиционное выражение закона всемирного тяготения запишется как:

F= kGMm/r2.                                                                                              (4.1.6)

Всё обилие констант, присутствующих в выражении k, естественным образом войдут в гравитационную постоянную G.

Реальная необходимость учитывать коэффициент k, подтверждается практикой прецизионных измерений гравитационной постоянной. Обычно эти измерения сопровождаются парадоксальной ситуацией: статистический разброс измерений превышает погрешность применяемой методики.

(Более существенные отклонения возможны вблизи границ гравитационных полей, что и было зафиксировано двумя космическими аппаратами программы «Пионер».

Так как все лабораторные измерения сил притяжения на Земле производятся явно не в условиях дальней зоны, то для них значение k должно, хоть и мало, но все-таки ощутимо для прецизионных методик отличаться от единицы. Этот эффект и обнаруживается в экспериментах по точному измерению гравитационной постоянной, т.к. при обработке результатов измерений, влияние функции k не учитывается, и по незнанию принимается за единицу.

Таким образом, представленная модель не только обосновывает закон сохранения импульса и массы при гравитационном взаимодействии, но и определяет более точно сам закон всемирного тяготения.

 

Невозможность экранирования гравитационного поля, реализуемого моделью, требует пояснений. Если при распространении гравитоны воспринимают пространство, занятое веществом, как свободное, то после отражения от границы поля гравитоны уже взаимодействуют с веществом, и эффект частичного экранирования, но особого рода, может быть обнаружен. Например, если на границе поля слой гравитонов очень тонкий, а масса пробного тела недостаточно мала, то возможна ситуация, при которой для части квантов пробного тела не хватит гравитонов для обеспечения их согласованного движения. И математическое представление закона притяжения для ситуаций, при которых недостаточно гравитонов, изменится. Предсказать величину k в этой ситуации  очень сложно, т.к. функция k зависит от конкретного соотношения всех геометрических параметров, можно лишь сказать, что k в этих условиях всегда меньше единицы.

Наглядно, влияние k можно представить на следующем примере.

Рассмотрим малое тело в форме пылевого облачка на границе поля большого тела. Гравитонов основного слоя для всех квантов облака уже не хватает. В этой ситуации самые дальние пылинки гарантированно реализуют взаимодействие, а более близкие — лишь с некоторой вероятностью. В результате, дальние пылинки получат больший импульс к центральному телу, и со временем перестанут быть дальними, и в следующих циклах гравитоны «достанутся» уже другим пылинкам. В этом эффекте проясняется более точная суть эффекта, определяемого как невозможность экранирования гравитации: нельзя спрятать одно тело позади другого, но заднее тело может экранировать тело перед собой.

Объекты, которым не хватило гравитонов в данном цикле, неизбежно испытают силу притяжения через некоторое время (или после пассивного перемещения на периферию, в пылевом облаке, или через посредство давления, в твердом теле). При недостатке гравитонов в слое, первыми во взаимодействие неизбежно вступают самые периферийные элементы системы. Эти элементы, смещаясь к центру, уступят место следующим слоям облака. Таким образом, абсолютное экранирование гравитации принципиально невозможно.

Квантовый процесс гравитационного притяжения неизбежно начинается с периферии общей области притяжения, и с периферии области каждого участника гравитационного взаимодействия.

 

На основании модели можно объяснить все наблюдаемые на сегодня аномальные явления гравитации.

Модель позволяет на качественном уровне оценить характер изменения веса пробного тела вблизи тела с неограниченно возрастающей массой.

Для этого добавим  на поверхность твердого тела один вещественный квант. Он неподвижен, и еще не давит на тело. Квант испустит  в первом цикле N  гравитонов. После окончания первого цикла счетчик импульса получит первое приращение d1, а счетчик динамической гравитационной массы соответственно уменьшится. При этом счетчик-инициатор также получит первое приращение d1.  Произошедших изменений недостаточно для перемещения добавленного кванта к центру тела. Давление кванта на поверхность тела пока равно нулю. В следующем цикле квант излучит гравитонов на d1 меньше, т.е. общее гравитационное поле тела уменьшится, хотя и на ничтожную величину. Следующее приращение счетчика скорости d2 также чуть уменьшится, но этим уменьшением можно пренебречь, т.к. оно второго порядка. В результате, показание счетчика импульса станет равным 2d1, счетчика-инициатора 3d1. Алгоритм будет продолжаться до тех пор, пока при n-ном повторении значение счетчика №3 не превысит значение Nгр. После этого произойдет акт попытки смещения нашего кванта к центру тела, что невозможно — и вызовет ответную реакцию. В результате реализуется сила весового давления добавочного кванта на тело и реакция большого тела. Каким образом реализация давления сказывается на количество испускаемых в цикле гравитонов пока неизвестно; нужны целевые исследования.

За время этого фрагментарного взаимодействия наш квант в среднем будет испускать по Nгр – nd1/2 гравитонов в цикле. Таким образом, пробное тело на поверхности большого твердого тела уменьшает свою гравитационную массу по отношению к массе инерции.

Но в состоянии пробного тела находятся все элементы рассматриваемого твердого тела.

Из этого обстоятельства следует, что при увеличении массы тел (путем их сложении), общая гравитационная масса растет не прямопропорционально с ростом инертной массы, а  с некоторым отставанием, тем большим, чем больше общая масса.

В рамках предлагаемой квантовой модели совершенно очевидно, что при неограниченном (условно) возрастании потока гравитонов большого тела, реакция пробного тела не может возрастать неограниченно. Таким образом, в квантовой модели естественным образом реализуется эффект насыщения. Этот эффект, будучи совершенно естественным для теоретической модели, должен являться таким же естественным и в природе, и для любой другой модели. Странно, что на это обстоятельство никто не обращает внимания. Отказ от учета эффекта насыщения приводит к возникновению парадоксов черных дыр и темной материи.

Поток гравитонов, создающих напряженность поля большого тела, может увеличиваться сколько угодно, однако сила притяжения, испытываемая малым фрагментом большого тела, после достижения некоторого предела, расти дальше  уже не может. Произойдет насыщение внутреннего, и частично ближнего гравитационного взаимодействия.

Достаточно удаленное взаимодействие, при этом сохранит классическую природу, но в формуле, описывающей это взаимодействие, появится коэффициент k , существенно отличающийся от единицы.

Вот, именно этот эффект был обнаружен астрофизиками совсем недавно, и послужил причиной поиска темной материи.

Этот эффект насыщения не учитывается ни в классической теории, ни в теории Эйнштейна.

Все расчеты параметров черных дыр, произведены без учета эффекта насыщения и эффекта непропорционального роста гравитационной массы тела при возрастании общего количества его инертной массы, и являются ошибочными.

Квантовая модель формально допускает коллапс барионного вещества только до состояния аморфного нуклонного тела, без атомной структуры. Это так называемые нейтронные звезды.

Эффект насыщения гравитационного взаимодействия объясняет особенности движения звезд вблизи ядра Галактики, где звезды движутся как будто они скреплены в жесткую конструкцию, или, как принято говорить, движутся как твердое тело.

При полном насыщении, сила притяжения, действующая на конкретное тело в зоне насыщения, не зависит от его расстояния до центра массивного ядра. А в промежуточной области закон притяжения плавно изменяется от классической, обратно квадратичной зависимости, до полной независимости силы притяжения от расстояния. На некотором участке этой промежуточной области реализуется зависимость, наблюдаемая астрономами в центральной области Галактики.

Так как все лабораторные измерения сил притяжения на Земле производятся явно не в условиях дальней зоны, то для них значение k должно, хоть и мало, но все-таки ощутимо для прецизионных датчиков, отличаться от единицы. Этот эффект и обнаруживается в экспериментах по точному измерению гравитационной постоянной, т.к. при обработке результатов измерений, влияние функции k не учитывается, и по незнанию принимается за единицу.
Таким образом, представленная модель не только обосновывает закон сохранения импульса и массы при гравитационном взаимодействии, но и определяет более точно сам закон всемирного тяготения.

Невозможность экранирования гравитационного поля, реализуемого моделью, требует пояснений. Если в фазе распространения гравитоны воспринимают пространство, занятое веществом, как свободное, то после отражения гравитоны уже взаимодействуют с веществом, и эффект частичного экранирования, но особого рода, может быть обнаружен. Например, если на границе поля слой гравитонов очень тонкий, а масса пробного тела недостаточно мала, то возможна ситуация, при которой для части квантов пробного тела не хватит гравитонов для обеспечения их согласованного движения. И математическое представление закона притяжения для ситуаций, при которых недостаточно гравитонов, изменится. Предсказать величину k в этой ситуации  очень сложно, т.к. функция k зависит от конкретного соотношения всех геометрических параметров, можно лишь сказать, что k в этих условиях всегда меньше единицы.
Наглядно, влияние k можно представить на следующем примере.
Рассмотрим малое тело в форме пылевого облачка на границе поля большого тела. Гравитонов основного слоя для всех квантов облака уже не хватает. В этой ситуации самые дальние пылинки гарантированно реализуют взаимодействие, а более близкие — лишь с некоторой вероятностью. В результате, дальние пылинки получат импульс к центральному телу, и со временем перестанут быть дальними, и в следующих циклах гравитоны «достанутся» уже другим пылинкам. В этом эффекте проясняется более точная суть эффекта, определяемого как невозможность экранирования гравитации: нельзя спрятать одно тело позади другого, но заднее тело может экранировать тело перед собой.
Объекты, которым не хватило гравитонов в данном цикле, неизбежно испытают силу притяжения через некоторое время (или после пассивного перемещения на периферию, в пылевом облаке, или через посредство давления, в твердом теле). При недостатке гравитонов в слое, первыми во взаимодействие неизбежно вступают самые периферийные элементы системы. Эти элементы, смещаясь к центру, уступят место следующим слоям облака. Таким образом, абсолютное экранирование гравитации принципиально невозможно.
Квантовый процесс гравитационного притяжения неизбежно начинается с периферии общей области притяжения, и с периферии области каждого участника гравитационного взаимодействия.

На основании модели можно объяснить все наблюдаемые на сегодня аномальные явления гравитации.
Модель позволяет на качественном уровне оценить характер изменения веса пробного тела вблизи тела с неограниченно возрастающей массой.
Для этого добавим  на поверхность твердого тела один вещественный квант. Он неподвижен, и еще не давит на тело. Квант испустит  в первом цикле Nгр  гравитонов. После окончания первого цикла счетчик импульса получит первое приращение d1, а счетчик динамической гравитационной массы соответственно уменьшится. При этом счетчик-инициатор также получит первое приращение d1.  Однако при этом квант еще не пытается переместиться. Давление кванта на поверхность тела пока равно нулю. В следующем цикле квант излучит гравитонов на d1 меньше, т.е. общее гравитационное поле тела уменьшится, хотя и на ничтожную величину. Следующее приращение счетчика скорости d2 также чуть уменьшится, но этим уменьшением можно пренебречь, т.к. оно второго порядка. В результате, показание счетчика импульса станет равным 2d1, счетчика-инициатора 3d1. Алгоритм будет продолжаться до тех пор, пока при n-ном повторении значение счетчика №3 не превысит значение Nгр. После этого произойдет акт попытки смещения нашего кванта к центру тела, что невозможно — и вызовет ответную реакцию. В результате реализуется сила весового давления кванта на тело. За время этого фрагментарного взаимодействия наш квант в среднем будет испускать по Nгр – nd1/2 гравитонов в цикле. Таким образом, пробное тело на поверхности большого твердого тела уменьшает свою гравитационную массу по отношению к массе инерции. Но в состоянии пробного тела находятся все элементы рассматриваемого твердого тела.
Из этого следует, что при увеличении массы тел (путем их сложении), общая гравитационная масса растет не пропорционально с ростом инертной массы, а  с некоторым отставанием, тем большим, чем больше общая масса.
Кроме того, напряженность поля гравитации большого тела определяется потоком гравитонов, испускаемых этим телом. Этот поток может возрастать до очень большой величины. Однако сила притяжения малого тела неограниченно возрастать не может, т.к. ограничена емкостью своих счетчиков, реализующих фактическое, одностороннее насыщение гравитационного воздействия большого и малого тел.
Поток гравитонов напряженности поля большого тела может увеличиваться сколько угодно, однако сила притяжения малого тела, являющегося частью большого тела, после достижения максимума, увеличиваться уже не будет. Произойдет насыщение внутреннего гравитационного взаимодействия.
Внешнее, достаточно удаленное взаимодействие, при этом останется нормальным.
Этот эффект насыщения не учитывается ни в классической теории, ни в теории Эйнштейна, т.к. в этих теориях нет механизма, обеспечивающего эффект насыщения.
Все расчеты параметров черных дыр, произведены без учета эффекта насыщения и эффекта непропорционального роста гравитационной массы тела в зависимости от роста количества инертной массы, и являются ошибочными.
Модель формально допускает коллапс барионного вещества только до состояния аморфного нуклонного тела, без атомной структуры. Это так называемые нейтронные звезды.
Эффект насыщения гравитационного взаимодействия объясняет особенности движения звезд вблизи ядра Галактики, где звезды движутся как будто они скреплены в жесткую конструкцию, или, как принято говорить, движутся как твердое тело.
При полном насыщении, сила притяжения, действующая на конкретное тело в зоне насыщения, не зависит от его расстояния до центра ядра. А в промежуточной области закон притяжения плавно изменяется от классической, обратно квадратичной зависимости, до полной независимости. На некотором участке этой промежуточной области реализуется зависимость, наблюдаемая астрономами в центральной области Галактики.)

Анализ механизма гравитационного взаимодействия показывает, что для случая двух соизмеримых тел математическую модель закона всемирного тяготения необходимо рассматривать как сумму двух составляющих.
F= k1Gm(M/r^2) + k2GM(m/r^2) = (k1+ k2)GMm/r^2,
где k1 и k2 в средней зоне равновеликих тел практически равны единице.

Для бытовых ситуаций на поверхности Земли, k2 , относящаяся к малым телам, практически всегда близка к нулю, рис. 2.

 

Рис. 2.  Качественная зависимость k1 (верхняя кривая) и k2  (нижняя кривая) от расстояния для разновеликих тел. Шкала r – не линейная.
Эта  ситуация реализуется почти всегда в бытовой деятельности человечества, но постоянная ошибка не имеет практического значения из-за малого вклада и повсеместного присутствия.
Рассмотрим более подробно эту бытовую ситуацию, а именно, малое тело (но не пробное, а бытовых размеров) в области Земли, рис.2.
Ситуация с эффектом насыщения в данном случае не реализуется.
В этом случае функция k2 изменяется от некоторого значения, меньшего единицы, до нуля по мере удаления тел и роста соотношения M/m. На рис. 2 приведен качественный характер изменения функций-коэффициентов k. Видно, что в ближней зоне, когда масса малого тела недостаточно мала, изменения k1 и k2  в зависимости от r частично компенсируют друг друга, чем затрудняют экспериментальное обнаружение эффекта в ближней зоне, создавая видимость неизменности закона всемирного тяготения.
Для малых тел, которые можно рассматривать как пробные, функция k2 всегда близка к нулю. Даже вплотную к большому телу поле пробного тела при взаимодействии с большим телом реализует ситуацию истощенного слоя. Однако, если масса малого тела становится существенной, то пренебрегать k2   уже нельзя, при этом в ближней зоне большого тела, k2  будет сложно зависеть как от r, так и от m и M.

Экспериментально, зависимость силы притяжения от k1 и k2  обнаружить сложно, и особенно сложно отделить одно от другого. Но, тем не менее, влияние этих коэффициентов обнаруживается на практике при проведении особо точных измерений по определению гравитационной постоянной.
Например. Определение массы космических аппаратов «Пионер» производилось в ближнем поле Земли, т.е. их масса измерена при значении k2 , не равном нулю. Когда теоретически не учтенный, но действующий, коэффициент k2, относящийся к КА, на орбите Урана стал равным нулю, это привело к аномально малой (отличной от расчетной) величине торможения аппаратов при дальнейшем удалении от Солнца. Конкретнее: с некоторого момента гравитоны КА перестали участвовать в процессе притяжения, что было воспринято как эффект дополнительного ускорения.
Принятое на данный момент объяснение аномального поведения «Пионеров» опирается на фотонную тягу теплового излучения. Это еще одно наследие от Эйнштейна. Дело в том, что фотоны не имеют продольного импульса, см. [7].

Фундаментальный статус гравитационной постоянной не вызывает сомнений, но результаты измерений дают устойчивый разброс значений, выходящий за пределы погрешности измерений. Введение уточняющих коэффициентов k обогащает теорию гравитации тонкими эффектами, и освобождает гравитационную постоянную от влияния сторонней погрешности измерений, приписываемой по незнанию к изменениям гравитационной постоянной.

Зависимость притяжения от k  может быть установлена на спутниках с очень малой массой. Если на круговой орбите, около тяжелого спутника оставить очень маленький спутник, то он будет двигаться вместе с большим спутником, точно так же как и малые тела внутри спутника. Это происходит потому, что гравитоны большого и малого тела объединяются в общее для них гравитационное поле облака деталей спутника.

Если же спутники развести на достаточно большое расстояние, то каждый из них сформирует свое гравитационное поле, со своим k2 , взаимодействующий с одинаковым для них полем Земли. И если значения k2  для каждого из спутников будут различными, а нужно постараться, чтобы так и было, то малый спутник при тех же скоростных параметрах не сможет остаться на круговой орбите большого спутника, и перейдет на эллиптическую, что при длительном наблюдении достаточно легко обнаружить.

Этот эффект, возможно, уже замечен организаторами полетов спутников, при выводе на орбиту сразу нескольких маломерных аппаратов. Но даже если они это заметили, то причина эффекта исследователям непонятна, и они этот эффект могут замалчивать.

Эксперимент со спутниками является отдаленным аналогом опыта Галилея на Пизанской башне. Отличие в том, что в ситуации со спутником время условного падения равно полупериоду обращения, а массы могут отличаться в тысячи раз, что повышает чувствительность измерений.

Опыт Галилея был принципиально обречен на известный результат своей методикой, а именно тем, что тяжелое и легкое тело сбрасывались вместе. Чтобы обнаружить наш тонкий эффект различия, их надо было бросать отдельно. Но в этом случае возникли бы трудности с измерением времени падения. Решая одну метрологическую проблему, Галилей попал в сети другой природной ловушки.

Вот почему очень важно знать физическую суть процесса, а не только его математическую модель.

Этот же эффект вызывает известные трудности у теоретиков, которые пытаются определить зоны притяжения космических тел образующих системы, например, Луны и Земли. Уже утвердилось молчаливое согласие о существовании странного эффекта, которому до сих пор не находят  объяснения. Космические тела, став спутником другого тела, как бы перестают независимо осуществлять гравитационные взаимодействия со сторонними телами. Например, Луна как бы не чувствует существования Солнца, вернее чувствует, но не так, как предписывает закон всемирного тяготения. Понимание законов формирования функций k и k  очень бы облегчило эту задачу и теоретикам, и практикам.

5. ИНЕРЦИОННОЕ ПЕРЕМЕЩЕНИЕ

Для более полного понимания инерции и гравитационного взаимодействия рассмотрим алгоритм нулевого взаимодействия, т.е. чисто инерционного перемещения тел в произвольном направлении с произвольной скоростью. Этот алгоритм в нашем описании будет седьмым.

 

Фрагмент 7. Рассмотрим одиночный неподвижный вещественный квант. Его состояние описывается следующими значениями счетчиков. Счетчик №1 использован полностью и его значение равно N. Значения всех регистров счетчика №2 равны нулю. Значение счетчика №3 примем равным нулю, хотя оно, в принципе, может быть любым от 0 до N-1.

Чтобы привести наше тело в движение, поместим на короткое время dT в ближней точке пространства вещественный объект (флуктуация), и сразу уберем его. По этому направлению, между нашим телом и флуктуацией, произойдет гравитационное взаимодействие, и в трех смежных регистрах направления (условно 1-м, 2-м, 3-м) счетчика №2, образующих телесный угол, включающий направление на флуктуацию, зафиксируется набор значений, соответствующий приобретенной скорости нашего тела. Сумма этих значений определяет скорость нашего тела, а соотношение определяет направление. Пусть их значения будут равны 6р, 4р и 0, где р – целое число, определяемое величиной флуктуации. Счетчик №1 при этом перейдет в состояние

N-(6р+4р+0) = N- 10р.

В следующем внутреннем квантовом цикле dT, наш квант, никуда не смещаясь, излучит уже не N гравитонов, а (N- 10р). Все гравитоны вернутся без дополнительной информации, и все регистры №2 сохранят свое значение. То же самое будет со счетчиком №1. А вот регистры 1, 2 и 3 счетчика №3 изменят свое значение, увеличив его на 6р, 4р, 0 соответственно, т.е. к прежнему значению вновь прибавят значения, соответствующие действующему показанию счетчика №2, соответствующие в свою очередь ранее приобретенному импульсу.

Ситуация будет повторяться пока значение первого регистра счетчика №3 не достигнет  значения N. Как только это произойдет, наш квант транслирует свое состояние в смежный квант по 1-ому направлению, полностью «обнулив» свое состояние, т.е. перейдя в состояние вакуума.

Смежный квант по первому направлению, приняв информацию нашего кванта, сразу изменит состояние одного из регистров счетчика №3 , относящегося к 1-ому направлению, вычтя из него значение N,  и оно станет равным  n6р — N, и продолжит циклическое суммирование значений, поступающих со счетчика №2.

После еще нескольких циклов заполнится регистр, относящийся ко 2-ому направлению, и вся информация из активного вещественного кванта переместится в смежный квант по 2-ому направлению, полностью повторив алгоритм предыдущего перехода.

В результате неограниченного повторения циклов нулевого взаимодействия вещественный квант будет перемещаться точно в направлении первичной флуктуации по траектории луча, в том смысле, что фотон, излученный телом в точку флуктуации, следовал бы по тем же пространственным квантам.

Если в какой-то момент, сзади перемещающегося кванта возникнет точно такая же флуктуация, то она остановит вещественный квант. Счетчик №2 обнулиться, а счетчик №1 примет значение Nгр. Однако регистры счетчика №3 сохранят свое случайное значение на момент второй флуктуации.

В дальнейшем, такой вещественный квант может один раз в начале следующего взаимодействия прореагировать на оказанное воздействие не соответствующим образом. Практическое значение это вряд ли может иметь, но абсолютный детерминизм этим фактором исключается.

Таким образом, инерционное перемещение вещественного кванта, в общем случае, происходит по кратчайшей периодической линии, являющейся по нашему определению лучом.

 

Из выше изложенного следует.

В эффективном представлении невозможно осуществить локальный эксперимент, гарантирующий абсолютное выполнение закона сохранения импульса, но возникшая погрешность неизбежно будет скомпенсирована в будущих взаимодействиях, обеспечивая, таким образом, отсроченное абсолютное выполнение закона сохранения импульса, как в квантовом представлении, так и в эффективном.

Это положение определяет еще одну составляющую квантовой неопределенности, отрицающую механический детерминизм.

 

В приведенном выше описании гравитационного взаимодействия остался пробел — не определены условия старта каждого следующего всеобщего цикла Вселенной, определяющего  dΤ. Ясно, что любой предложенный механизм, может быть «построен» только на основе произвольных допущений, и никогда не может быть проверен экспериментально. Для человечества — это объект метафизики. Но если предложить хотя бы один вариант такого механизма, то этим будет доказана принципиальная возможность существования такого типа процессов.

Можно предположить, что гравитонов во Вселенной на несколько штук (на 12) больше, чем емкость всех вещественных квантов Вселенной. В этом случае 12 гравитонов всегда будут избыточными в последнем гравитационном взаимодействии цикла dΤ, и вынуждены будут отражаться от последнего (по времени) в цикле dΤ массивного кванта (всегда центрального), давая тем самым начало новому циклу. Что и требовалось.

 

Подведем промежуточный итог, для чего представим общую картину событий от лица нашего наблюдателя, делегированного в недоступную нам фазу метафизических гравитационных взаимодействий, и чувствительного ко всему там происходящему.

Смена внутренних состояний во время реализации каждого внутри фазового взаимодействия происходит для наблюдателя с интервалом dt.

Итак. Волна гравитонов (протяженный импульс), начавшись от центрального кванта Вселенной, должна достичь её границы в формате максимально тонкого слоя, и вернуться обратно. Это значит, что  интеграл внутренних квантовых интервалов, формирующий один суммарный dΤ, соразмерен с величиной dt·D/dx, где D –диаметр Вселенной.  За время dΤ все вложенные взаимодействия данного цикла для всей Вселенной реализуются в полном объеме, но не более одного события, т.е. на одну ступень (шаг). Это закон формирования единого системного времени (по определению), который гарантированно обеспечивается природным алгоритмом взаимодействия.

Суммарная продолжительность интервалов dt и количество их в цикле dТ для нашего субъективного восприятия недоступны, и не имеют значения, т.к. происходят в режиме стоп-кадра, когда все объекты Вселенной неизменны, и только фронт носителей поля распространяется от центра Вселенной и обратно. Сколько бы это распространение ни длилось, субъективно это воспринимается как мгновение, равное 10с, т.е. в эффективном макромире воспринимается как реальный калиброванный квант времени.

Все последовательности событий и все взаимодействия, происходящие в рамках dΤ, относятся к области метафизики. Метафизика – область знаний и соответствующих явлений, недоступных нашим ощущениям. dΤ – эталон реального и эффективного представления времени, который, сколько бы он ни длился в квантовом метафизическом представлении, в эффективном восприятии всегда будет равен эталонной единице. Такой субъективный эффект обеспечивается полным сохранением информации о начальном состоянии всех квантов Вселенной, пока идет процесс гравитационного / электрического внутри фазового взаимодействия. Пространственное распределение, и вещества, и электрических полей во время реализации гравитационных и электрических взаимодействий, остается абсолютно неизменным.

Таким образом, процессы, происходящие в рамках внутренних фаз цикла dT, не находят отражения в эффективном восприятии мира субъектом, и распространение гравитации в эффективном представлении воспринимается как мгновенное, и не нарушающее законов физики перемещение. Вследствие этого эффективная продолжительность кванта времени воспринимается как dΤ=dX/C, где dX – эффективный размер кванта, а C – скорость света.

Мгновенное распространение это не синоним бесконечной скорости, бесконечным параметрам нет места, ни в природе, ни в предлагаемой модели. Мгновенно – означает, что интервал времени, разделяющий причину от следствия, равен dΤ  вне зависимости от расстояния. Максимум эффективной скорости распространения гравитационных взаимодействий, соответствующий понятию мгновенно, равняется Vmax=2R/dΤ =2RC/dx, где R – радиус Вселенной. Значение Vmax так велико, что распространение гравитации допустимо описывать как бесконечно большую скорость, называя её мгновенной.

К аналогичным выводам интуитивно приходили мыслители разных времен (Лаплас, Ньютон), но они не могли найти этому объяснение в рамках доступных им физических знаний.

Естествоиспытатели всех времен с недоверием относились к изысканиям философов в области метафизики, фактически отвергая её. В результате, как горб на спине, возник неразрешимый парадокс бытия – беспредельная скорость гравитации.

 

Физические инварианты служат несущей конструкцией в устройстве мира. В предлагаемой модели естественным инвариантом является общее ограничение всех счетчиков материального кванта значением, равным Nгр, которое естественным образом конвертируется в массу кванта m. Эта величина определена как масса кванта в состоянии покоя, но физическим смыслом этой константы также является инерция, что следует из алгоритмической функции, определяющей закон дискретного перемещения кванта. Счетчик №3 формирует условие эффективного перемещения кванта в пространстве вне зависимости от наличия внешних сил и состояния кванта, то есть по инерции, а значит, определяет массу mo как меру инерции. В этом случае, изменяемое количество излучаемых гравитонов, естественно определить как динамическую меру (массу) веса. В состоянии покоя обе массы равны.

6. ИНЕРЦИЯ — ИНВАРИАНТ МАССЫ

Проведем анализ гравитационного взаимодействия, реализуемого моделью по второму варианту взаимодействия, когда излучение гравитонов происходит в количестве, равном текущему значению счетчика №1, определяющего динамическую массу веса (гравитации) вещественного кванта.
Для простоты рассмотрим частицу, образованную одним квантом. При этом в пространство излучаются гравитоны в количестве соответствующем разности m0 — mp, где m0 – масса кванта, излучающего полное количество гравитонов Nгр, а mp – масса эквивалентная количеству гравитонов, отвлеченных на формирование действующего импульса движения тела или потенциального (сдерживаемого) импульса, т.е. дефицит (дефект) массы.
Итак, исходим из того, что перемещающееся вещество сохраняет массу инерции и соответственно изменяет массу гравитации. Чтобы проверить это явление на практике, необходимо знать конкретную зависимость массы от скорости. Для получения этой зависимости можно воспользоваться формулой периода колебаний физического маятника
T= 2π(I/mgL)0,5,                                      (6.1)
где I – момент инерции маятника, m — гравитационная масса, L — расстояние от точки подвеса до центра тяжести.
Нам экспериментально известен релятивистский закон, по которому период колебаний любых осцилляторов увеличивается с увеличением линейной скорости осциллятора как
T= Т0 /(1-V2/C2)0.5.                                (6.2)
Из этих двух зависимостей при условии неизменности L  и I следует
М=М0 (1-V2/C2).                           (6.3)

Вызывает интерес формальное совпадение (6.3) с зависимостью ослабления электрического взаимодействия для движущихся зарядов, полученного методом запаздывающих потенциалов [8], хотя физическая природа процессов совершенно иная.
Q= Q0 (1-V2/C2).                     (6.4)
К такой же зависимости приходит и Г.Ивченков [9], но уже на основании баланса сил Кулона и сил Лоренца, действующих на движущиеся заряды. Эти соотношения можно и нужно интерпретировать, как ослабление взаимодействия движущихся инвариантных зарядов.
Напомним, что ОТО постулирует инвариантность электрического заряда, которая неявно распространяется и на поля, создаваемые этими зарядами.

Исходя из выше изложенного, можно сформулировать следующее релятивистское положение.
В движущихся ИСО происходит согласованное замедление всех физических процессов по сравнению с этими же процессами в неподвижной относительно физического вакуума системе, что находит свое выражение во всеобщем замедлении внутрисистемного (местного) времени в зависимости от скорости движения ИСО, как
T= Т0 /(1-V2/C2)0,5 .
Эта релятивистская зависимость ритма времени для движущихся тел претендует на статус фундаментальной.
Полученная функция замедления времени, имеет в рамках квантовой модели вполне конкретный и ясный физический смысл, позволяющий понять природу замедления времени в движущихся системах.
Поняв природу замедления темпа времени, можно утверждать, что данный  закон справедлив для любого типа движения относительно вакуума: и инерционного, и ускоренного, и криволинейного.
Тот факт, что замедление времени в равной мере распространяется на все формы движения материи, дает основание для предположения о том, что все формы энергии (кроме потенциальных) сводятся к перемещению частиц, зарядов и их полей. А это значит, что интенсивность взаимодействия электрически заряженных частиц, определяющая частоту колебательных контуров, должна зависеть от относительной скорости так, чтобы выполнялось соотношение (6.4), т.е.
Q= Q0 (1-V2/C2).
Именно эту зависимость дает теория запаздывающих потенциалов.
Предложенная модель позволяет по-новому взглянуть на соотношение, выражающее эквивалент массы и энергии  Е =M0 C2. Физический смысл энергетического эквивалента состоит в том, что  M0 C2— это не энергия тела, а максимум меры энергии, которую можно сообщить этому телу (системе).
Из этого следует, что от любой системы можно взять столько энергии, сколько этой энергии в неё было вложено ранее. Таким образом
Еполн = dМ С2 + 0,5 М0V2 + Епот ≤ М0 C2,
где dМ – дефект массы, равный М0 — Мгр.

Наивная вера в то, что мы, живя в безмерном море энергии, научимся потреблять её без меры и оглядки, так и останется  наивной верой. И аннигиляция здесь не поможет. Во-первых, аннигилирует не вещество, а заряды, хотя этот факт умалчивается. Во-вторых, энергия аннигиляции всегда будет меньше, чем энергия, затраченная на производство античастиц.

Необходимо отметить, что соотношение (6.3) противоречит одному из основных положений теории относительности, а именно:
M=M0/(1-V2/C2)0,5                    (6.5).
Не смотря на то, что скорости V в соотношениях (6.3) и (6.5) определены по-разному (в квантовом представлении это скорость относительно пространства, а в ТО это скорость тела относительно наблюдателя), совершенно ясно, что хотя бы одно из этих соотношений ложно. Однако оба выражения обеспечивают недостижимость скорости света для вещественных тел.

7. ПРОГНОЗИРУЕМЫЕ ЭФФЕКТЫ

Проиллюстрируем полученные результаты практическими эффектами, которые можно прогнозировать для движущихся систем на основании рассматриваемой гипотезы.

1) При измерении массы заряженной частицы методом отклонения движущейся частицы в поле плоского конденсатора, без учета эффекта Q= Q0 (1-V2/C2), будет возникать ложный эффект, проявляющийся в кажущемся увеличении массы движущейся частицы при увеличении ее скорости. Этот эффект и послужил главным подтверждением выводов теории относительности, и явился причиной первичного заблуждения.
2) Вес гироскопа будет уменьшаться с увеличением скорости вращения.
Пример. Для получения эффекта уменьшения веса на 10 мг, характерные параметры полого цилиндрического гироскопа должны быть следующими: радиус – 1м, частота вращения – 50 об/сек, вес – 4 тонны. Расчет проведен для линейной скорости гироскопа относительно пространства, принятой 250 км/сек, т.е. близкой к скорости Земли по орбите вокруг центра Галактики.
Количественный расчет приведен для того, чтобы продемонстрировать уровень сложности измерений, необходимых для подтверждения различия инертной и гравитационной массы.
3) Вес атома водорода должен быть меньше суммарного веса протона и электрона, составляющих атом, что и наблюдается. По теории относительности, напротив, вес атома водорода должен быть больше веса составляющих частиц, но это противоречие не обсуждается.
На практике важна только разность масс для двух состояний, которая определяет так называемый дефект массы. Знак этой разности выбирается безошибочно, по практическому результату и с учетом цели эксперимента.
4) Все вращающиеся тела, при поступательном движении во внешнем силовом поле, в общем случае характеризуются релятивистским смещением центра приложения сил относительно центра массы инерции. Эффект смещения вызывается градиентом полных линейных скоростей элементов вращающегося тела, движущегося поступательно. Внешнее силовое поле в таких ситуациях вызывает три типа изменения характеристик движения:
-обычное ускорение;
-релятивистское угловое ускорение относительно оси вращения тела;
— релятивистское прецессионное движение оси вращения тела.
Похожие эффекты уже зарегистрированы. Речь об эффекте Лензе-Тирринга. Однако наблюдаемые эффекты ошибочно трактуются как результат торсионных взаимодействий гироскопа с вращающимся гравитационным полем Земли.
5) Вес тела будет уменьшаться с увеличением его температуры.
6) Легкая элементарная частица (или ее осколок), перемещающаяся с субсветовой скоростью, становится похожей на фотон, т.к. масса гравитации и величина заряда такой частицы становятся близкими к нулю, и она перемещается практически прямолинейно, не  взаимодействуя ни с какими полями. При прямых столкновениях такие частицы могут проявлять себя как гамма-кванты.
7) Реальные  релятивистские зависимости  Q= Q0 (1-V2/C2)   и  Мграв= М0 (1-V2/C2) не позволяют приложить к телу силу, способную разогнать его до скорости света. Ограничение действует посредством уменьшения эффективности  любого воздействия, т.е. формально — через к.п.д. воздействия, стремящегося (о к.п.д.) к нулю.
8) На поверхности большого тела масса гравитации пробного тела (а это масса приращения для большого тела) уменьшается при возрастании массы большого тела, что сопровождается соответствующим замедлением ритма времени.
9) Любое замедление ритма времени, связанное с большой скоростью или большим гравитационным полем, должно вызывать смещение характерного спектра излучения в красную сторону. Смещение происходит уже в момент излучения фотона. Фотоны с гравитационным полем не взаимодействуют и гравитационным полем не отклоняются.
10) Масса Земли, вычисленная по траектории Луны, будет существенно превышать массу, вычисленную по траекториям геостационарных спутников
11) Наконец, самый легко проверяемый прогноз, который может без всяких затрат опровергнуть предлагаемую концепцию.
В современных ускорителях типа БАК, пучки заряженных частиц удерживаются на требуемых траекториях управляемыми магнитными линзами. Управление осуществляется изменением силы тока магнитов. Любая частица, не зависимо от массы, за одну секунду разгона без магнитного удержания, просядет в горизонтальной плоскости на пять метров. А толщина пучка порядка пяти миллиметров. Ток компенсации, при этом, зависит от массы частиц. Для ионов свинца он гораздо больше, чем для электронов.
В процессе разгона масса протона, по официальной версии, увеличивается в сотни раз, а его заряд остается неизменным. Токи компенсации тяжести должны увеличиваться соответственно.
По предлагаемой концепции масса гравитации протона должна уменьшатся, и соответственно должен уменьшаться его эффективный заряд. В результате настройка компенсации горизонтального смещения пучка не будет зависеть от скорости протонов, оставаясь неизменной на всем протяжении опытов с данными частицами при любой скорости.

Не заметить этот эффект, в любом его проявлении, можно только при большом и сознательном нежелании. Подтверждение официальной версии или её опровержение сэкономило бы огромные средства, затрачиваемые на дорогие эксперименты, подтверждающие Теорию относительности, и прекратило бы её нескончаемую критику.
Большинство из приведенных ожидаемых эффектов описаны здесь только на качественном уровне, но ничто не мешает произвести количественный расчет.
Эффект красного смещения зарегистрирован для Солнца, для галактик и для квазаров. Чем моложе, а значит и горячее, квазар или галактика, тем больше смещение.
Молодые галактики более компактны и характеризуются большей напряженностью гравитационного поля, что вызывает дополнительное красное смещение. Кроме того, необходимо принять во внимание то обстоятельство, что чем больше расстояние до наблюдаемых галактик, тем больше малых галактик становится ненаблюдаемыми. Тем самым производится селективный отбор, искажающий истинную картину общего космического состояния.

Замедление времени хорошо заметно на времени жизни неустойчивых частиц, и этот эффект хорошо известен. Время жизни характеризуется периодом полураспада. Этот параметр оказался самым чувствительным параметром, в зависимости от скорости абсолютного движения. Уже опубликованы результаты исследований тонкой зависимости характеров радиационных распадов от скорости относительно пространства. Исследования проведены академиком Симоном Шнолем [10].

Из прогнозируемых эффектов следует обратить внимание на четвертый, т.к. на его основе можно построить навигационный прибор, измеряющий скорость движения изолированного прибора относительно свободного пространства.
Таким прибором может быть гироскоп, размещенный на общей раме с телом большой массы. Ось гироскопа должна быть направлена с небольшим наклоном в сторону большого тела. В неподвижной инерциальной системе смещение центров инерции и гравитации равно нулю — и гироскоп не реагирует на присутствие большого тела. При поступательном движении системы со скоростью V , перпендикулярной оси гироскопа, возникнет градиент скоростей различных точек гироскопа (по модулю относительно контура гироскопа). Градиент будет перпендикулярен направлению прямолинейного движения системы, и вызовет соответствующий градиент массы гравитации, что приведет к смещению центра приложения сил гравитации, вызываемой массивным телом, относительно центра инерции гироскопа. В результате ось гироскопа будет совершать прецессионное движение. Параметры прецессии будут зависеть от массы большого тела, от параметров гироскопа, от ориентации прибора относительно направления его движения, но самое главное — они будут зависеть от скорости прибора относительно пространства, рис.3.

Эффект значительно усилится, если большое тело и гироскоп электрически изолировать, и зарядить.
На практике, подобный эффект зафиксирован в спутниковых измерениях, но ложно трактуется как результат влияния торсионных полей Земли.
Кроме того, система из гироскопа и большого тела уже реализована в природе в космических масштабах. Гироскопом в этой системе является Земля, а большим телом являются центральное тело Галактики, а также Солнце и Луна. Для проверки гипотезы достаточно произвести релятивистский расчет параметров прецессии Земли с учетом смещения центров масс гравитации и инерции, и сравнить результат с имеющимися наблюдениями.
Учитывая тот факт, что в системе Земля-Солнце-Луна отсутствует стационарное (сохраняющее направление) поле притяжения, т.е. параметры системы «гироскоп – тяжелое тело» постоянно меняют направление, то с ними меняются и характеристики прецессии. Одно полугодие прецессия происходит в положительном направлении (условно), а второе полугодие в отрицательном. Эту возвратно-поступательную прецессию можно принять (и приняли) за годовую нутацию.
Наблюдаемая прецессия Земли с предполагаемым периодом 26 тыс. лет формируется полем центрального тела Галактики, и суммируется с приращениями, образуемыми разностью полугодовых и полумесячных прецессий, вызываемых Солнцем и Луной.
Для Земли смещение центра тяжести от центра массы — ничтожно, порядка 5 мм, но оно совершенно реально, и практически постоянно. Период его изменения равен периоду обращения Солнца вокруг центра Галактики.

Релятивистские угловые ускорения, о которых уже шла речь в 7.4, можно ошибочно принять (и принимают) за элемент вековых возмущений обменного взаимодействия, наблюдаемого в рамках классической механики. Но прецессию осей вращения планет путать не с чем. Обнаружив факт прецессии земной оси, исследователь, свободный от авторитарных стереотипов и пристрастий, должен предположить наличие смещения между центром инерции и центром приложения сил, и начать искать причину этого смещения. Существующие объяснения прецессии Земли основаны на ошибке, приписываемой Эйлеру, который якобы предположил (но не просчитал), что обруч в радиальном поле гравитации сформирует центр притяжения, смещенный от центра массы. Ошибка этого утверждения проанализирована  автором в [11].

Качественный анализ позволяет определить, что обменные взаимодействия будут вызывать попеременно, то ускорение движения Луны вокруг Земли, то замедление. Однако, время ускорения несколько продолжительнее за счет совпадения направлений вращения, и Луна должна испытывать интегральное линейное ускорение, что и происходит.
Для Земли все воздействия являются противоположными, и она замедляет свое вращение, но это замедление накладывается (складываясь) на замедление, вызываемое океанскими приливами.
Увеличение линейной скорости движения Луны по своей орбите вызывает увеличение радиуса ее орбиты. Этот эффект зафиксирован экспериментальными наблюдениями и, значит, в настоящий момент преобладает по сравнению с другим эффектом, например, эффектом торможения Луны, вызываемым земными океанскими приливами.

8. ЗАКЛЮЧЕНИЕ 1

Изложенный материал описывает физическую модель квантовой гравитации, сформулированную в рамках концепции принципиально квантовой структуры мироустройства.

Представленная модель не является законченной, т.к. в ней отсутствует модель электрических взаимодействий. Да и гравитационные взаимодействия представлены на азбучном уровне.
Концепция не может быть законченной и по принципиальным соображениям, т.к. ставя целью отображение неисчерпаемых свойств материи, модель не должна содержать тенденций к своей завершенности.

Структурно, полная модель предполагает наличие модели электрических взаимодействий, модели фотонных взаимодействий и модели квантовых ассоциативных (групповых) взаимодействий, ответственных за образование устойчивых элементарных частиц.

Для дальнейшего развития модели, включающей электрические взаимодействия, необходимо разработать модель квантовой структуры заряда и его внешнего, постоянно присутствующего поля (в эффективном макро представлении). Разработка квантовой модели электрических взаимодействий не входила в круг задач данной работы, и не ставится автором на будущее. Автор надеется, что модель станет общим достоянием, и будет развиваться общими усилиями, пока будет полезна.

Необходимо сказать несколько слов об основополагающей идее Фейнмана. Сейчас очень многие фантазируют на основе формальной идентичности закона Кулона и закона Ньютона. Действительно, общее есть, так как оба процесса взаимодействия основаны на локационном принципе, и оба закона описываются аналогичными приблизительными математическими моделями. Но в то же время их физическая сущность совершенно разная, т.к. гравитоны отрываются от своих источников, обеспечивая субъективный эффект очень большого дальнодействия, а носители электрического взаимодействия (назовем их условно: электрино) от зарядов не отрываются, окружая их плотным пульсирующим облаком. Их распространение  в пространстве определяется заполнением объема Qdv, где Q – количество электрино в теле. Кроме того, эффективное поле гравитации является моно полем, а электрическое поле практически всегда является суперпозицией двух полей: +Е и –Е, т.к. положительное и отрицательное поля существуют независимо, не уничтожая друг друга. Они существуют одновременно, и в одном месте. В противном случае явление магнетизма, с известными характеристиками, было бы невозможным.

В работе представлено несколько прогнозов, проверка которых могла бы дать объективную оценку концепции, и, при положительном результате, ускорить разработку механизма других типов взаимодействий. Но уже сейчас можно с уверенность сказать, что если верна представленная часть модели, то все типы электрических взаимодействий должны заканчиваться соответствующим изменением состояний счетчиков №1, №2 и №3, определяющих конечный результат любого взаимодействия.

Таким образом, гравитон, как носитель самого слабого взаимодействия, предстает связующим звеном всех возможных типов взаимодействий в природе, реализуемых на первичном (на данный момент) квантовом уровне.

Модель гравитации принципиально отрицает принцип эквивалентности массы гравитации и массы инерции, а также полную независимость физических процессов от характеристик движения  инерционных систем. Однако характер отрицания таков, что эти принципы, в рамках допустимых погрешностей, могут оставаться действующими атрибутами классической теории и общей теории относительности. Рамки практического применения, предоставляемые этими погрешностями так широки, что послужили причиной ошибки и канонизации этих закономерностей в фундаментальные законы природы.

Для развития модели в плане ассоциативных контактных взаимодействий квантов, которые приводят к образованию элементарных частиц, необходима специфическая информация, получаемая при расщеплении элементарных частиц. Накопление такой информации идет уже много лет и ждет своего Менделеева.  Проводя эксперименты на ускорителях заряженных частиц, надо учитывать, что при приближении скорости частиц к скорости света, энергия их столкновений повышается очень медленно, в основном за счет уменьшения тормозящего воздействия одноименных кулоновских полей. При этом энергия столкновения не может превысить значения 2mC^2, где m — масса протона, т.е. всего 1876 МэВ. Однако, приближение скорости частиц к своему пределу существенно сказываться на увеличении вероятности лобовых столкновений, т.к. опять же сводит к минимуму рассеивающий эффект кулоновского поля частиц.

Таким образом, мнимое, огромное повышение энергии протонов существенно будет влиять лишь на увеличение частоты событий (количеству столкновений в сек).
Экспериментальным подтверждением предложенной концепции могли бы стать результаты успешных (с точки зрения реализации параметров ускорителя) экспериментов на Большом адронном коллайдере. Энергия столкновения встречных протонов окажется существенно меньше ожидаемой. При выверенной интерпретации этот факт обязательно был бы зафиксирован. Но этого, видимо, не произойдет, т.к. «исчезнувшая» энергия, более 4 ТэВ, скорее всего, будет традиционно списана на нейтринное излучение, и Большой адронный коллайдер будет объявлен самым мощным и самым эффективным генератором нейтрино.

Результаты вышеприведенного анализа модели квантовой гравитации по варианту, предполагающему инвариантность массы инерции и зависимость массы гравитации от скорости перемещения как mгр= mо(1- V2/C2), демонстрируют более чем хорошее совпадение свойств реального пространства с характеристиками прогнозируемыми моделью.

Те расхождения, которые продемонстрировала модель с установившимися представлениями, можно определить как систематизирующие и уточняющие. Не логично полагать, что природа избранно применяет релятивистский принцип, выражаемый одним членом преобразования Лоренца, а именно, релятивистским фактором. Скорее всего, релятивистский фактор и является фундаментальным природным свойством любых релятивистских систем, что и отражает приведенная концепция.

Для подтверждения необходим решающий, честный эксперимент.

 

Сентябрь, 2008г.

 

  1. ЗАКЛЮЧЕНИЕ 2

 

Прошло два года с момента первой и несколько поспешной публикации этой статьи в журнале «Инженер». Поспешность была вызвана предстоящим пуском Большого адронного коллайдера.  В то время предстоящие эксперименты на БАК были  для автора надеждой, что наконец выяснится абсурдность убеждения о бесконечном увеличении массы барионного вещества при увеличении ее относительной скорости.

Прогноз, содержащийся в «Заключении 1» (которое не подвергалось с тех пор редакции), полностью оправдался.

Сейчас, когда всё уже произошло, и эффект дефицита энергии столкновения очевиден, общая ситуация, тем не менее, ни сколько не изменилась. Квантовая теория, превратившись в фрагментарную описательную теорию, способна описать что угодно. Экспериментаторы уже давно заметили недостачу, но не торопились акцентировать на этом внимание общества. Последнее время стало выгодно, обнаружив новое явление, не торопиться объявлять о нем. Лучше разработать соответствующую гипотезу, в которой «предсказать» явление. В этом случае новоявленная гипотеза сразу становится рабочей теорией. А как же, если предсказан новый эффект, и он после этого обнаружен, значит — теория верна.

Эффект недостачи энергии в балансе столкновений протонов на БАК в отчетах испытаний в явном виде не сформулирован, но своевременно появились новые и нужные модели столкновения протонов. Лента новостей БАК освещает несколько различных тем. В одной из этих тем популярно рассказывается о теоретическом обосновании проводимых экспериментов. Вот один из фрагментов такого сообщения.

«Характерная черта высокоэнергетических столкновений с участием протонов — невозможность рассчитать сечения тех или иных процессов, опираясь только на теорию. Однако теоретики доказали, что это сечение можно разбить на две части — причем одна часть вычисляется хорошо, а вторая часть (партонные распределения), хоть и не вычисляется, но зато универсальна для всех процессов. Поэтому, если узнать вид партонных распределений из одних процессов, то можно будет делать надежные теоретические предсказания и для множества других реакций». Конец цитаты.

О чем здесь речь? Часть распределения энергии столкновений поддается анализу и моделированию, эта часть соответствует реальной энергии столкновения. А вот надуманная (не существующая) часть энергии протона моделированию не поддается, т.к. упорно растет вместе с ростом затраченной энергии. Но дефицит не зависит от типа столкновений, и в этом смысле предсказуем, т.к. является общим для заданных и равных уровней энергий. Если дефицит однажды измерить в одном эксперименте, то в следующем при тех же энергиях он обязательно повторится.

В чем суть партонных распределений? Гипотеза о партонах предполагает протон состоящим из множества более малых и разнообразных частиц с общим названием партоны. Партонная гипотеза еще только создается и не сформировала окончательной модели протона, вернее сформировала множество моделей, на любой вкус. Вот краткое изложение одной из наиболее популярных моделей.

«Релятивистский адрон в модели партонов представляется как когерентная совокупность бесконечного числа кварков, антикварков и глюонов. При этом разность чисел кварков и антикварков каждого типа (аромата), т.е. число валентных кварков, конечна и определяет аддитивные квантовые числа адрона (электрический заряд, странность, барионное число и т. д.). Так, протон содержит два валентных u -кварка, один валентный d -кварк, а также море кварк-антикварковых пар (т. н. морских кварков и антикварков) и глюонов». Конец цитаты.

Под морем понимается неограниченное количество пар, но не реально присутствующих в протоне, а виртуально существующих в реальном пространстве, и доступных для протона в определенных типах взаимодействий – черпай сколько надо. Вот еще одна цитата, взятая из комментария Игоря Иванова: «…адроны (к ним относятся и протоны) состоят из кварков, но распадаются не на них, а на группки кварков, а если кварков в исходном адроне для этого не хватает, то квантовые флуктуации породят столько кварк-антикварковых пар, сколько нужно». Удобная теория. Из серии инфляционных.

Самое главное в партонной модели то, что она позволяет релятивистским протонам при прямом попадании (столкновении) практически не взаимодействовать друг с другом. Точнее, взаимодействовать, но не в полной мере, а только одним или незначительным количеством партонов, из тех что составляют протон. При этом столкнувшиеся партоны выбиваются из протона и регистрируются датчиками в качестве коротко живущих частиц (но ни разу это не были кварки). Остаточная (основная) часть протона, якобы уносится вместе с главным потоком протонов в «трубу» коллайдера.

Вот и готово объяснение дефицита. Но дефицит так велик, что может оказаться невероятным даже с точки зрения партонных плотностей. В этом случае на помощь можно призвать темную материю, которая тоже почему-то может образовываться при столкновении протонов. Темная материя это что-то такое, что имеет тяжелую адронную массу, предположительно превосходящую массу протонов, и соответствующую ей энергию и гравитацию. А больше — ничего.

Лабораторно, черную материю обнаружить также трудно, как и нейтрино, только по дефициту массы и энергии. Очень удобный прием для произвольной балансировки энергии любой модели взаимодействий. Нейтрино и черной материи всегда ровно столько, сколько не хватает. По определению. Это есть величайшее завоевание прикладной квантовой теории, обслуживающей теорию Большого взрыва. Вот еще фрагмент на эту тему из ленты новостей.

«…Одной из задач LHC (англ. — БАК) как раз будет поиск и исследование таких «невидимых» частиц. Задача это намного более сложная, чем может показаться на первый взгляд. Частицы темной материи должны, по определению, быть стабильными и должны исключительно слабо взаимодействовать с обычным веществом. Это значит, что если такие частицы родятся в столкновениях протонов, то они вылетят из детектора незамеченными. Поэтому для того, чтобы изучать «темный сектор» нашего мира, требуется придумать методики изучения частиц, не «видя» их в детекторе». Конец цитаты.

Не «видя» в детекторе – это и значит по дефициту. Круг замкнулся.

Таким образом, в ленте новостей собственно о дефиците энергии явно ничего не сообщается, но приводится несколько обоснований его наличия. Этим создается видимость, что эффект теоретически предсказан, а это — большой  плюс в копилку услужливых теоретиков. Однако, как отмечено выше, партонные распределения не поддаются теоретическому расчету, и определяются экспериментально. Здесь можно только посоветовать теоретикам, построить график зависимости дефицита энергии от полной энергии пучка, и это окажется почти прямая линия. Но они это видимо уже сделали, и общество скоро узнает новую теорию-гипотезу, объясняющую это явление.

Таким образом, надежда автора на БАК не оправдалась. Это естественно, сбыться должно было что-нибудь одно: либо надежда автора, либо планы заинтересованных участников.

Приоритеты несопоставимы.

В этом смысле длительные и дорогостоящие целевые эксперименты представляют известную угрозу для истины и для кармана налогоплательщиков. Кому много и долго платят за поиск, впадают в соблазн — постоянно находить подтверждения целесообразности поиска.

Дополнено и отредактировано в ноябре 2010 г.

 

  1. Заключение 3

 

Прошло 6 лет с момента публикации статьи в журнале «Инженер» и последующих публикации в Интернете. Но всё также мир науки стоит на трех китах: Теории Относительности, Квантовой теории поля и чиновничьем чванстве.

ТО позволяет Вселенной сжиматься в безразмерную точку, и производить массу из энергии, которой в космосе – безмерный океан.

В КТП, вообще, нет вещественного кванта. Энергетического кванта тоже нет. Постоянная Планка это не энергетический квант, это нечто, полученное в результате деления энергии фотона на собственную частоту.

ТО породила теорию Черных дыр и теорию Большого Взрыва. Эти теории, как и собственно ТО, никому не мешают, по причине своей полной никчемности. Однако вред косвенный, от вздорных постулатов ТО, трудно переоценить.

ТО создана на базе произвольных, вздорных постулатов. И все эти, искажающие истину постулаты, в рамках ТО приобрели статус фундаментальных. Вот догматическая фундаментальность вздорных постулатов и наносит неисчислимый вред науке и экономике.

На фотонах, не имеющих продольного импульса, безуспешно пытаются строить фотонные двигатели. На ядерных реакциях синтеза, являющихся принципиально энергопотребляющими, обреченно безуспешно пытаются строить генераторы энергии (ТОКАМАК-и и пр.).

На ускорителях также безуспешно и обреченно пытаются сообщить протонам безмерную энергию, при их скромной энергоемкости 938,71 МэВ.

Всё новые и новые экспериментальные факты, противоречащие официальной догме, приходится интерпретировать с помощью изощренно приспособленных учений, называемых теориями. В результате этого процесса возникла супер теория – теория инфляции.

Апологетам-подельникам инфляционного учения подвластно всё. Всё, потому что это не наука, а антинаучная фантастика, т.е. товар. Можно сказать — лженаука

Лженаука не там, где ошибаются, а там, где сознательно вводят общественность в заблуждение.

Всем специалистам известно, что гравитация распространяется мгновенно, и почти никто в это не верит. И у всех одна причина не верить – в реальном, физическом мире, бесконечных интенсивных параметров быть не может, в том числе и скорости. Всё дело в том, что мы живем в реальном, но эффективном мире; привычно и ошибочно считая его абсолютно реальным. Вот эта, милая нашему самолюбию иллюзия, и ставит человечество раз за разом в тупик.

Нижний Новгород, 2012 г.

  1. Заключение 4

Еще древние философы пришли к выводу о квантовом устройстве мира.

Оцените представление Декарта: равные объемы содержат одинаковое количество материи. Это же афористичное изложение определения эфира, данного Лоренцем. А определение Лоренца – это краткое изложение данной статьи.

Знали ли древние философы что-то такое, чего не знаем мы, и что помогло им сделать правильный вывод? Скорее всего — нет. Тогда в чем дело?  А дело в том, что древние мыслители не знали чванства; они были скромнее, и всё новое, что им удавалось узнать у природы, они не пытались применять за рамками здравого смысла, потому что не пытались преувеличить свои заслуги. Не будем устанавливать первенство, с кого началось чванство. Приведем лишь пример — это принцип линейной относительности. Пример фактического философского невежества, замешанного на научном чванстве. Тупик оказался трудно преодолимым; таким, что выйдя из него, человечество попало в следующий тупик, из которого не может выйти до сих пор. Но природа не позволяет помыкать своими законами. И человечество платит за свое чванство бессмысленной тратой средств и долгим топтанием на месте.

Так, что же мы действительно знаем о природе, в аспекте данной статьи, а не навыдумывали себе в угоду под нимбом математического всемогущества.

Вещественная материя склонна создавать типовые, локальные образования, характеризуемые повышенной плотностью. Самые крупные такие образования, известные нам, это галактики. Галактики повторяются и повторяются, варьируя  свои свойства и параметры.

В рамках галактик вещество вновь концентрируется  в звездные системы, которые вновь повторяются и повторяются, множа свое разнообразие.

Звездные системы созданы из атомарного и молекулярного вещества, в котором плотность вещества всё увеличивается.

Разнообразие видов вещества – удивительное. Природа готовит исходный материал для создания жизни. Это разнообразие обеспечивается за счет комбинаторики атомов, которых уже всего около двух сотен. На уровне многообразия молекул, которое включает в себя и одиночные атомы, возникает новое, важное качество – высокий стандарт молекул и атомов.

Мыслители, не зная строения молекул, апробируют молекулы на первооснову мира. Но необъятное разнообразие молекул (веществ) ставит их в тупик.

Развивающаяся наука разрешает проблему буйного разнообразия вещества, обнаружив следующий уровень повторяющихся высоко стандартных объединений вещественной материи – атомы. Атомов уже всего две сотни, а их стандарт еще выше молекулярного. Атомы — естественные претенденты на статус первоэлемента. Их и называют атомами, используя терминологию древних мыслителей, представлявших мир дискретным.

Однако наука разрушает надежды исследователей, атом оказывается сборной структурой из еще меньших вещественных образований. На этот раз их всего три: электрон, протон и нейтрон.

Обнаруживается явная тенденция вещества к сокращению базовых образований, с увеличением плотности вещества в каждой следующей модификации образовании. Вновь возрождается идея о первоэлементе. Теперь уже в образе и в терминологии кванта, т.к. термин атом уже использован. При этом делаются невнятные попытки представить нуклоны и электрон элементарными частицами, но идея не находит экспериментального подтверждения. Исследования атома продолжаются с явным прицелом на поиск единственного первоэлемента. Но вместо этого исследователи обнаруживают множество нуклонных осколков. Идея единого первоэлемента,- универсального кванта,- вновь откладывается.

Предлагаемая Концепция реализует эту идею. Но автор не постулировал универсальность единого кванта. Модель, проявив способность к самоорганизации, сама продиктовала и универсальность материального кванта, и все остальные, удивляющие нас, его свойства.

Свойства материального кванта действительно удивительны, но не возмутительны. Намек на вызывающую сложность функций и свойств кванта дает величайшее открытие Клаузиуса, который математически безукоризненно доказал нежизнеспособность Вселенной, собранной из убогих шариков, не имеющих никаких других свойств кроме упругости и массы.

Открытие Клаузиуса не было оценено по достоинству. Благодаря предшествующим заблуждениям его открытие было интерпретировано как парадокс. А всего-то надо было подвергнуть сомнению постановку задачи. Из закона о тепловой смерти логически следует, что уровень гармоничности всякой вселенной прямо зависит от свойств первичного элемента.

Мир гармоничен настолько, насколько, эта гармоничность предусмотрена и присутствует в первоэлементе. Этот вывод полностью совпадает, и является терминологическим вариантом высказывания Ленина о неисчерпаемости электрона.

Возникает досужий вопрос. Зачем природе обманывать нас, демонстрируя нам неуловимую линейную приблизительность в действительности нелинейного мира?  Дело не в нас. Дело в том, что для построения гармоничного мира нет других вариантов. Чисто линейный вариант приводит к неразрешимой проблеме бесконечных параметров. Однако линейный участок совершенно необходим природе для реализации принципа «экономии мышления».

Нижний Новгород, март 2017г.

 

Контакт с автором E-mail: vleonovich@yandex.ru

СПИСОК ИСТОЧНИКОВ ИНФОРМАЦИИ
1. А. Эйнштейн. Собрание научных трудов (СНТ), М. Наука 1965г.
2. Ландау Л.Д., Румер Ю.Б., К., 1965.
3. Прохоров А.М.: Большая Советская Энциклопедия (3 редакция).
4. Уваров В.А.,  Специальная теория относительности, М.: Наука, 1977.
5. Физический энциклопедический словарь. М. Советская энциклопедия, 1983.
6. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. Т. 6. М.: Мир, 1966.
7. Леонович В.Н., Импульс фотона, фотонный двигатель и философия, Интернет: http://www.sciteclibrary.ru/rus/catalog/pages/13311.html.
8. Николаев Г.В. Непротиворечивая электродинамика, НТЛ, 1997.
9. Ивченков Г., Кратко о силовом взаимодействии движущихся зарядов или неожиданное появление коэффициента ;, Интернет.
10. Шноль С.Э., Космофизические факторы в случайных процессах // Svenska fysikarkivat, Stockholm (Швеция), 2009.— 388 с., Интернет.
11. Леонович В.Н., Неэквивалентность массы инерции и массы гравитации, Интернет: http://www.sciteclibrary.ru/rus/catalog/pages/13787.html.
12. Форд К., Мир элементарных частиц, М., 1965.
13. Лента новостей с Большого адронного коллайдера, Интернет.