Архив рубрики: Квантовый мир

Загадка неразлучной пары электрон-протон

Загадка неразлучной пары электрон-протон

(Информация к размышлению)

 

Ключевые слова: аннигиляция, аннигиляция протона и электрона, принцип Паули.

Школьная истина: противоположно заряженные электрические частицы притягиваются друг к другу.

Институтская истина: противоположно заряженные элементарные частицы при своем соприкосновении аннигилируют, т.е. превращаются в сгустки энергии в формате фотонов.

Понятие аннигиляции, как взаимопревращение вещества и энергии, не терпит никаких искажений. А это значит, что нельзя процесс образования множества элементарных частиц, образующихся в результате столкновения протона и антипротона, называть аннигиляцией. Но именно так и поступают авторитеты официальной науки, чем заводят решение научных проблем в тупики ложных представлений.

Мириады звезд Вселенной заняты производством фотонной энергии, ежесекундно расходуя свою материю мегатоннами. А где во Вселенной свет превращается в вещество? Пока такого места не нашли. Из этого следует, что Вселенная медленно (по нашим меркам) гибнет.

Природного концентратора фотонной энергии (накопителя и преобразователя) пока не обнаружено. Разве что – хлорофилл. Но в космических масштабах это не серьезно. Гипотетических, научных предположений тоже нет.

По канонам научной логики, при таких исходных данных – взаимопревращение вещества и энергии не может рассматриваться как фундаментальный процесс.

А как же быть в этом случае с рождением пар электрон-позитрон?

Однако никто не доказал, что эти пары рождаются непосредственно из гама-кванта, а не выбиваются этим квантом из инкогнито присутствующего стороннего вещества.

Когда от стука камнем о камень, вылетают искры, то никому в голову не приходит, что эти искры (мельчайшие осколки камней) являются особым веществом, порождаемым кинетической энергией. Почему же, когда гамма-квант высекает электрон и позитрон, это рассматривается как рождение вещества из энергии? Может быть, это так и есть. Однако поспешность выводов – налицо.

Нейтрон, самопроизвольно испустивший электрон, превращается в протон. Так может быть, нейтрон может испустить и пару электрон-позитрон, после поглощения гама-кванта. Исследовал ли это кто-нибудь целенаправленно?  Похоже — нет. Просто в камере Вильсона вилочный трек пары выглядит так, будто позитрон и электрон возникли на пустом месте. Но камера Вильсона это же не вакуум.

Интерпретация с рождением электрон-позитронной пары из кванта энергии, при ближайшем рассмотрении, выглядит несколько наивно и самоуверенно. И на этой наивной версии уже построен целый научный комплекс, со своей специфической, и возможно ложной, парадигмой. Эта парадигма уже преподается авторитетами, зомбируя сознание будущих ученых, которые тоже в свою очередь становятся авторитетами.

Мы привыкаем к тому, что постоянно видим, с чем постоянно сталкиваемся. Привыкая, мы перестаем удивляться. А те явления, которые нас не удивляют, остаются вне деятельности, порождаемой нашим любопытством.

Почему всё вещество Вселенной, состоящее из положительных и отрицательных элементарных частиц, проявляет себя как нейтральное очень устойчивое вещество, а не аннигилирует?

Если, глядя на падающее яблоко, можно сформулировать всемирный закон тяготения, то, глядя на всё нейтральное вещество, состоящее из положительных и отрицательных зарядов, можно сформулировать еще один всемирный закон.

Природа противится контактному сближению притягивающихся элементарных частиц. Диалектика борьбы противоположностей в чистом виде.

Можно смело отредактировать имеющийся закон всемирного тяготения. А именно: все тела притягиваются по закону Ньютона, но только до определенного предела.

Стоит принять эту естественную приписку-поправку – и рухнет мистическая теория Черных дыр. Но это не наша тема.

Что же в природе мешает сомкнуться противоположным зарядам? Мешает хитро и специально так устроенное магнитное поле. Поведение магнитного поля невозможно описать аналитической формулой; для его полного описания необходимо операторное представление. Образно выражаясь, магнитное поле это преддверие в квантовую теорию.

Дело в том, что магнитное поле элементарных частиц является композицией макро магнитного поля Фарадея и Максвелла с магнитным полем квантового происхождения, т.е. со спинами. Спин частицы невозможно ни уничтожить, ни изменить по величине. Спин можно только повернуть, соблюдая правила симметрии пространства, т.е. не на любой произвольный угол.

Обратим внимание на следующее обстоятельство. Мы только что, не проводя никаких экспериментов, гипотетически сформулировали новый фундаментальный закон физики, точнее гипотезу, отрицающую аннигиляцию. Этот закон как бы был просмотрен первопроходцами, а мы его заметили и подобрали.

Посмотрим еще внимательнее, может быть, что-то похожее есть ещё, даже если и не такое фундаментальное.

Любое сближение электрона и протона имеет всего два исхода: самый вероятный – это рассеяние, и второй – это образование атома водорода. В общем случае атом должен получиться возбужденным, в той или иной мере, т.е. электрон не может сразу попасть на разрешенную принципом Паули стационарную орбиту (орбиталь). Чтобы электрон занял стационарную орбиту, атом должен излучить (или поглотить) соответствующие кванты энергии (фотоны).

Официальная наука приписывает излучение фотонов атомами их орбитальным электронам. Получается, что излучают совершенно одинаковые электроны, а спектр излучения, тем не менее, является визитной карточкой ансамбля одинаковых атомов. Как-то не логично. Логичнее относить излучение ансамбля одинаковых атомов именно самим атомам.

Итак, мы вводим новое положение-предположение, а именно – спектр фотонов излучает атом.

Предположим теперь, что мы охладили наш ансамбль атомов водорода до температуры, близкой к абсолютному нулю. Следуя установкам официальной науки и принципу Паули конкретно, мы должны представлять электрон в атоме водорода в виде сферического облачка-пузыря. Это будет макро модель атома с учетом усреднения по достаточно большому интервалу времени. И в этом представлении атом не похож на планетарную модель. Однако при кратковременном наблюдении, соизмеримом с периодом обращения электрона, наша модель достаточно близка к планетарной, и очень хорошо прогнозирует квантовые параметры атома.

В этом месте необходимо сделать небольшое отступление.

Планетарная модель не применима к следующим за водородом, более тяжелым атомам, и эта неприменимость носит принципиальный характер. Дело в том, что в атоме водорода допустимо кулоновскую силу притяжения рассматривать отвлеченно, т.е. как просто притяжение, аналогичное гравитации. Однако при введении в модель уже второго электрона, получается ситуация, абсурдная с точки зрения планетарной модели. Второй электрон создает отталкивающий потенциал, который может превосходить потенциал центрального тела (ядра). С планетами такое невозможно.

Характеристики такой планетарной системы нам неизвестны по причине полной ненадобности. И попытки применить законы Кеплера к тяжелым атомам успеха не имели. А сама по себе попытка является нелепостью, результатом частичной неосведомленности узких специалистов, что в просторечии называется профанацией.

Планетарная модель Бора даже по отношению к атому водорода не является вполне адекватной. Дело в том, что в ней равновесие центробежных и центростремительных сил достигается в противостоянии сил инерции силам кулоновским и гравитационным. Сила кулоновского притяжения как минимум на 36 порядков превосходит силы гравитации. На этом основании исследователи силами гравитации пренебрегли. Но ведь силы гравитации в солнечной системе соизмеримы с силой инерции. Но силой инерции пренебречь никак нельзя, иначе неоткуда будет браться равновесию сил.

И вот здесь случился величайший казус. Силу инерции сохранили, но, сохранив её в уравнениях движения, забыли её отмасштабировать, т.е. уменьшить в 10^36 раз.

Благодаря этой забывчивости, разрешенные энергетические уровни электронных оболочек теоретически разделяются друг от друга на величину соизмеримую начальному радиусу атома. Посмотрите расчеты и таблицы радиусов возбужденных энергетических уровней водорода. Это фантастически грубое и недопустимое искажение истины (действительности). Но его встроили в официальную парадигму – и оно живет, плодя вирусы уродливых научных идей.

Что же реально происходит с электроном в атоме, когда он получает порцию дополнительной энергии от поглощенного фотона?

Предположим, что в некоторый момент, скорость орбитального электрона, следуя положению официальной науки, моментально возросла вдвое. Как должен измениться радиус его траектории? Центробежная сила инерции при этом увеличится приблизительно в четыре (чуть меньше) раза. Из условия сохранения равновесия, сила притяжения должна увеличиться на ту же величину, но не в четыре раза. Мы силой гравитации пренебрегли по причине её сравнительной ничтожности. Значит и увеличение центростремительной силы, уравновешивающей центробежную силу инерции, будет ничтожным. Но равновесие обеспечивается соответствующим приращением силы Кулона, но не в четыре же раза. Приращение должно быть точно равно приращению силы инерции, а оно в масштабе кулоновских сил чрезвычайно мало. Чрезвычайно мало, но не ничтожно.

Электрон, поглотивший фотон, увеличит свою скорость в два раза, но радиус его орбиты изменится практически незаметно.

А теперь откроем таблицу экспериментально установленных размеров атомов. И что же мы увидим? Размеры атомов, вне зависимости от их атомного веса, практически одинаковы.

Этот факт подтверждает наш вывод. Все электроны атома, относясь к разным оболочкам (определенными нами, наблюдателями), геометрически находятся в одной оболочке, но движутся с разной скоростью. Получается, зря мы тут производили мысленные опыты – всё давно уже установлено экспериментально, т.е. давно известно.

Известно — но неосознанно. Или сознательно скрывается.

Это же совсем другой мир. Какая-то странная ситуация. Каково электронам соблюдать принцип Паули, когда они по круговым-то орбитам не имеют возможности двигаться, маневрируя в такой тесноте, практически в одном слое, ведь силы взаимного отталкивания сближающихся электронов огромны – и никаких столкновений электронов не происходит.

В современной квантовой теории последнее слово всегда остается за решением уравнений Шрёдингера. Этот стереотип скрывает элемент самообмана. Дело в том, что решения уравнений Шредингера зависят от исходных (вводимых нами) данных.

Рассмотрим, например, газовое столкновение двух атомов. Вот геометрические образы оболочек сблизились до полного контакта. Мы абсолютно точно знаем, что электроны этого контакта не реализуют. Это значит, что геометрические образы оболочек сомнутся. И сомнутся так, что ядро атома ощутит это – и сместится соответствующим образом. Спрашивается, кто и как вводит ситуацию столкновения в уравнения Шрёдингера? А ведь, что введешь — то и получишь. Вот и получают решения, по которым электронное облако вероятности включает в свой объем и ядро атома, т.е. предполагают столкновение протона ядра и электрона оболочки.

Когда экспериментаторы обнаружили эффект К-захвата электрона, теоретики, фанаты уравнений Шрёдингера, восторжествовали – вот оно, экспериментальное подтверждение перекрытия теоретического облака электрона с облаком (в образе точки) протона.

Интерпретация весьма спорная, но уж если её приняли, то необходимо сделать реверанс в сторону принципа Паули. А реверанс должен быть следующий.

Принцип Паули справедлив лишь для равновесных состояний атомов, которые в реальном квантовом мире никогда не реализуются. Таким образом, получив некоторый прогноз на основании принципа Паули, его необходимо относить к абсолютно холодной системе, и лишь после этого он должен быть использован для корректной постановки задачи для уравнений Шрёдингера.

Так или иначе, но К-захват удовлетворил любопытство теоретиков по поводу, что же будет, если столкнутся протон и электрон. Аннигиляции не происходит. А происходит слияние частиц с образованием нейтрона.

Однако нейтрон – это напряженная конструкция, которая, не будучи в составе атомного ядра, отторгает приобретенный электрон. А это значит, что процесс образования нейтрона называть захватом не очень корректно, скорее это силовое вколачивание электрона в протон.

Отторжение электрона не является калиброванным процессом, и в принципе может иметь несколько степеней свободы, которые необходимо исследовать. Вероятнее всего, электрон может отстреливаться от протона под разными углами, испытывая различную реакцию отдачи, разброс которой приписывается современной теорией придуманной частице нейтрино. Принцип же Паули прогнозирует жесткий стандарт отторжения электрона, что и послужило поводом и основанием для рождения идеи о нейтрино.

Неверная модель атома порождает ошибочные интерпретации атомных эффектов.

В момент рождения идеи нейтрино, кроме неудачной интерпретации процесса отторжения электрона, была допущена явная физическая ошибка, которую официальная наука скрывает, и несет как крест до сих пор. Было официально заявлено, что точечный заряд, движущийся по круговой орбите, непременно излучает, теряя энергию. На то, что это противоречит действительности, впоследствии указывалось множество раз разными авторами. Проведено достаточно экспериментов с вращающимися пучностями макро токов сверх проводимости, в процессе которых не происходит никакого излучения. Однако академики твердо стоят на своей позиции, защищающей очевидную и грубую ошибку авторитетов прошлого.

Отстаивание этой ошибки является отстаиванием права квантовой теории на мистификацию действительности. Мистификации, которая породила такие понятия как плоская волновая функция элементарных частиц; такого понятия как коллапс; флуктуация вакуума — и много других.

Позиция официальной науки скрывает существование реальных загадок природы, ждущих своего решения.

Загадка не в том, почему К-захват такой уникально редкий, хотя и это интересно, загадка в том, что орбитали (облака) электронов атома при всей своей изменчивости имеют высочайший стандарт, т.е. все атомы замечательно идентичны во всей Вселенной.

Высокий стандарт повторяемости в динамике элементарных частиц – это отличный тест для любой квантовой модели, в том числе и для Стандартной модели. Вот только авторы этих моделей не применяют тест высокого стандарта элементарных частиц к своим детищам.

«Не знаем, как действует, но умеем пользоваться» – это вынужденный, временный лозунг выдохшейся, пока, эффективной физики. Но в то же время этот лозунг является рабочей идеей для объектов метафизики. Вот и получается, что прогресс науки, осваивающей метафизическую область знаний, служит ширмой ушлым фальсификаторам квантовой теории.

Загадка пары электрон-позитрон не может быть раскрыта в рамках парадигмы, отрицающей или не способной объяснить некоторые реально наблюдаемые явления. И самым важным в этом ряду явлений является моментальное распространение гравитации и моментальное распространение электрического постоянного поля, в то время как распространение электромагнитных волн происходит со скоростью света [1].

Нижний Новгород, декабрь 2018 года.

С другими публикациями автора можно познакомиться на странице http://www.proza.ru/avtor/vleonovich сайта ПРОЗА.РУ.

 

Источники информации

 1. Леонович В.Н. / Концепция физической модели квантовой гравитации/, Интернет  http://www.proza.ru/2011/01/12/1571

2. Интернет. Лента новостей

 

 

 

 

 

 

 

 

 

 

Философский подход, и его достоинства, на примере закона всемирного тяготения

Философский подход, и его достоинства, на примере закона всемирного тяготения

(Информация к размышлению)

Леонович В.Н.

Ключевые слова: метафизика, мгновенная скорость, гармония Вселенной.

 

БСЭ: Философия — учение об общих принципах бытия и познания, об отношении человека и мира; наука о всеобщих законах развития природы, общества и мышления.

 

Обобщенный свод знаний человечества об устройстве мира уже так велик, что вынужденно разделен нами по соответствующим специализированным отраслям науки.

Разделив свод знаний, мы разделяем и процесс добычи знаний об окружающем нас мире, и всё что с этим процессом связано.  Когда мы говорим, например, «современная физика», то мы имеем в виду не только областей знаний, но и весь комплекс накопленных знаний в этой области, а ещё имеем в виду техническую оснащенность для производимых исследований.

Распределив науку по специализированным наукам в угоду нашему удобству, и нашим выгодам, выражающимся в повышении качества исследований и повышении производительности труда, мы непроизвольно упрощаем исследуемую систему. При этом мы рискуем исказить постоянно корректируемую модель мира, упустив нечто важное, или привнеся в неё нечто ложное.

Чтобы  этого не случилось, и произведенные редукционные мероприятия не сказались на полноте и адекватности модели мира, необходимо анализировать следствия, возникающие в результате произведенного упрощающего разделения. Этот учет должен входить по определению в обязанности философии, а конкретнее, в её несуществующий раздел, должный заниматься изучением гармонии мира.

Если вдуматься в назначение данной, пока не реализованной, миссии, то явно обнаруживается надзорная функция философии, призванная максимально компенсировать возможные искажения истины, возникающие в предлагаемых моделях мира из-за вносимых искажений, вызываемых разделением процесса познания по разрозненным наукам. Каждая из наук должна удовлетворять требованиям всеобщей согласованности обобщенной модели мира, выражаемой в формате гармонии.

Определяя названную миссию, мы исходим из утверждения (постулата), что в реальном  мире парадоксов нет, и быть не может, к тому же всё происходящее имеет причину и следствие, т.е. следуем формулировке Цицерона: «Нет ниложныхчего позорнее для ищущего истину, чем мнение, будто что-либо может произойти без причины».

 

Разделение труда для повышения его производительности неизбежно приводит к возникновению производственных (в самом широком смысле) конфликтов на почве так называемого человеческого фактора. Вот для разрешения (устранения) таких конфликтов и должна существовать надзорная функция философии, опирающаяся на всеобщую гармонию Вселенной.

Реализация функции надзора требует от специалистов, призванных осуществлять её, комплексного знания всех наук без исключения.

В древности эту функцию осуществляли физики-энциклопедисты, которых тогда еще называли философами.

Поставленная задача, в настоящий момент, видится практически непосильной. Но это обманчивое представление, которое возникает благодаря искусственно создаваемой неразберихе в организации современной науки. Чтобы сделать эту задачу посильной, необходимо чтобы в рамках каждой науки в обязательном порядке формировалось описательное обобщение (квинтэссенция) достигнутого наукой уровня, изложенное в доступных терминах (качественное описание), не обращаясь к заумному математическому аппарату. Это выверенное и утвержденное обобщение и должно являться источником исходных данных для формирования философской модели мира, а также для изучения (ознакомления) в средней школе.

Надо осознать, и согласится, что такое обобщение возможно, и необходимо. Это логически следует из фундаментального философского постулата о познаваемости мира.

То обстоятельство, что, например, квантовая теория в настоящий момент не может предоставить такого описания, является следствием неполноты накопленных ею знаний, что не является основанием для закрепления и удержания сложившейся ситуации.

Сопротивляясь критической оценке, авторы квантовой теории пытаются убедить научную общественность, что предъявляемые ими заумные, около научные обоснования квантовой теории, разумную интерпретацию которых никто дать не может, является реальным и конечным состоянием квантовой науки. Эта ошибочная позиция создает прецедент для смежных наук, которые находят в этом основание для обращения к мистике в своей области знаний.

Успешная, в смысле практического применения, квантовая теория манкирует философским недоверием к полноте своей аксиоматики, и всячески добивается признания общественного мнения в этом плане. Научной общественности навязывается мнение, что исследователь-наблюдатель может по своему желанию квантовать или не квантовать исследуемый процесс. Получается, что квантовый мир существует только виртуально, в рамках математической модели и классических представлений, мыслящих мир состоящим из безразмерных, но тем не менее материальных точек. Отсюда, преклонение перед ТО, и желание сформулировать КТ в терминах ТО, т.е. неизбывное стремление построения объединенной аксиоматики.

Древние философы понимали, что такая компиляция невозможна. В древности, физика и философия,- являлись синонимами, и это смешение, вызываемое скудностью фактической информации, приводило к естественной реализации функции философского надзора. Вследствие чего, выводы древних философов являются более надежными по сравнению с философскими обобщениями современных ученых. Современная квантовая физика не желает пускать философов в свои подвалы и чердаки.

Стремительный прогресс, выразившийся в резком возрастании объема знаний, вкупе с развитием рыночных отношений, стал трудно преодолимой преградой на пути соразмерного прогресса современной философии. В результате, гармония, как наиболее недоступная для математизации дисциплина, была фактически отторгнута из науки. Лозунг узко мыслящих ученых: нет математики – нет науки,- возобладал в умах ушлых представителей от науки, догадавшихся, что заумная математика является прекрасным тараном в карьерных устремлениях и одновременно прекрасным щитом от вдумчивой критики.

Собственно в физике, тоже нашлась ниша, в которой можно укрыться от разумной критики. В качестве этой уютной ниши выступают  фиктивные многомерные (от четырех и выше) пространства, которые принципиально не существуют в природе, и не могут быть даже представлены здоровым воображением. Четырехмерное пространство-время стало пристанищем ушлых пройдох от науки. А менторское, догматическое (зомбирующее) обучение стало благодатной почвой для самообмана и корыстной непорядочности тех ушлых, которые осознанно «уверовали» в реальность 4-х мерного пространства.

Исторически, современная ситуация сложилась так, что эти приспособленцы-пройдохи сейчас заняли почти все управляющие посты во всех академиях планеты Земля. Это под их руководством реализуется стратегия создания зомбированного общества. Поставленная ими цель достигается системой обучения, приучающей подрастающее поколение к искаженным и отфильтрованным знаниям, и отбивающей у студентов стремление к критическому, свободному мышлению, что позволяет успешно управлять послушным (зомбированным) обществом в угоду желаний нечистоплотных правителей.

 

Начиная с конца XIX века, исследователи так привыкли манкировать философией и её достижениями, что, в конце концов, начали бравировать этим пренебрежением. Философствующий субъект – стало, в конце концов, отрицательной характеристикой.

Одним из первых отрицательных результатов пренебрежения философией в науке становится тихое выдавливание критерия гармоничности из перечня научных критериев высокого достоинства. В результате, поле современной науки, представленное действующей парадигмой, становится постепенно похожим на «лоскутное одеяло с плохо подогнанными лоскутами, часть из которых принципиально не совместимы». Не помню автора этого образного сравнения.

В таком виде наука преподается, и к ней привыкают. В результате, формируются стойкие ошибочные стереотипы, на которых делается карьера будущих авторитетов. Возникает порочный круг. Научное сообщество зомбируется вместе со всем обществом.

Примеров много. Так много, что они дали почву для возникновения сообщества правдолюбов, занятого выявлением и обнародованием лженаучных заблуждений. Таким сообществом является «Исследовательская группа АНАЛИЗ», в составе: Корнева М.В., Кулигин В.А., Кулигина Г.А.  http://kuligin.mylivepage.ru ; http://www.n-t.ru/ac/iga/. Аналогичную борьбу, в качестве независимых исследователей ведут Катющик В.Г., Гришаев А.А.  и многие другие. Однако зомбированная часть научного сообщества, став на путь осознанного искажения истины в угоду потребительским устремлениям, стойко отражает конструктивную и аргументированную критику.

 

Приведем один пример (из множества).

Объясняя явление фотоэффекта, Эйнштейн приписал фотону продольный импульс с соответствующей энергией, необходимой для выбивания электрона. И как следствие, наделил фотон соответствующей массой. На этих ложных данных, принимаемых в качестве аксиом, развилось множество научных направлений, авторы которых вынуждены согласовывать свои теоретические выводы и практические наблюдения с ложными исходными данными. Таким образом, пополняется копилка ложных представлений-стереотипов.

Эйнштейну для принятия правильного решения достаточно было задуматься: можно ли реализовать приращение импульса у поглотителя фотонов при условии нулевой массы фотона, как считалось в то время. Решение достаточно простое, вот оно: система, поглощающая фотон, после поглощения реализует не один, а сразу несколько импульсов, векторная сумма которых равна нулю. Это всего лишь естественный альтернативный вариант к варианту, предложенному Эйнштейном. Дальше необходимо было исследовать оба варианта – и установить истину [2, 3].

Последуй Эйнштейн этой научной методике – и наука, возможно, не была бы так мистифицирована в настоящее время.

Зомбирование так сильно, что до сих пор не проведен (или проведен, но результаты скрываются) простейший, наглядный эксперимент. Достаточно подвесить на крутильные весы два мощных, легких лазера, направленных противоположно, и непосредственно убедиться в отсутствии отдачи фотонных лучей, т.е. убедиться в отсутствии продольного фотонного импульса.

Фотон переносит только энергию, которая в случае поглощения фотона вызывает формирование нескольких импульсов (не менее двух) в системе приемника, сумма этих импульсов обязательно равна нулю. Последствия искажения этого простого положения так велики, что трудно представить.

Вот всего лишь один ошеломляющий вывод. Одиночный заряд (электрон) не может поглотить/излучить фотон ни  при каких обстоятельствах. Всякий раз, когда нам  рассказывают об излучающем электроне, надо искать замаскированную систему, и она обязательно найдется, вместе со вторым импульсом.

Самый распространенный случай излучения якобы единичного электрона — это излучение электрона при переходе с орбиты на орбиту в возбужденном атоме. Системой в данном случае является атом. Функциональным назначением системы, при излучении фотона, является реализация возвратно-поступательного ускорения заряда (импульса), что и является необходимым условием излучения.

Продолжительность импульса должна соответствовать одной из собственных частот физического вакуума. Это условие есть проявление гармонии во взаимодействиях вакуума и каждого атома, т.е. резонансные (собственные) частоты атомов и физического вакуума изначально совпадают.

Составляющие элементы физического вакуума не перемещаются вместе с фотоном, т.е. фотон перемещается по принципу эстафеты. Это перемещение очень похоже на волну, но таковой не является. Объектом передачи (эстафетой) является информация. При этом механические атрибуты волны не требуются и, более того, недопустимы, т.к. фотон в этом случае нуждался бы в  подпитке энергией. Таким образом, конструкция (структура) возмущения-эстафеты физического вакуума не меняется в процессе перемещения фотона. Получается, что локализация фотона перемещается подобно частице, перенося с собою информацию о калиброванной порции энергии, без импульса и без массы, т.о. фотон это не частица. Так устроено. У физического вакуума, в образе фотона, нет массы, и он не может оттолкнуть что-либо. А вот растолкнуть – может. Так гениально устроено. Теоретически доказать невозможно. А вот, проверить экспериментально — можно.

Первооткрыватели усмотрели в свойствах фотона некоторую двойственность, но не сумев её объяснить, приписали фотонам свойство перевоплощения – он то волна, то частица. Нет, фотон всегда фотон, и он и не волна, и не частица.

Ньютон мог бы счесть такое устройство фотона гениальной задумкой Бога. Атеисты могут считать это устройство следствием наблюдаемой всеобщей гармонии.

При массивном фотоне, каждый атом являлся бы генератором излучаемого вещества. И звезды, излучая фотоны, распыляли бы при этом своё вещество. И что очень важно, не уменьшая числа атомов (и нуклонов) в своем составе.

Вселенная из непрерывно худеющих нуклонов – это абсурд, или черный юмор масонских академиков.

Из самых общих соображений можно утверждать, что спектр фотонов конечен и ограничен вполне конкретными фотонами с минимальной и с максимальной энергией. Задача науки – найти критерий формирования этих граничных фотонов, и определить их конкретную величину.

 

Древние мыслители выявили множество ограничительных (надзорных) философских критериев, но не все. Современные философы могли бы пополнить их перечень, но находясь у разбитого корыта философии, даже не стремятся этого делать.

Прием пренебрежения малыми, якобы несущественными, величинами является одним из эффективнейших приемов в инженерных расчетах. Но при использовании в фундаментальных исследованиях, становится одним из самых зловредных и коварных методов самообмана.

Уравнения Максвелла, в том виде, в котором их преподают студентам, написаны Хевисайдом. Подлинные уравнения Максвелла являются более сложными, и не обладают красотой симметрии общеизвестных уравнений.

Хевисайд усмотрел в уравнениях Максвелла одну замечательную особенность. Оказалось, что почти всю полноту электрических и магнитных (не путать с частным случаем электромагнитных) взаимодействий можно описать с помощью математической суперпозиции.

Самые актуальные, с точки зрения электрической инженерии взаимодействия, описываются векторными, симметричными уравнениями, которые и вычленил Хевисайд, назвав их уравнениями Максвелла. А оставшаяся совокупность более тонких взаимодействий, которые по оценке Хевисайда ничтожно малы, так что ими можно пренебречь, должна описываться другими, дополняющими уравнениями. Хевисайд их даже не попытался сформулировать.

Что скрывается за опущенной сложностью тонких взаимодействий, остается пока загадкой. Исследования Никитина, и их результаты, направленные на устранение оставленных пробелов, рассматриваются официальной наукой как лженаучные [4]. Практика свидетельствует, что магнитные явления невозможно описать аналитически с помощью векторной алгебры. Необходимо операторное описание с использованием тензорного аппарата. И эти свойства магнитных полей ещё не полностью изучены, т.е. еще не выявлены полностью.

К несчастью, в результате восторга по поводу векторных уравнений, явления, скрытые за упрощениями Хевисайда, так и остались не изученными. Результаты отдельных попыток исследователей-одиночек, желавших исправить положение, вошли в противоречие с ТО Эйнштейна – и были объявлены лженаучными.

Обобщая выше изложенное, можно сформулировать новый философский критерий.

В фундаментальных исследованиях любое пренебрежение малыми величинами недопустимо. В противном случае, исследование становится инженерным расчетом, достойным только пополнить справочники сопромата.

 

Вытеснение гармонии из состава фундаментальных научных дисциплин вынудило официальную науку распределить некоторые функции гармонии, без которых обойтись оказалось невозможно, по смежным дисциплинам. Обычно это происходит с понижением статуса этой функции. Например, наиважнейший диалектический принцип гармонии: накопление свойств и их сочетаний в рассматриваемой системе может приводить к возникновению новых свойств и качеств, отличных от исходных свойств элементов системы — был подменен так называемым «системным признаком», вписывающимся в принцип перехода количества в качество, т.е. простое сложение качеств (в штуках) может породить новое качество системы. Действительно, может, но где здесь место для оценочного критерия?

Вот как представлено определение системности в одной из современных энциклопедий.

«Системность — свойство объекта обладать всеми признаками системы».

Как видно, эта тавтологическая конструкция ничего общего не имеет с гармонией.

Интуитивно, качество системы определяется её гармоничностью. А гармоничность системы связывается с наилучшим исполнением предназначения системы. К качеству системы традиционно относится и продолжительность жизни системы.

Таким образом, продолжительность жизненного цикла системы является одним  из тестирующих критериев гармоничности системы, чем продолжительнее жизнь системы, тем более она гармонична.

Блохи и ящерицы оказались более гармоничны, чем динозавры.

При отсутствии профессиональных специалистов по гармонии, никто не обратил внимания, что второй закон термодинамики является законом мертвых систем, состоящих из упругих гладких шариков. А мертвым системам тепловая смерть не страшна.

Действительно, энтропия упрощенных систем, искусственно лишенных способности к эволюции, имеет устойчивую тенденцию к росту.

Энтропия же сложных (реальных) систем может и возрастать, и уменьшаться.

Системами, в которых происходит грандиозное уменьшение энтропии Вселенной, являются (предположительно) центры галактик, где синтезируется весь спектр вещества.

 

При решении любых научных проблем системный подход допускает проведение и анализа с философской точки зрения, в том числе с позиции всеобщей гармонии.

Но заявления авторов о проведении такого анализа мало что значат, более того, может послужить источником неумышленного обмана, если авторы предварительно не определили свою философскую позицию.

Тот факт, что философских платформ существует много, является следствием принципиальной недоказуемости основополагающих философских концепций, свод которых называется  исходной аксиоматикой.

Недоказуемость исходных концепций влечет свободный выбор позиции мыслителя, который, обозначив исходные концепции, создает свое учение.

Одной из основных функций официальной науки является установление единой философской аксиоматики, исключающей всякие кривотолки. Это вовсе не значит, что философия должна быть авторитарной и единообразной. Это означает, что по умолчанию философия концептуально определена и едина. В противном случае, если автор не согласен с рекомендуемой, единой парадигмой, то автор обязательно должен изложить свою философскую концепцию.

Однако официальная наука означенную функцию не выполняет, и, не определив официальную позицию, не требует представления философской позиции автора. Такая тактика создает искусственный хаос в науке, который упоминался в начале статьи.

Истинность выбранной философской платформы тестируется практикой. Это значит, что всякое учение, в конечном счете, характеризуется качеством прогнозов, приносимой пользой и, в конечном счете, своей живучестью. А живучесть – это один из основных критериев гармонии применительно ко всякой системе. Таким образом, мы приходим к мысли, что всякая философская система должна быть максимально гармоничной.

В диалектике философии материализма можно выделить три основополагающих концепции.

Первая – мир реален, т.е. его существование не зависит от воли наблюдателя (мыслителя).

Вторая – ничто в мире не происходит без причины и следствия.

Третья – в природе нет места парадоксам, безразмерным объектам и объектам с неограниченными интенсивными параметрами.

Это, конечно, не полный набор исходных концепций, но и он является настолько сильным, что во многом определяет картину материального мира.

Критерием истинности философских изысканий, как уже сказано, является практика и рожденная на её основе логика. Критерий универсален и неоспорим. Но этот критерий не аршин, из кармана не вынешь и не приложишь.

К тому же, проверка практикой медлительна, и со временем становится всё медлительнее; к тому же она становится всё дороже, а это значит, что она становится субъективно зависимой.

Научному прогрессу понадобилось сто лет, чтобы достичь уровня, когда он может наглядно и убедительно проверить ТО Эйнштейна. Сейчас эта проверка осуществима на любом кольцевом ускорителе [5].

Однако ни одна из множества действующих сейчас коллабораций не заявляет о проведении такой проверки. Почему?

Ответ находится вне компетенции физики, т.к. определяющей причиной является человеческий фактор.

Но влияние человеческого фактора является одним из объектов философского анализа.

Что может предложить нам философия по этому поводу. Вот одна из наглядных моделей научного прогресса: «Прогресс развивается по спирали и кверху».

Если бы спираль была вертикальна, то обращение Ленина к этому образу было бы бессмысленно. Вся глубина образа в том, что спираль наклонна, а это значит, что в историческом развитии общества случаются, и неизбежны, этапы регрессии. Эта обобщенная оценка не оправдывает случающиеся искажения истины, но объясняет их происхождение.

Если регресс в развитии общества возможен, то возникает потребность в методике диагностирования упадочных состояний. Такие признаки имеются. Одним из признаков является наличие парадоксов в новых, предлагаемых научных моделях. Чем больше парадоксов в модели, тем дальше модель от истины, или же область применения модели не соответствует действительности, как случилось с принципом относительности Галилея.

Регресс не может выражаться в движении назад. История иногда повторяется, но это только условно, в виде фарса. Разве могли подумать такие мыслители как Ньютон, Ломоносов или Вернадский, что в XXI веке академии всех стран будут внушать народам, что Вселенная возникла из безразмерной точки, т.е. из ничего, и без всякой причины. Это новейшее философское учение принципиально нельзя опровергнуть; хотя и доказать тоже нельзя. Согласно критерию Поппера, такое учение научным не является, другими словами является лженаучным.

Учение о Большом Взрыве – это атрибут новой религии. Её (религию) еще можно не признать, т.к. авторами пока не введено понятие Бога. На этот шаг академики еще не решились, им бы этого не позволили, т.к. недавно почти все они были материалистами того или иного толка. Но вот, умрут последние бывшие материалисты – и тогда…

Почему же церковь не реагирует на эти академические замашки? Не реагирует на вызов еще не объявленного нового бога, сумевшего создать мир не за семь дней, а в одно мгновенье?

Церковь мудра своими традициями.

Верующие нувориши от академий попользуются захваченной властью, сколько смогут – и время сметет их бесславно. А каноническая церковь останется вечной. Останется в таком виде, в каком она нужна людям.

 

В настоящее время при публикации научных новаций, даже претендующих на коррекцию фундаментальных положений, как уже было упомянуто, не принято определять философскую приверженность автора.  Это было бы допустимо и необходимо, если бы в науке была сформулирована общепризнанная сбалансированная (гармоничная) парадигма. Но такой парадигмы нет, и официальная наука этого не скрывает. Например, две якобы фундаментальные теории: ТО, разработанная для вещества, состоящего из безразмерных материальных точек;  и КТ, принципиально отвергающая концепцию безразмерной точки, — признаются официальной наукой несовместимыми, но, тем не менее, декларируются как фундаментальные философские платформы.

Правда, официальная наука предусмотрительно развела эти два учения по разным углам области применения, отведя ТО космические просторы, а КТ – глубины микромира.

Однако апологеты ТО в своей неумеренности все-таки столкнули эти учения в своих мистических разработках. Речь о так называемой теории Черных дыр и теории Большого взрыва. Одна из фантазий начинается, а другая завершается, безразмерной материальной точкой. Таким образом, КТ фактически поставлена в нелепое положение, граничащее с конфузом: самая успешная практическая теория не может найти в своем аппарате применения или хотя бы оправдания для безразмерной материальной точки.

 

Наличие элементов мистики в научной модели всегда являются признаком слабости модели и, как правило, сопровождается человеческим фактором; эта связь обычно не афишируется, и даже каким-либо способом маскируется. В результате, так сложилось, что в науке не принято учитывать человеческий фактор при анализе новых открытий.

Однако эта традиция явно наносит потенциальный вред качеству научных исследований. Чтобы как-то смягчить это отрицательное влияние, жизнь заставила научное сообщество сформировать понятие-критерий «позиция официальной науки», призванной выполнять функции гармоничной парадигмы.

Для исполнения несвойственной функции государственными методами в науке насаждаются управленческие принципы: официальная наука всегда права. А то, что противоречит понятию официальной науки, является лженаукой. Это почти дословное определение лженауки, которое дал академик Виталий Гинзбург.

Таким образом, влияние человеческого фактора в некотором смысле формально минимизировалось.

Для реализации данного положения в жизни, Гинзбургом была организована сеть рецензируемых издательств, рецензенты которых должны были осуществлять надзор за качеством научных работ в смысле их соответствия официальной позиции АН.

Однако такая политика создала предпосылки для тиражирования и закрепления авторитарных ошибок самих академиков, а такие ошибки в науке неизбежны. Получилось, что человеческий фактор исподволь сохранился, и даже стал угрожающе эффективным.

Научные гипотезы, к которым официальная наука по какой-либо причине относится покровительственно, сразу преподносятся как теории, как последняя истина. А этот прием при своем длительном воздействии создает предпосылки для возникновения в научном сообществе зомбированного контингента с устойчивыми, ложными, псевдо научными представлениями. Этот контингент при своем экспансивном настрое и авторитарном покровительстве имеет возможность занять руководящие позиции в структуре управления наукой, что видимо и произошло.

 

В свое время, исследуя процесс ускорения электронов на лабораторном циклотроне, ученые обнаружили неожиданный эффект, необъяснимый с точки зрения  действующих теорий. Ученые экспериментаторы описали эффект, и опубликовали его описание. Чтобы описание было более доходчивым, первооткрыватели сопроводили свое описание следующим резюме: в циклотроне электроны, при приближении их скорости к скорости света, ведут себя так, будто их масса увеличивается с возрастанием скорости.

Хотя альтернативных вариантов, объясняющих странное поведение электронов, было несколько, но предложенный экспериментаторами был самым наглядным.

Первым, и похоже, единственным, кто откликнулся на сообщение, был Эйнштейн. Эйнштейн, согласившись с интерпретацией, предложенной экспериментаторами, заявил, что эффект является следствием его учения. Эйнштейн сразу привел формулу, согласно которой должна увеличиваться масса электрона. Получилось, что он как бы предсказал этот эффект. А это огромный плюс для любой гипотезы.

Таким образом, с этого момента в научном сообществе начало утверждаться мнение, что всякое привнесение энергии в систему приводит к увеличению её массы. Получалось, что энергия тела и его масса каким-то образом связаны. Эйнштейн был крайне заинтересован, чтобы масса и энергия были эквивалентны, он это и постулировал.

Вот вам человеческий фактор, который трудно оперативно учитывать, даже при большом желании.

После силового предположения об эквивалентности массы и энергии естественным образом должен был возникнуть вопрос об отношении к этому явлению двух типов массы, что должно было вызвать серию новых целевых экспериментов. Однако Эйнштейн упредил проявление этой реакции своим постулатом об эквивалентности массы инерции и массы гравитации. В 1913г. Эйнштейн писал по поводу ОТО: «Излагаемая теория возникла на основе убеждения, что пропорциональность инертной и тяжелой масс является точным законом природы, который должен находить свое отражение уже в самих основах теоретической физики». Заметим, что данное предположение и сформулировано, и обосновано, как догма. Каковой и является.

Таким образом, исторически два постулата эквивалентности тесно переплелись, укрепляя и поддерживая друг друга.

 

Вздорное предположение об эквивалентности инерционной массы и энергии, пока оно не стало прививаемым сверху стереотипом, достаточно широко дискутировалось. Но исторически так сложилось, что победу одержала  ТО. Так бывает.

С тех пор научное сообщество пребывает в данном заблуждении, которое обросло, как снежный ком, смежными вторичными заблуждениями. Сформировалась даже достаточно цельная ложная парадигма, изобилующая, правда, парадоксальными противоречиями, выход из которых находится с помощью обращений к мистике.

Философия продолжала сдавать свои позиции. Хуже того, сама философия начала мимикрировать в угоду мистическим тенденциям.

Однако уверенность выдающихся мыслителей в постижимости всех законов природы, равносильна утверждению об отсутствии мистики в природе.

 

Вот так, благодаря амбициозной спешке, отсутствию всестороннего исследования и отсутствию философского осмысления неожиданно обнаруженного природного явления (скоростного нелинейного релятивизма), научный прогресс был заторможен как минимум на сто лет.

 

Существующие в науке понятия системного анализа и философского анализа, при ссылке одного на другое, могут образовать эффект фактического обесценивания и того и другого, тем более, что ни в одном из этих понятий не сформулирован критерий полноты проводимого анализа.

Благодаря странной (можно сказать, вредительской) позиции официальной науки, занятой ею по отношению к ТО и к КТ, практический философский анализ может быть основан как минимум на двух философских платформах, которые принципиально несовместимы.

Кроме того, можно предоставить неограниченное количество компилятивных платформ, что и происходит в жизни в неявном виде, создавая эффект болотной топи.

Мы же взялись представить достоинства философского анализа, что, благодаря описанным выше несуразицам, делает необходимую нам классификацию существующих приемов и методик очень громоздкой и запутанной.

Вследствие этих обстоятельств, достоинства философского подхода имеет смысл представить на развернутом примере.

Рассмотрим в формате развернутого системного анализа, произведенного с обращением к философским критериям, всем известный и привычный закон Всемирного тяготения.

Математическое представление закона имеет вид:

F=γMm/r2  (1).

Именно эту формулу, начиная со школьной скамьи, приучают называть законом Всемирного тяготения, которому подчиняются все вещественные тела Вселенной.

На этом вопиющем обмане (точнее самообмане) формируется стойкий стереотип мышления, на котором основывается мировоззрение каждого человека. Мировоззрение, основанное на абсолютной уверенности во всесилии и всевластии математики, а значит, и человечества, которое эту математику придумало.

На самом же деле формула (1), вовсе не является законом, а является достаточно хорошей, но всё же приблизительной, математической моделью природного Закона всемирного тяготения.

Формула (1), как модель, достаточно далека от совершенства, хотя бы по причине своей очевидной неполноты. Вот об этой неполноте и пойдет далее речь.

Автору формулы (1) было хорошо известно, что сила притяжения зависит от геометрической формы тел. Чтобы избавиться от этой обременительной зависимости, Ньютон снабдили свою модель комментарием: формула (1) описывает взаимодействие только точечных тел. Без этого комментария формула (1) становится очень плохой моделью.

Философское обсуждение возможности существования точечных тел к моменту написания формулы уже закончилось в пользу мировоззрения Аристотеля, и такой комментарий был вполне уместен. Однако с его введением возник парадокс бесконечного параметра. Сила притяжения любых двух тел может превысить любой установленный предел, при достаточно малом расстоянии между телами. Здравый смысл противится этому противоестественному выводу. Но избавиться от парадокса не удалось.

Договорились, при расчетах, ориентируясь на здравый смысл, выбрасывать из расчетов особые точки; сейчас они называются точками сингулярности.

Однако соглашение было устным и добровольным, что в современных рыночных отношениях непозволительно. Соглашение было нарушено, как только оно помешало чьим-то корыстным интересам.

В настоящее время, когда частично принята квантовая парадигма, можно, казалось бы, обозначить область применимости модели (1), ограничив её размером материального кванта, и избавиться таким образом от парадокса (и от Черных Дыр). Но официальная наука этого делать не спешит, видимо под давлением лоббистов, зарабатывающих на этих Дырах.

Создавшуюся ситуацию парадоксом назвать уже нельзя. Больше подходит термин «несуразица» или «абсурд».

Но и преодолев эту несуразицу, полное определение закона всемирного тяготения содержит два вопиющих противоречия, про которые нам официальная наука не желает напоминать, и мыслящее население Земли, вследствие этого, благополучно об этих противоречиях забыло.

Речь о еще одной неполноте формулы (1). Еще один дополняющий комментарий к ней сообщает о невозможности экранирования силового поля тяготения. Это означает, что поле цепочки тел, расположенных по прямой линии, интегрируется линейно без учета затухания в каждом теле. Однако затухание непременно должно происходить, если каждое отдельное поле взаимодействует с каждым телом, т.е. каждое поле вызывает формирование сил притяжения, которые совершают реальную работу. А если поле совершает работу, то поле обязательно должно измениться.

Осмысление означенного противоречия было доступно первооткрывателям, и будучи неразрешенным, должно было попасть в копилку нерешенных проблем. Сам же закон должен был рассматриваться как гипотеза, в лучшем случае как один из законов сопромата, законов для практического применения.

Это о первом в этом ряду неразрешенном противоречии.

Второе противоречие конкретизировалось несколько позже, после того как наука утвердилась в полевой природе гравитации, согласно которой все тела представляют системы: вещество плюс поле.

Модель неизменного поля элементарной частицы, жестко привязанного к своей частице, не выдержало критики на адекватность наблюдаемым реалиям. В настоящее время официальная наука остановилась на представлении, связанном с существованием квантовых носителей поля, излучаемых каждой частицей тела, и перемещающихся в пространстве с максимально возможной скоростью, равной скорости света. Эта позиция официальной науки закреплена и описана в гипотезе, называемой Стандартной Моделью.

Стандартная Модель (СМ) практически никогда не преподносится с определителем гипотеза, более того, подспудно формируется мнение, что это еще один фундаментальный закон природы.

Суть последнего противоречия, которое опять умалчивается, в том, что гравитоны не могут бесконечно излучаться и уноситься в безграничное пространство, не имея источника пополнения новыми гравитонами; а его нет.

Авторы СМ пошли на уловку, которую не афишируют – в СМ взаимодействующие объекты обмениваются носителями поля прицельно, и не нуждаются в неисчерпаемом источнике носителей. Но интенсивность такого обмена не зависит от расстояния, и в этом случае называется конфайнментом.

Избежав таким образом энергетического парадокса, авторы СМ забыли оповестить всех, что в этом представлении уже нет поля гравитации, как всеобъемлющей физической сущности, а местоположение тел, которые прицельно должны обмениваться гравитонами (или другими носителями), можно определять только с помощью мистики.

Таким образом, получается, что в СМ физической модели Всемирного закона тяготения пока не существует.

В ряду перечисления элементов неполноты формулы (1) остался последний парадокс, едва ли не самый главный. Этим парадоксом является определение скорости распространения гравитации.

Если не вводить дополнительных оговорок к формуле (1), то из этой формулы следует, что скорость распространения гравитации равна бесконечности. И этот парадокс нельзя выбросить из расчетов, как это рекомендовано для точек сингулярности.

Вернемся к этой проблеме чуть ниже, а пока зададимся другим вопросом.

Почему указанные проблемы и противоречия замалчиваются официальной наукой? У автора есть своё мнение по этому поводу, но оно не укладывается в рамки тематики данной статьи. Важно то, что стереотип забвения существующих проблем прививается обществу, включая и научное сообщество, совершенно сознательно и целенаправленно. Признание этого факта заставляет признать существование в науке некой правящей малочисленной касты масонского толка, интересы которой не совпадают с декларацией о назначении науки.

Существование такой касты (каст) не является сверх естественным явлением, и относится к области так называемого человеческого фактора; в нашем случае к законам социального устройства и развития общества, о которых уже упоминалось в начале статьи.

Вопрос обращен к читателю, чтобы он сам увидел, что наука это не только цветущий сад, но и скрытые болотные топи.

 

Однако вернемся к нашему анализу закона Всемирного тяготения.

На этом месте нашего анализа имеет смысл конкретизировать наше понимание «метафизического явления» и вообще понятия «метафизика».

Исторически сложилось, что понятие метафизика, также как и гармония, очень многозначно и много раз меняло свою содержательность.

Не будем оспаривать эту многозначность, а лишь укажем используемое здесь значение. Для этого вернемся к его первоначальному содержанию, изложенному в следующей редакции.

Метафизика — это недоступная для непосредственного восприятия и вмешательства физическая реальность. Реальность, которую нельзя отрицать, т.к. известны эксклюзивные следствия, вызываемые её косвенным воздействием; и эти следствия невозможно объяснить никакими другими причинами.

Примером метафизической реальности является механизм реализации самого загадочного свойства гравитации, её моментальной скорости распространения.

В этом вопросе позиция официальной науки опять является двойственной. Официальная наука формально декларирует точку зрения Эйнштейна и его апологетов, объявляя скорость гравитации равной скорости света. И в то же время официальная наука не опровергает математические расчеты Лапласа, из которых однозначно следует моментальная скорость распространения гравитации.

Поскольку учение Эйнштейна изобилует парадоксами, то очевидно, что оно в каких-то аспектах ложно. Исходя из чего, логичнее было бы предпочесть безупречные, прозрачные и много раз проверенные расчеты Лапласа, основанные на опыте наблюдений множества астрономов. Но исторические события развиваются по своим законам.

Ситуация со скоростью распространения гравитации, действительно, загадочная. Квантовый принцип перемещения диктует всеобщее ограничение скорости перемещения информации скоростью δx/δt, где δx и δt кванты пространства и времени; и эта скорость равна (практически) скорости света.

Каким же образом в природе реализуется мгновенная скорость, не нарушая при этом фундаментальный квантовый принцип: любая вещественная скорость v < c = δx/δt.

Кажущийся парадокс разрешается в рамках курьеза, сложившегося в науке к настоящему времени. Дело в том, что принцип реализации сколь угодно большой, но конечной в рамках масштабов Вселенной, скорости распространения информации, уже несколько десятков лет как реализован на практике достижениями инженерной мысли в современных вычислительных машинах. Это алгоритмический режим, в котором все операции следующего временного сечения начинают реализоваться только после полного завершения операций предшествующего сечения. Таким образом, программа вычислений реализует модель временного кванта, реальная продолжительность которого может быть произвольной, а эффективная продолжительность (например, скорость просмотра данного процесса) может определяться совсем другими соображениями.

Если материальный квант, реализующий пространство и время, устроен так, что может реализовать выше описанный алгоритм, то моментальная скорость перемещения информации, т.е. V = S/δt, где S – дистанция макроперемещения, реализуется режимом «стоп кадр». Суть его, в случае гравитации, очень проста: пока происходит фаза излучения и последующего поглощения гравитонов, все остальные квантовые процессы временно приостановлены. После завершения фазы гравитационного взаимодействия начинают исполняться следующие фазы квантового временного цикла — и временной квант завершается, т.е. происходят все оставшиеся квантовые подвижки информации, относящиеся к данному квантовому такту (кванту времени).

Весь описанный алгоритм является по определению метафизическим. Вмешаться нам в него нет никакой возможности. Но мы можем наблюдать результат действия этого алгоритма, проявляющийся в наблюдаемой мгновенной скорости распространения гравитации.

Вполне допустимо, что в природе реализуется другой алгоритм, который приводит к таким же последствиям. От этого допущения для нас ничего не меняется. Но ценность нами сформулированного алгоритма состоит в том, что процесс реализации моментальной скорости материально реализуем, и не противоречит фундаментальному ограничению квантовой скорости.

Моментальная скорость является одним из эффективных способов представления квантовой информации. А гравитация в этом представлении является системообразующим параметром, задающим такт времени Вселенной.

Курьезность же ситуации в том, что инженерное решение проблемы оказалось вне поля научного поиска теоретиков-астрофизиков, и они о нем, видимо, так и не знают.

Да, и узнав о существующем решении, не каждый авторитет согласится с идеей, что каждый пространственный квант представляет собой типовой для данной вселенной мини контроллер, запрограммированный определенным образом.

Мы, естественным образом, добравшись до истоков аксиоматики устройства мира, вынуждены что-то принимать на веру. Либо мы верим в постоянно присутствующего и действующего Бога, либо мы признаем сложное устройство материального кванта.

Метафизический механизм реализации моментальной скорости распространения гравитации в природе, без обращения к мистике, т.е. в рамках квантовых и философских ограничений, подробно описан в [6].

Предложенная в [6] модель вносит существенную коррекцию в аксиоматику уже действующей квантовой философской платформы устройства Вселенной. Для реализации этой модели Вселенная может быть только конечной. Это условие, однако, не требует конечности мироздания, и лишь допускает, но не требует, существование множества иных вселенных.

Итак, если выводы, полученные в результате мысленных экспериментов, можно подтвердить косвенными, но реальными наблюдениями, то будем называть эти мысленные эксперименты – экспериментами метафизического толка. В противном случае такие выводы будут относиться к научной фантастике.

 

Продолжая анализ закона Всемирного тяготения, рассмотрим следующую ситуацию.

В свободном пространстве имеем неподвижную систему из протона и электрона, причем расстояние между частицами таково, что силы притяжения частиц отсутствуют.

Описание системы свидетельствует, что нами избрано квантовое представление, и теперь мы должны строго следовать избранной концепции, следя за собой, чтобы не применить какой-нибудь стереотип, основанный на концепции классической.

В классическом представлении данная ситуация невозможна — там поля безграничны. Но мы согласились, что мир имеет квантовую природу, и эта природа не зависит от нашего желания или нежелания.

Однако принцип формирования границы гравитационного поля остается не ясным. Если гравитоны способны распространяться как фотоны, т.е. в одиночку, не формируя неразрывного фронта, то гравитоны не способны сформировать образ неразрывного поля. К тому же перед нами еще прежняя проблема — закон сохранения энергии тяготеющего тела. Все наблюдаемые эффекты склоняют нас к естественному выводу: гравитоны не могут излучаться безвозвратно, они должны являться неотъемлемыми элементами вещества. Гравитоны собирают информацию о заполнении пространства сторонним веществом, доставляют эту информацию своей частице – и та формирует необходимый в данной ситуации импульс. А чтобы доставить необходимую информацию частице, гравитоны должны вернуться к своему излучателю. Только так можно описать процесс тяготения тел, не впадая ни в какие противоречия.

Получается, что каждая массивная частица формирует вокруг себя пульсирующее гравитационное поле, последовательно сканирующее всё смежное непрерывное  пространство.

Квантовый мир в наших размышлениях становится всё более сложным по своему устройству, но эта сложность не мистического свойства. Нам просто не верится, что микроскопический квант может быть устроен так сложно. Нам почему-то легче поверить в бесконечную силу притяжения или в бесконечную плотность массивных частиц. Но это вопрос воспитания и нашего образования.

Постройте систему начальных знаний соответствующим образом – и зомбирующие стереотипы, ведущие в тупики парадоксов, исчезнут.

Чтобы гравитоны могли возвращаться, они должны получать как минимум признак границы своего поля распространения. На этой границе гравитоны должны инвертировать направление своего движения, и безошибочно возвращаться к своей частице. А это можно мыслить только для абсолютно неподвижного пространства. Пролетными структурами, типа полей безадресных бозонов, невозможно обеспечить гарантированного возвращения гравитонов к своему излучателю.

Логика фактов приводит нас к пространству, свойства которого сформулировал Лоренц. Вот его мнение по этому поводу:

«Действительно, одно из важнейших наших основных предположений будет заключаться в том, что эфир не только занимает всё пространство между молекулами, атомами и электронами, но что он и проникает все эти частички. Мы добавим гипотезу, что, хотя бы частички и находились в движении, эфир всегда остаётся в покое. Мы можем примириться с этим, на первый взгляд поразительным, представлением, если будем мыслить частички материи как некоторые местные изменения в состоянии эфира. Эти изменения могут, конечно, очень хорошо продвигаться вперёд, в то время как элементы объёма среды, в котором они наблюдаются, остаются в покое» [7, с.32].

Лоренц пришел к этому мнению, имея явный недостаток требуемой для этого информации, можно сказать – пришел интуитивно. Сейчас информации гораздо больше, — и к модели Лоренца можно прийти на основе строгой логики [6].

 

Продолжим.

Полная энергия системы разнесенных протона и электрона будет равна сумме внутренних энергий частиц:

Е= E1+ Е2, и это соотношение не вызывает сомнений.

Сообщим теперь электрону минимально возможный импульс в направлении протона. Величина этого импульса равна δm·c = mэл·Vэл.ср. Энергия системы при этом увеличится на величину m·V2/2. Перед нами возникает вопрос философского толка: какую минимальную скорость электрона мы можем реализовать?

В квантовом пространстве существуют только две дифференциальные скорости: это «0» и скорость света c= dx/dt. Если вещество состоит из квантов δm, то теоретически величина минимально возможного импульса будет равна δm·c. Это значит, что минимальная средняя скорость электрона, которую мы можем ему сообщить, будет равна δm·c/N, где N – количество вещественных (массивных) квантов в электроне.

После нашего вмешательства электрон будет двигаться по направлению к протону с постоянной скоростью до тех пор, пока не достигнет одного из силовых полей протона: электрического или гравитационного.

Здесь мы опять сталкиваемся с необходимостью философского выбора, а именно, нам нужен критерий, когда частицы ощутят присутствие друг друга. Либо это произойдет при соприкосновении границ полей, либо при соприкосновении одного из полей со сторонней частицей.

Мысленные вариации всевозможными предположениями, которые мы здесь опустим, делают более предпочтительным вариант начала взаимодействия после того, как одно из полей соприкоснется с другой частицей. А это значит, что электрические поля начнут действовать одновременно, т.к. они равны, а поля гравитации начнут действовать последовательно, сначала поле протона, и спустя некоторое время начнет действовать и поле электрона.

Так или иначе, но сила притяжения протона и электрона возникнет скачком, пусть очень малым, но скачком.

Можем ли мы это утверждение рассматривать как физический прогноз? Можем, если подтвердим его экспериментально.

Предсказываемый скачок случайно был обнаружен в процессе контроля за скоростью космических аппаратов «Пионер». Правильную интерпретацию этот скачок так и не получил [8]. Ошибка наблюдателей была инициирована ложным стереотипом о продольном импульсе фотонов, якобы вызвавших обнаруженный скачок ускорений.

Вернемся к анализу нашей системы, в момент, когда все силовые поля вступили в действие, т.е. пропустим некоторый интервал сближения. В этот момент частицы ускоренно сближаются под действием пяти сил.

Сила гравитации электрона притягивает частицы (протон и электрон) и формирует векторное ускорение, которое зависит от масс обеих частиц, а еще от расстояния между ними, и релятивистски зависит от скорости обеих частиц.

Аналогично, сила гравитации протона притягивает частицы (протон и электрон) и формирует векторное ускорение, которое зависит от масс обеих частиц, а еще от расстояния между ними, и релятивистски зависит от скорости обеих частиц.

Сила электрического поля электрона притягивает частицы (протон и электрон) и формирует их тензорное ускорение, которое можно представить как суперпозицию векторного кулоновского ускорения и тензорного магнитного ускорения. Характеристики магнитного ускорения до сих пор полностью не изучены. Мы должны принять во внимание и релятивистскую зависимость интенсивности взаимодействия зарядов, хотя она официальной наукой и ТО не признается. Будем просто иметь её в виду, на всякий случай.

Сила электрического поля протона притягивает частицы (протон и электрон) и формирует их тензорное ускорение, которое можно представить как суперпозицию векторного кулоновского ускорения и тензорного магнитного ускорения. Характеристики магнитного ускорения также полностью не изучены. И мы опять должны принять во внимание возможную релятивистскую зависимость.

Пятая сила, сила инерции противится любому ускорению, т.е. возникает только во время действия сторонних для инерции сил. Сила инерции, таким образом, является силой реакции или иначе – следствием на действие полевых сил.

Как видим, наша максимально простая система, по мере своего пространственного сокращения, т.е. сближения частиц, имеет тенденцию к значительному усложнению. И это мы еще не учли спиновые параметры, отнеся их к микро полям. И вновь перед нами возникает парадокс, о котором не любят распространяться в учебниках.

Перед нами пять разно направленных сил, результирующая сумма которых для каждой частицы равна нулю. Однако частицы движутся ускоренно.

Вот ситуация, выход из которой без метафизики квантового представления найти невозможно. А выход следующий.

Представим, что в единичном квантовом цикле носители силовых полей вызывают соответствующий импульс движения и кроме того вызывают силу инерции. Но сила инерции по определению является реакцией, т.е. следствием, и по самым общим законам философии не может возникать одновременно с причиной. Таким образом, частицы ускоряются (смещаются) под действием полевых сил, и тут же, но в следующий момент, т.е. в следующем временном кванте, тормозятся силой (ускорением) инерции, сохраняя при этом свое, только что полученное, приращение скорости, т.е. импульс движения.

Получается, что классическое утверждение: сила противодействия всегда равна и противоположно направлена действующей силе,- является ложным, и в общепринятой  редакции представляет собой откровенный парадокс, зомбирующий умы учеников и студентов.

Редакцией, соответствующей истине, будет следующая: сила противодействия является следствием (реакцией) действующей силы, и всегда равна ей и противоположно направлена, отставая по времени воздействия ровно на один временной квантовый такт.

Как видим, в классической интерпретации парадокс нулевой суммы действующей силы и силы противодействия является непреодолимым.

 

Проследим, как в процессе сближения частиц изменяется распределение энергии в нашей замкнутой системе.

Будем исходить из условия трех законов сохранения: массы, энергии и импульса.

Здесь необходимо сделать некоторые оговорки.

Автор фундаментального учения об относительности, Эйнштейн, походя, как само собой разумеющееся, без всяких обоснований, сделал заявление, что в его учении закон сохранения массы и закон сохранения энергии могут и не выполняться. А могут и выполняться. В ТО строго выполняется только закон сохранения импульса движения.

Заявление такого ранга требует ревизии всей предшествующей науки о механике, а именно, требует выяснения, когда и как не выполняются законы, не приводит ли этот факт к возникновению внутренних противоречий. Однако никакой ревизии не последовало ни в среде физиков, ни в среде математиков, ни в среде философов – все теоретики приняли это заявление как авторитарную догму. Практическая же наука это заявление просто проигнорировала, что и послужило основанием для отсутствия конфликта.

Итак, система из двух частиц, обладающих только внутренней энергией, в результате ничтожного толчка пришла в движение, которое привело систему к началу внутренних взаимодействий и возникновению в системе кинетической энергии и магнитной энергии.

Не будем писать никаких уравнений, и так ясно, что означенные энергии могут возникнуть только за счет внутренней начальной энергии частиц, которая, следовательно, должна уменьшиться.

(Читатель, задержись на этом месте. Это надгробный камень ТО).

По мнению же Эйнштейна энергия системы во время сближения всё время возрастает. И если вместо протона будет Черная дыра с вполне конечной массой, а значит и с конечной энергией, то масса и энергия падающего электрона, в конце концов, превысит и массу, и энергию Черной дыры.

Парадокс так очевиден, и так нелеп, что современным апологетам ТО пришлось изобрести специальную ширму, называемую «горизонтом событий». За этой ширмой действие законов природы прекращается – и начинается мир инфляции, т.е. беззакония.

С точки зрения официальной науки — ситуация дискомфортная. Действительно, начав движение, частицы, согласно ТО,  начали увеличиваться в массе, сохраняя свои заряды; таким образом, их внутренняя энергия должна только возрастать. Одновременно начала возрастать и кинетическая энергия частиц, что также должно увеличить массу частиц в соответствии с формулой ∆m=∆E /c2.

Становится понятна причина странного заявления Эйнштейна о нарушении законов сохранения. С учетом этого заявления наша ситуация преодолевает свою парадоксальность, но только в рамках ТО.

В квантовом представлении выход предлагается на основе эффекта, называемого дефектом массы.

Интерпретация этого эффекта, благодаря оговорке первооткрывателей, связанной с некоторой этимологической небрежностью практиков-исследователей, превратилась в чудовищную ошибку, и привела к величайшему научному заблуждению. Обнаруженный дефект, оказывается, относится не к массе, а к весу продуктов ядерного деления. А вес — это результат процесса. Это не фундаментальный параметр объекта. Вес любого тела на Луне изменится, а масса явно сохранится.

К тому же, термин дефект не соответствует положению дел. Дефект – это неисправность, а обнаружена была недостача, т.е. дефицит. Это Эйнштейн превратил дефицит веса в прибыль массы – в дефект. Откуда в нашей замкнутой системе браться избыточной массе?

Отбросим ошибочный стереотип, и сделаем единственно верный вывод, справедливый как для замкнутой системы, так и для открытой: приобретение телом дополнительной энергии, извне или за счет запасенной внутренней энергии, влечет уменьшение внутренней энергии тела, что выражается в ослаблении энергетических взаимодействий данного тела, в частности в уменьшении всех сил притяжения.

Вывод на фоне устоявшихся ложных стереотипов, действительно, неожиданный, но логика реалий неумолима.

Таким образом, если соотношение ∆E=∆m·c2 (2), полученное экспериментально, интерпретировано Марией Кюри  в соответствии с истиной, то соотношение эквивалентности E=m·c2, не имеющее экспериментального подтверждения, является, видимо, ошибочным. Единственный эксперимент, трактуемый в пользу этого соотношения, а это аннигиляция пар электрон-позитрон, является весьма сомнительным. И, скорее всего, вообще не имеет отношения к массе, а связан с зарядом частиц, т.е. аннигилируют только заряды, что и подтверждается аннигиляцией пар протон-антипротон. Энергия аннигиляции этой пары равна энергии аннигиляции электрон-позитрон.

Если отбросить ложные наставления, и обратиться к фактам, то получается, что реально при возрастании скорости частицы, её вес уменьшается, не затрагивая при этом её массы инерции, которая, как и положено, и как  наблюдается в мощных современных ускорителях, инвариантна. Это значит, что масса инерции является не только обобщенной мерой количества вещества, а одновременно функционально является ограничительной мерой количества энергии, которую можно сообщить данному телу.

Сообщив телу некоторое количество энергии, мы уменьшаем его остаточную энергоемкость. А по фактам, полученным на мощных ускорителях, и которые пока еще скрываются, именно от остаточной энергоемкости тела зависит  интенсивность энергетических взаимодействий. Чем больше скорость частицы, тем слабее эффект ускоряющих и управляющих полей. Таким образом, сообщив телу кинетическую (или другую) энергию, мы, не влияя собственно на количество вещества, уменьшаем способность возбужденного нами тела притягиваться (или отталкиваться) силовыми полями.

Чтобы остудить энтузиазм желающих возразить, на основе экспериментальных данных, получаемых на современных коллайдерах, вскроем ошибку используемой интерпретации энергии столкновения частиц в современных ускорителях.

Дело в том, что процесс столкновения протонов в коллайдере имеет две принципиально различные фазы. Сначала реализуется фаза рассеивающих пролетных встреч, в процессе которых протоны отталкиваются, не соприкасаясь друг с другом, даже при лобовых направлениях. Этот сценарий действует до тех пор, пока кулоновский потенциал превосходит инерционный потенциал частиц.

Когда скорость частиц приближается к скорости света, кинетический потенциал практически перестает увеличиваться, т.к. равен 0,5·m·v2, зато кулоновский потенциал (остаточный) начинает уменьшаться всё быстрее и быстрее, в соответствии с фактором Лоренца. В результате, столкновения становятся контактными и  разрушающими.

Относительная скорость протонов в момент контактного столкновения при этом всё возрастает и возрастает, за счет ослабления кулоновского торможения, которое в конце концов практически исчезает.  Относительная скорость протонов при этом достигает скорости ~2с. Энергия контактных столкновений тоже растет и стремится к энергии E=0,5m·c2+ 0,5m·c2, и не более. Увеличение интенсивности разрушения протонов наблюдатели интерпретируют как следствие неограниченного роста энергии частиц, вызываемого релятивистским фактором. Но природа, мы исходим из философских обобщений, не может реализовать неограниченное возрастание любого параметра, относящегося к локализованному объекту (протону).

Обратим внимание, что по Эйнштейну,  при ускорении протонов и приближении их скорости к скорости света масса и энергия протонов неограниченно растут, а объем протонов стремится к нулю за счет продольного сокращения размеров. Таким образом, плотность вещества протонов стремится к бесконечности второго порядка. Что-то этот абсурдный аспект нигде не обсуждается.

Апологеты ТО, наши современники, наконец согласились с абсурдностью ситуацию, и разместили в Википедии редакционную (анонимную) статью, в которой сообщают, что масса частиц при увеличении их скорости не возрастает, т.е. массе вернули её инвариантность, а вот энергия частиц все-таки возрастает неограниченно, см. сайт И.Иванова «ЭЛЕМЕНТЫ». Как это может быть, если декларируется непосредственное (эквивалентное) участие энергии в гравитационном взаимодействии, – не обсуждается. Статья ссылается на работу «выдающегося физика Л.Б. Окуня под названием «О движении материи», где он в главе «Релятивистская кружка» поучает всех, включая академиков, как надо понимать инвариантность массы. Работа поддержана грантом Президента РФ НШ-4172.2010.2.  Поддержана – это значит, заказана и оплачена при посредничестве РАН.

Согласившись с этой статьей, покойный Эйнштейн должен был бы переделать своё творение, ибо он многократно заявлял в разных своих статьях, что “Специальная теория относительности привела к тому выводу, что инертная масса есть не что иное, как энергия, полное математическое выражение которой даётся симметричным тензором 2-го ранга, тензором энергии“. [“Основы общей теории относительности”, 1916 г. ,с. 489].

 

Тот факт, что РАН заказала Л.Б. Окуню статью, которая радикально корректирует ТО, которую (ТО) и критиковать-то нельзя, не то что корректировать, означает, что на БАК получены неоспоримые экспериментальные данные, не укладывающиеся в рамки ТО. А именно: инерционная масса частиц не изменяется при изменении скорости этих частиц.

На статью Л.Б. Окуня в этой ситуации не стоит обращать даже внимания.

Если критически мыслящий наблюдатель решит проверить, не иллюзионист ли перед ним, то он не должен следить за манипуляциями иллюзиониста – это не имеет смысла, т.к. это предусмотрено методикой иллюзиониста. Надо просто сравнить исходные посылки с конечным результатом.

Если масса протона в ускорителе инвариантна (неизменна), и скорость протона не превышает скорости света, т.е. тоже практически неизменна, то что же тогда является носителем гигантской энергии, которая приписывается протону, и превышает его энергию покоя в миллионы раз.

Аргументы несокрушимые. Но Л.Б. Окунь не был бы академиком, если бы был так прост. Ознакомившись с нашими аргументами, Л.Б. Окунь видимо заявит, что критики не понимают глубины ТО и глубины его, Л.Б. Окуня, мысли; и он предложит нам перечитать статью. А ведь наше позиционное преимущество именно в том, что мы статью не читали.

Видите, продемонстрирует Л.Б. Окунь, вы, критики, не обратили внимания на то обстоятельство, что в статье речь идет не о массе инерции и не о массе гравитации, речь об инвариантной массе; а это нечто новое, чего и сам Эйнштейн не заметил…

 

Логика, а вместе с ней законы философии, утверждают, что энергия покоящегося вещества (не путать с телом) равна нулю. Но состояние полного покоя вещества в природе не существует.

А максимальная энергия, которую можно сообщить телу, относительно подвижной ИСО, равняется E=m·c2, где m — масса инерции.

Иллюзионистский фокус ТО в том, что в ТО нет движущихся ИСО, все ИСО в ТО неподвижны относительно наблюдателя, а иные ситуации рассматривать недопустимо.

 

Когда суета амбициозного штурма по покорению Эйнштейном вершины славы закончилась, автор смог спокойно все проанализировать. Не надо гадать, что должен был сделать Эйнштейн, разобравшись в своем парадоксальном творении. Всё уже известно. Эйнштейн показал нам язык. И этого вполне достаточно, чтобы понять, что же уяснил для себя гениальный Эйнштейн.

 

Автор надеется, что приведенный пример развернутого системного анализа, проведенного с непременным его обращением ко всем философским аспектам, поможет читателю понять, от какого эффективного инструмента отказывается официальная наука, манкируя философскими достижениями; и в каком неприглядном состоянии (местами) она в результате этого пребывает.

Это неприглядное упадочное состояние вызвано искусственно, так называемым человеческим фактором; и это состояние отражает глубину падения нравов в современной науке в настоящий момент.

 

Нижний Новгород, октябрь 2018г.

 

            Источники информации

1 Эйнштейн А., Собрание научных трудов в 4-х т.  М.: «Наука», 1965 –1967.

2 Лебедев П.Н., «Давление света» Под редакцией П.П.Лазарева и Т.П.Кравца. (М.: Гостехиздат, 1922. — Классики естествознания).

3 Костюшко В.Е., «Экспериментальная ошибка П.Н. Лебедева – причина ложного вывода об обнаружении им давления света». Русское Физическое Общество Энциклопедия Русской Мысли. Т. XVI, стр. 34, Интернет http://v-kostushko.narod.ru4 Хокинг С., Краткая история времени. Интернет.

4 Николаев Г. В., Современная электродинамика и причины ее парадоксальности.

5 Леонович В.Н., Большой Адронный Коллайдер и одна из его тайн. Интернет: https://www.proza.ru/2014/11/29/620

6 Леонович В.Н., Концепция физической модели квантовой гравитации. Интернет:  http://www.sciteclibrary.ru/rus/catalog/pages/10168.html

7 Лоренц Г.А., Теория электронов. М.: ГИТТЛ, 1953.

8 Леонович В.Н., Тайна аномалии «Пионеров». Интернет: http://www.sciteclibrary.ru/rus/catalog/pages/12467.html

9 Окунь Л.Б., «Релятивистская» кружка. Интернет: http://elementy.ru/bookclub/chapters/432008

 

 

 

Кривизна пространства

Информация к размышлению

 

Аннотация. Представлено наглядное обоснование принципиальной невозможности существования кривизны пространства в понимании Римана, Лобачевского, Эйнштейна, т.е. кривизны, допускающей понятие замкнутого пространства.

 

Введенные понятия, профессионализмы, редко употребляемые слова:

1) Возмущение – состояние объекта, отличное от условно принятого за базовое состояние. Базовое состояние обычно характеризуется минимумом энергии.

2) Официальная наука – свод научной информации, представленной в учебниках, пособиях и справочниках, утвержденных к изданию Российской Академией Наук (РАН).

3) Коварный стереотип — неосознаваемый стереотип, представляющий ошибочное решение части исследуемой проблемы.  Например, квантовое мировоззрение не допускает существования неразрывных полей с бесконечной протяженностью. Однако и физики, и математики продолжают молча (без оговорок) пользоваться этими неприемлемыми уже представлениями.

 

Понятие «пространство» можно условно представить состоящим из трех частей.

а) Пространство геометрическое – объем геометрического объекта, абстрактной фигуры.

б) Пространство как обобщенное понятие места размещения определенных объектов: пространство листа бумаги, пространство помещения, пространство локализованного природного образования, пространство таблицы, пространство произвольного множества, пространство космическое.

в) Пространство пустоты – интуитивное и очень не конкретное представление о пустоте как материальной, но лишь косвенно ощущаемой сущности. Пространство пустоты мыслимо в двух ипостасях: пространство пронизывающее всё вещество присутствующих объектов; и пространство между веществом объектов, обволакивающее, не проникающее в вещество.

 

Все три представления о пространстве, сформулированные автором, не являются жестко обособленными, и в чем-то перекликаются друг с другом, но все-таки это не одно и то же. Нас в данном исследовании интересует безграничное космическое пространство пустоты.

Обратим внимание, что два первых представления принципиально обращены к ограниченным пространствам. Даже космическое пространство, без уточняющего обстоятельства «безграничное» непроизвольно ограничивается нами по мере надобности: солнечная система, звездное скопление, Галактика, Метагалактика,- это всё мысленно ограниченные пространства.

 

Логически, пустота не может иметь формы, и значит, не может иметь своих границ. Пустота, в рамках нашего стереотипа мышления, занимает всё доступное ей пространство, а доступно ей всё, что не занято мыслимыми и ощущаемыми нами объектами.

Пока атом представлялся научному сообществу цельной частичкой вещества, пустота естественно представлялась в образе эфира, обволакивающего атомы.

Однако, как только стало известно, что сам атом почти весь состоит из пустоты, концепция эфира потеряла опору, тем более сейчас, после разработки теории партонов в рамках Стандартной модели [&]. В теории партонов пустота занимает почти весь объем протонов и нейтронов.

Возникает вопрос: пространство, которое временно занято веществом, что оно из себя представляет? Интуиция и здравый смысл склоняли эрудитов XIX века к мысли, что пустота существует физически, на равных правах с веществом, т.е. устранение электрона из данной точки, вызывает смещение окружающей пустоты в освободившееся место, и влечет выдавливание пустого пространства из нового места расположения электрона.

Такое представление о пространстве (пустоте) является коварным стереотипом, который неуклонно склонял и продолжает склонять исследователей к образу эфира в форме обволакивающей идеальной жидкости.

Однако постепенно и неотвратимо, с приобретением новых знаний создается альтернативное мнение, по которому пространство, будучи неподвижным, формирует все известные нам объекты, как результат своего возмущения. Возмущения, которое перемещается от одного элемента неподвижного пространства к смежному элементу. Одним из первых эту идею четко сформулировал Лоренц. Вот как Лоренц выразил свою мысль: «Действительно, одно из важнейших наших основных предположений будет заключаться в том, что эфир не только занимает всё пространство между молекулами, атомами и электронами, но что он и проникает все эти частички. Мы добавим гипотезу, что, хотя бы частички и находились в движении, эфир всегда остаётся в покое. Мы можем примириться с этим, на первый взгляд поразительным, представлением, если будем мыслить частички материи как некоторые местные изменения в состоянии эфира. Эти изменения могут, конечно, очень хорошо продвигаться вперёд, в то время как элементы объёма среды, в котором они наблюдаются, остаются в покое» [Г. А. Лоренц. Теория электронов. М.: ГИТТЛ, 1953., с.32].

Это поразительное озарение могло стать вершиной уже вершившейся в то время научной революции, но рок распорядился иначе.

Вмешался Эйнштейн, который абсолютизировал пустоту и, связанное с пустотой, дальнодействие. И мир принял эту мистическую нелепость.

Философскую емкость идеи Лоренца трудно переоценить. Вдумаемся, всё безграничное разнообразие Вселенной в гипотезе Лоренца обеспечивается всего одним микроскопическим универсальным элементом (квантом) пространства, тиражированным беспредельное количество раз. Другого варианта нет. Эта гипотеза должна была вызвать прогрессивный переворот всего философского мировоззрения. Но Эйнштейн отодвинул это событие на несколько десятилетий.

 

Казалось бы, наглядное представление о пустоте получить просто. Для этого из интересующей нас области бытового пространства необходимо удалить все ощущаемые и мыслимые объекты. Однако процесс такого удаления приводит к философской проблеме (парадоксу). Оказалось, что из заданного объема невозможно удалить наблюдателя, т.е. самоё себя. Можете попробовать.

Как только научное сообщество признало свободное пространство материальным, так понятие «свободное пространство» стало условным. Действительно, от чего свободно пространство: от материи? Ведь в данном представлении пространство является своего рода божественной глиной. Получается, что свободным пространством надо считать «отдыхающее» пространство, которое свободно от своих функций-обязанностей.

Если Земля, например, сместится из данной области, то пространство не замещает освободившееся место, оно просто освобождается от функции быть Землей, передавая эту функцию в смежную область неподвижного пространства. А из этого следует, что каждый элемент пространства может на время становиться любой материальной сущностью.

В 1920 г. Эйнштейн дал свое определение пустоты «физического эфира», вот оно: «…общая теория относительности наделяет пространство физическими свойствами; таким образом, в этом смысле эфир существует… Однако этот эфир нельзя представить себе состоящим из прослеживаемых  во времени частей; таким свойством обладает только весомая материя; точно так же к нему нельзя применять понятие движения».  Конец цитаты.

Как видим, от определения Лоренца это определение Эйнштейна отличается значительной неопределенностью и нарочитой туманностью.

Когда обстоятельства заставили Эйнштейна полностью согласиться с Лоренцем, он и тогда не отказался от своего учения. Может, понимал, что общество уже не простит и не позволит ему этого сделать; Эйнштейн просто показал всем язык. Потомкам, которые разберутся в путанице учения Эйнштейна, это будет понятно.

Попытки теоретиков создать модель пространства, опирающуюся на подвижные материальные частицы пространства (бозоны), отличающуюся от предложенной модели Лоренц, заводят в дебри мистики. В результате, с Лоренцем постепенно соглашается всё больше исследователей, но еще не большинство. Элита РАН хранит молчание в пользу бозонного (скоростного во все стороны) пространства Стандартной Модели.

 

Итак, в случае неподвижного пространства, веществу и всевозможным полям, ничего не остается, как быть возмущениями материального пространства, или иначе, его локализованными трансформациями, перемещаемыми методом информационной эстафеты. В этом случае пространство освобождается от любых механических нагрузок и всех мыслимых парадоксов механического происхождения, но предъявляет нам свои новые качества, к которым официальная наука оказалась не готовой. Интуиция Лоренца не нашла полной поддержки. Поэтому, вывода-утверждения, о фундаментальности эстафетного метода перемещения в неподвижном (абсолютном) пространстве, научное сообщество сделать не решилось. Вместо этого официальная наука заполнила мир обезличенной энергией, предоставив ей право быть и пространством, и всеми полями, и всеми материальными объектами, исказив, таким образом, смысл эквивалентности вещества и энергии. Получается, что энергия, в форме множества своих представлений, и образует материальное пространство. Для вещества же аналогичная (симметричная) функция мыслится невозможной. При таком подходе пришлось наделить энергией и свободное (не обремененное обязательствами) пространство, а это нонсенс.

Получилась логическая неувязка. Пришлось энергию пустоты объявить океаном манящей и нескончаемой энергии, но из этого океана нам доступна лишь его пена, в образе флуктуаций. Мистика.

Эквивалентность массы и энергии выражается формулой Эйнштейна

E=mC^2.

Получается, что мы можем мыслить вещество изготовленным из энергии. Однако, в нарушение симметрии, энергию, изготовленную из вещества, мы мыслить не можем. В этом обстоятельстве скрыта некая философская несостоятельность, которая предполагает возможность полного превращения вещества в энергию. Но что в этом случае будет эту энергию реализовывать?

Обезличенная (не привязанная к веществу) энергия совместима только с квантами света. Для реализации бытовых скоростей вещества, приходиться энергию свертывать в вихри и торы, аналогичные «дымовым кольцам».

Однако такая (энергетическая) модель не снимает всех противоречий подвижного пространства. Как следствие, официальная наука погрузилась в мистику точечных сингулярностей, и в мистику плоских, бесконечных в пространстве, коллапсирующих волновых функций, оставив науку без непротиворечивой парадигмы.

Оставим проблему материального представления пространства, приняв к сведению, что наше представление о свободном (пустом) пространстве является не окончательным и неполным.

 

Из выше изложенного следует, что пространство это сущность необъятная, как по объему, так и по содержанию, требующая для своего изучения согласованных усилий многих наук в рамках философского подхода. Однако исторически сложилось так, что геометрия заявила на пространство свои особые права.

Геометрия – это практическая наука об измерении поверхностных и объемных фигур (и их соотношений), ограничивающих вещественную сущность физических объектов, находящихся в пространстве.

Геометрия неограниченного пространства – это философский изыск.

Гениальный разработчик теории геометрии, Евклид, был философом.

Как философ, Евклид при разработке геометрии столкнулся с тремя трудными проблемами. Решая эти проблемы, Евклид не поделился с нами своими сомнениями, он просто нам  предложил свое понимание геометрических аксиом, постаравшись обойти мешающие ему философские парадоксы.

Первая проблема связана с определением геометрической точки пространства. Евклид определил точку как нечто реальное, «что не имеет частей». Фактически, данное определение является определением пространственного кванта в современном смысле;  но для такого представления надо признать пространство квантовым. Евклид не обладал необходимыми знаниями, поэтому не смог выразить свою интуицию корректным образом. И получилось, что его определение формально не противоречит понятию точки как безразмерного объекта, ведь безразмерная точка тоже формально не имеет частей.

Однако сам стиль формулировки вскрывает сопротивление Евклида применению безразмерной точки.

Дело в том, что механика, в качестве практической кинематики, нереализуема для  тел, составленных из бесконечного числа материальных точек. Ни одно тело не сможет тронуться с места, если оно состоит из бесконечного числа точек, а скорость передачи импульса движения от точки к точке является конечной.

С точки зрения механики, мир может быть только квантовым, принципиально. Однако официальная наука условие принципиальности не приемлет; она признает мир только квантуемым по желанию исследователя, т.е. наблюдателя, что противоречит диалектической логике.

Фундаментальная геометрия Эйнштейна основана на безразмерных материальных точках. Почему официальная наука так бережно лелеет этот очевидный и бессмысленный парадокс, можно узнать только в РАН. Но у каждого интересующегося спросят причину (обоснование) вопроса, а узнав, объявят его представителем лженауки. Критерий – критика ТО.

Вторая проблема Евклида была связана с параллельностью прямых линий.

Задача построения параллельных линий сталкивает практическую геометрию с актуализацией бесконечного пространства. А древние мыслители в своих построениях старались избегать всякой актуализации бесконечности.

Евклид попытался обойти эту проблему с помощью неуклюжей, но, тем не менее, как подтвердила история, строгой формулировки своего пятого постулата. Вот эта формулировка.

«И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные неограниченно эти прямые встретятся с той стороны, где углы меньше двух прямых».

Как видим, в этой формулировке ни слова о параллельности, и ни слова об актуальной бесконечности.

Была еще и третья проблема, но во времена Евклида она еще не стала актуальной; эта проблема связана с методом построения прямой линии.

Евклид определил прямую линию как натянутую нить, или как луч света.

Ньютон определил прямую линию как траекторию тела, движущегося в свободном пространстве только под действием сил инерции.

Эти три проблемы, в полном объеме, не решены до сих пор. И причиной этого является устойчивый стереотип мышления. Дело в том, что все три проблемы достаточно легко решаются в реальном квантовом пространстве, которое таковым уже объявлено. Но, объявив мир квантовым, теоретики, тем не менее, следуя за официальной наукой, мыслят мир классическим, состоящим из безразмерных материальных точек. Вот проблемы и живут, благодаря коварному стереотипу.

Как видим, применительно к неограниченному пространству, мы имеем два эталона прямой линии: траекторию луча света и траекторию движения тела по инерции. Оба эталона небезупречны.

Свет искривляет свою траекторию в неоднородной оптической среде, а пробные вещественные тела искривляют траекторию инерционного движения вблизи других вещественных тел, устранить которые нет возможности.

 

Всякое обращение к актуальной бесконечности вызывает у авторов проблемы философского толка. Возникли проблемы и у геометрии Евклида при попытке её интерполяции на бесконечность. Научное сообщество усомнилось в полноте и непротиворечивости аксиоматики Евклида. Началась эпопея проверок, в результате которых сначала возникли гипотезы криволинейных геометрий, а следом возникли и гипотезы кривизны реального пространства.

Следует заметить, что все проблемы, касающиеся кривизны пространства, рождены «на кончике пера». Практика не дает никаких оснований для предположений о кривизне пространства. Но уж если теоретики вызвали джина из бутылки, то его необходимо идентифицировать.

Как на практике отличить бытовое криволинейное движение объектов, вызываемое множеством причин, от криволинейного движения, связанного с кривизной пространства?

С философской точки зрения вопрос примитивен до не корректности. Ведь, если криволинейное движение тела вызвано кривизной пространства, то логично причиной искривления траектории тела считать причину, которая вызвала кривизну пространства. Но ни кривизны пространства, ни причин её вызывающих мы не знаем. Что же с чем сравнивать?

Чтобы внести физическую определенность в этот вопрос, необходимо выделить оба типа движения хотя бы гипотетически и терминологически. Так и сделали.

Свободное прямолинейное движение по инерции в гипотетическом криволинейном пространстве назвали геодезическим, а причинное движение в этом же пространстве назвали мировым.

Ситуация конкретизировалась, но недостаточно.

Как наблюдатель определит, в каком пространстве он находится? Нужны критерии.

Однако практика никаких критериев не предоставляет.

Вывод: либо кривизны нет, либо реальная кривизна неуловимо мала.

Но теоретикам, которые втянулись в изучение кривизны пространства, и потратили на это много сил и времени, очень хочется, чтобы их труд был не напрасен. Интуитивно они понимают, что малозаметная кривизна космического пространства может быть связана только с распределением массивного вещества в космосе. Но как конкретно это реализуется, геометры не знают.

После первой попытки Лобачевского представить реальное пространство в качестве криволинейного, научное сообщество отвергло его притязания. Но вирус был выпущен. Вслед за геометрией Лобачевского появились другие. Появилась обобщенная криволинейная геометрия (семейство геометрий) Римана.

И, наконец, появилась еще одна, особенная геометрия – геометрия пространства-времени Эйнштейна. Геометрия – кентавр. Геометрия, оперирующая физическими полями, да еще претендующая на статус фундаментальной геометрии всякой физической сущности, начиная с гравитации.

С введением понятия пространства-времени Эйнштейна, практическое разделение движения на мировое и геодезическое, резко усложнилось. То, что раньше считалось мировой линией, например, движение планет, у Эйнштейна стало геодезической линией. По наблюдаемой кривизне траектории тела невозможно определить, геодезическая она или мировая. Все траектории планет превратились в прямые геодезические линии. Но видеть прямизну этих линий нам не дано, т.к. они являются объектами 4-х мерного пространства, которое реально не существует, но его формальным законам якобы объективно подчиняется вся динамика космоса. И эту динамику можно рассчитывать по формулам Эйнштейна.

Формулы очень красивые. Но решить эти формулы в практическом приложении фактически невозможно, из-за их сложности. К тому же, Эйнштейн наделил фотоны гравитационной массой, и те лишились возможности быть эталонами прямых линий. Если кто читал труды Эйнштейна, то могли бы заметить, что учение является принципиально приблизительным, о чем Эйнштейн напоминает в начале почти каждой своей статьи.

Реанимировав отжившую гипотезу Ньютона, о наличии гравитационной массы у фотона, Эйнштейн вынужден приписать наличие гравитационной массы любой форме энергии. Поворот развития прогресса в тупик – завершился.

Заменив силовые поля гравитации кривизной пространства, на что как автор модели Эйнштейн имел полное право, Эйнштейн освободил себя и остальных теоретиков, ратующих за всемирную кривизну пространства, от доказательства существования этой кривизны. Поскольку теперь кривизна бесспорно была всюду, то можно ставить вопрос только о том, чему равна средняя кривизна пространства Вселенной. А это формально соответствует научной постановке вопроса.

Однако произведенная замена требовала обстоятельного доказательства своей правомочности, т.е. адекватности нового представления. Такого доказательства в ТО у Эйнштейна нет. Похоже, Эйнштейн отнесся к произведенной им замене, как к смене координат, не влияющей на суть происходящего.

Вслед за Эйнштейном в это заблуждение впал А. Фридман, который операцию инверсии пространства принял (и представил) как преобразование координат.

Роковая ошибка, связанная с ошибочным представлением Эйнштейна о росте массы тел с ростом их энергии, последовала незамедлительно. В циклотроне, ослабление воздействия магнитного поля на движущиеся по круговой траектории электроны, было интерпретировано не как ослабление действия поля, а как увеличение массы электрона.

Несуществующую прибавку веса пришлось превратить в эквивалентность массы и энергии. Дальше – больше. Возникла лавина ложных интерпретаций множества связанных экспериментов [&Окунь].

Сформировалась ложная парадигма, которая живет и развивается до сих пор, повторяя по-своему историю поручика Киже.

 

Поскольку в представлении (континууме) Эйнштейна времени нет, а есть времени подобная пространственная координата «ict», то никакого движения в «пространстве-времени» быть не может. Могут быть только неподвижные геодезические и мировые «траектории» в сугубо математическом (наглядно непредставимом) представлении.

Но сам Эйнштейн не может преодолеть общий коварный стереотип – всё мыслить движущимся во времени. Он постоянно сбивается на описание неких движений в своём континууме. И это только малая толика лавины нелепых неразберих.

Эйнштейн совершил поступок невероятно дерзкий.

В своей модели гравитационного мира он отказался от гравитационных сил и гравитационного потенциала, и заменил их геометрической кривизной. В представлении любого человека, кривизна рельефа побуждает тела к движению; все забывают, что это притяжение Земли вызывает движение, а кривизна только направляет движение тел. Сама по себе кривизна не может вызвать движение. Таким образом, Эйнштейн косвенно ввел в геометрию элемент физики, сотворив небывалое доселе чудо – физическую геометрию, не имеющую аналога ни в природе, ни в науке о природе.

Если кривизна пространства побуждает массивные объекты к движению, то такая кривизна, в этом аспекте, ничем не отличается от силового поля, что представляется весьма сомнительным, т.к. кривизна должна сказываться в первую очередь на луче света, как эталоне кривизны.

Простота приведенных здесь аргументов критики пасует перед чудовищностью лжи, тиражируемой официальными СМИ и Академиями всех стан, во славу ТО.

Обратим внимание на то, что на момент замены Эйнштейном силы притяжения кривизной пространства, представление о кривизне еще только формировалось на основе домыслов; домыслов, исходящих от узкого круга лиц, так что проверить справедливость утверждений Эйнштейна было практически невозможно.

В представлении Эйнштейна кривизна пространства задается пространственным распределением массы и энергии. При этом свободное движение в любом гравитационном поле объявляется инерционным.

Вещество и энергия есть повсюду. Значит, прямолинейных участков пространства просто не бывает. Как же тут возразить, что пространство Эйнштейна не криволинейное. Но подвижность энергии делает задачу перевода энергии в неподвижную кривизну — неисполнимой, с очевидностью.

Модель Эйнштейна явно не адекватна природе, и не востребована практическими нуждами человека. А это значит, что для привлечения внимания общества к ТО нужно использовать всевозможные парадоксы, выявление которых связывалось исключительно с разработкой ТО, например, парадокс близнецов.

Общество было шокировано необычностью эффекта, и весь восторг удивленного обывателя был направлен на ТО и её автора, хотя эффект следовал непосредственно из преобразования Лоренца.

Становление ТО сопровождалось всевозможными интригами. Хочешь — не хочешь, а придется сделать отступление на анализ так называемого «человеческого фактора».

Подавляющему большинству населения Земли ненаблюдаемая и недейственная кривизна пространства безразлична, т.к. она не влияет на их жизнь по причине своего отсутствия. Прочтя любые разоблачения учения Эйнштейна, это большинство не будет вникать в их смысл и в суть ТО, но подумает, что не может быть, чтобы гениальный Эйнштейн ошибался, ведь интеллект  академиков заметил бы эти ошибки.

Узкий круг специалистов, который мог бы вынести профессиональную оценку учению Эйнштейна, является кругом персонально заинтересованных лиц. Молодые, пишут диссертации и делают карьеру; этим специалистам нельзя даже сомневаться в ТО – иначе они окажутся в изгоях от науки. А защитившись, и сделав карьеру, они тем более не будут критиковать ТО, ставшую их кормилицей.

И кто же остановит этот закольцованный процесс?

Остановят те, кто породил революцию, зашедшую временно в тупик. Остановят инженеры и исследователи-экспериментаторы.

Но этого может не случиться очень долго, если общество будет достаточно зомбировано. Теневое мировое правительство, подкупив академическую верхушку, к этому и стремится. Смысл этого стремления далек от темы данной статьи.

 

Попробуем разобраться в тонкостях вопроса о кривизне пространства, по методу Лобачевского. Для этого предположим, что реальное пространство является кривым, и попробуем установить критерии этой кривизны, которые должны проявляться с достаточной для обнаружения интенсивностью, но не обнаруживаются в силу ложности исходного предположения.

Чтобы облегчить читателю дальнейший анализ изложения, заявим сразу, что далее по тексту идет обоснование иллюзорности представлений о кривизне реального пространства. Поэтом, встретив в тексте аргументы в пользу кривизны пространства, надо их рассматривать в рамках доказательства от противного.

Итак, действенная кривизна всех римановских псевдо геометрий не вызывает сомнений. Но имеют ли эти геометрии какое-нибудь отношение к нашему космическому реальному пространству?

Начнем, естественно, с кривизны 4-х мерного пространства-времени Эйнштейна, освященного РАН статусом фундаментальности.

По утверждениям теоретиков, кривизна пространства непосредственно связана с пространственной метрикой.

Теоретики кривых пространств утверждают, что в метрическом пространстве, каковым, несомненно, является пространство нашей трехмерной Вселенной, всегда можно выбрать координаты, в которых для дифференциала пути будет справедливо выражение:

dS2 = dX 2+ dY2 + dZ2 (1).

В общем же случае (если не выбирать координаты) утверждается, что это будет тензор, перед каждым элементом которого должен стоять метрический коэффициент, зависящий от конфигурации кривизны пространства.

Вот как комментирует эту ситуацию сам Эйнштейн.

«В непосредственной близости от свободно падающего в гравитационном поле наблюдателя гравитационного поля нет. Поэтому мы всегда можем рассматривать бесконечно малые области пространства как галилеевы.

… Пространственно-временные области конечной протяженности, вообще говоря, не будут галилеевыми, так что в конечной области никаким выбором координат нельзя исключить гравитационное поле. Поэтому нет таких координат, в которых метрические соотношения специальной теории относительности выполнялись бы в конечной области. Но для двух соседних точек (событий) континуума всегда существует  инвариант  ds. Его можно выразить в произвольных координатах.

ds2=gijdxidxj

Функции g описывают в произвольно выбранной системе координат как метрические соотношения в пространственно-временном континууме, так и гравитационное поле.» [Том II, собрания сочинений в четырех томах, стр. 48-49]

Прочтите цитату еще раз, и посмотрите, как показательно строг к своим выводам Эйнштейн. И всё это лишь для того, чтобы усыпить бдительность читателя, потому что ключевое заключение: «Но для двух соседних точек (событий) континуума всегда существует  инвариант  ds.» — является ложным. И за доказательством далеко ходить не надо. Доказательством этого является вся вступительная часть цитаты.

А смысл неприметной приписки в этой цитате: «Функции g описывают в произвольно выбранной системе координат как метрические соотношения в пространственно-временном континууме, так и гравитационное поле» — это и есть тот самый необоснованный постулат по замене силовых полей гравитации параметрами кривизны. Читатель не найдет в трудах Эйнштейна, чем gij в уравнениях кривизны отличаются от gij   в уравнениях движения.

 

Функции gij  всегда присутствуют в системе тензорных уравнений Эйнштейна, но так же они присутствуют во всех метрических примерах и расчетах, хотя размерности функций, которые определяются тензором gij в этих двух применениях совершенно разные, не говоря уже о их реальных значениях. Инженер, взявшийся решать уравнения Эйнштейна, на этом месте будет вынужден остановиться в недоумении.

Чтобы понять смысл жонглирования индексами тензорных уравнений Эйнштейна, достаточно вспомнить школьные упражнения с тригонометрическими тождествами. И тригонометрические тождества, и уравнения Эйнштейна не имеют физического смысла, пока они не связаны с конкретными начальными и граничными условиями объектовой задачи, о которых в ТО нет ни слова. Эйнштейн, или его популяризаторы, демонстрируют читателю обобщенные свойства тензоров, безотносительно к реальному пространству, по аналогии c тригонометрическим выражением tg β = sin β /cos β, которое само по себе никому ничего конкретного не сообщает и не доказывает.

Когда же речь заходит о реальных свойствах пространства, Эйнштейн, если ему это надо, фальсифицирует фундаментальные положения своего учения.

Суть одной из фальсификаций, например, в заявлении, что в достаточно малой области произвольного криволинейного пространства всегда можно подобрать такие координаты, что выражение для квадрата метрики будут иметь вид уравнения (1). Эйнштейн, видимо, исходит из сомнительного приема, применяемого многими физиками. Прием состоит в следующем. Для того, чтобы к кривой линии применить формулу прямолинейной геометрии, отрезок кривой линии мысленно уменьшают, одновременно уменьшая масштаб наблюдателя, и добиваются кажущегося эффекта прямизны кривого в действительности отрезка. Этот же прием Эйнштейн использует применительно к малому объему криволинейного пространства. Эйнштейн не замечает (или не хочет замечать) одну особенность: уменьшение объема рассматриваемой области пространства при одновременном уменьшении масштаба наблюдателя в этом случае не влияет на угол расхождения «параллельных» геодезических прямых.

Если взять малый объем криволинейного пространства, в котором геодезические линии расходятся под некоторым конкретным углом, то как ни уменьшай малый объем, угол расхождения будет оставаться неизменным. А это значит, что условие (1) в данной области пространства невыполнимо.

 

Теоретики знают, что реальное пространство 3-х мерное. И других пространств не бывает.

Эйнштейн тоже это знал. Поэтому, излагая своё учение, он избегал термина «пространство», используя термин «континуум». Континуум может иметь любую мерность, и допускает формализм метрики, если данный континуум определить соответствующим образом.

Многозначительное выражение «определить континуум соответствующим образом» является магической фразой, после которой рассматриваемый континуум уже считается метрическим. А соответствующий образ для 4-х мерного континуума только один:

dS2 = dX2 + dY2 + dZ 2+ dW2

Давайте разберемся еще раз.

В выражении (1) dS является расстоянием между близкими точками пространства, а само выражение (1) является формой записи теоремы Пифагора.

Для того, чтобы рассматриваемый континуум был признан метрическим, необходимо чтобы  dS не изменяло своего численного значения при произвольном, линейном преобразовании координат. Здесь ключевым понятием является «линейное преобразование координат». Если континуум линейный – то он метрический. А если континуум не линейный – то о его метричности ничего сказать нельзя.

Чтобы криволинейный континуум обеспечивал существование метрики, необходимо, чтобы dS являлось инвариантом «линейных преобразований координат». А где взять «линейное преобразование координат» в криволинейном континууме? Это еще один коварный стереотип нашего мышления. Логика софистики заставляет нас искать, и иногда по ошибке находить то, чего нет.

Любая реальная или мыслимая кривизна является искусственной конструкцией в линейном евклидовом пространстве, и не более [2].

Производя всевозможные тензорные преобразования, Эйнштейн должен бы был доказывать, что собственно с пространством, и его объектами, в его модели, ничего не происходит.

В качестве критерия допустимости таких преобразований принято использовать инвариантность (относительно этих преобразований) заданного дифференциала между близкими точками, т.е. dS. Такие преобразования, сохраняющие инвариантность dS, Эйнштейн называет ковариантными. Инвариантность dS в данных ситуациях логично адресуется и к метрике, которую тоже называют инвариантной.

Но на основании этого критерия, инвариантность метрики континуума Эйнштейна весьма сомнительна, т.к. его метрика по определению является метрикой криволинейного пространства, зависящей от распределения массивного вещества и энергии в этом пространстве.

Эйнштейн замалчивает это обстоятельство, и придумывает ловкий прием. Он определяет метрику своего континуума как:

dS2 = dX2 + dY2 + dZ2 — c2 (dt)2= 0.        (2)

Это главная фальсификация Эйнштейна. Есть и другие, но эта – главная.

Во-первых, dS в (2) это не путь и не расстояние, и значит, не имеет к метрике никакого отношения, даже если dS является инвариантом; а само выражение (2) это даже не равенство. Присмотримся внимательно – и мы увидим, что dS в (2) это разность двух измерений одного и того же пути между двумя, близкими, по определению, точками реального пространства, измеренного двумя разными методами. Таким образом,  dS в (2) вовсе не метрика, и не расстояние между близкими точками, а метрологическая характеристика двух методов измерений. Первый раз замер производится линейкой, а второй раз – с помощью часов и луча света. И делается это в нашем, обычном трехмерном пространстве, а не в 4-х мерном пространстве-времени. И самое главное, такое сравнение допустимо (справедливо) только для фотона, и в этом случае является тождеством.

Инвариантности метрики соответствует условие равенства нулю её (т.е. метрики) параметрической производной. Выражение (2), заявленное как приращение пути, но на самом деле являющееся разностью одного и того же приращения, создает ложный эффект  (впечатление) инвариантности метрики.

Приравняв нулю, ложный дифференциал пути, Эйнштейн на самом деле заранее лукаво гарантирует равенство нулю второго дифференциала, что должно было бы подтверждать инвариантность ложной (несуществующей) метрики. Сконструировав выражение (2), Эйнштейн хотел с его помощью решить две задумки: представить свой континуум метрическим (что ему удалось, хотя и незаконно); и любые преобразования координат представить ковариантными (что тоже удалось благодаря попустительству оппонентов). Таким образом, Эйнштейн, не взирая на очевидный абсурд ситуации, заявил выражение (2) как метрику. И все это приняли.

Демонстрация коллективного зомбирования.

Однако континуум, представленный Эйнштейном, как только что выяснили, не является метрическим.

В искусственном четырехмерном континууме Эйнштейна, который определяется выражением (2), метрики не существует.

Эйнштейн утверждает, что его представление (модель), при отсутствии массы в пространстве, будет всегда реализовывать геометрию Евклида и признаком этого будет  dS = 0. Но ведь признаком линейности пространства является инвариантность отрезка dS, а перед нами не отрезок, а «0», который в данной ситуации означает отсутствие объекта (приращения пути). Вспомним о коварстве «0» из занимательной арифметики.

Обязательное условие dS=0 в (2), выдвинутое Эйнштейном, не допускает права интегрирования пути.

Википедия. «Интегрировать определённое таким образом расстояние нельзя, так как результат зависел бы от мировой линии, по которой бы велось интегрирование. Таким образом, в общей теории относительности понятие расстояния между далёкими объектами в трёхмерном пространстве теряет смысл. Единое исключение — ситуация, в которой метрический тензор gij не зависит от времени.» Конец цитаты.

Независимость метрического тензора от времени означает его непричастность к эйнштейновской модели пространства-времени.

Последнее условие выполняется только для абсолютно пустого пространства. Этот факт первым обнародовал астроном и математик Де Ситтер. Об этом мельком написано в некоторых справочниках, но, сообщив об этом, далее этот факт не комментируется, и нигде больше не упоминается.

Если же пространство частично заполнено массой, то оно в модели Эйнштейна непременно искривится, и dS из выражения (2) по утверждению Эйнштейна будет не равно нулю, dS ≠ 0, но бессмысленная величина dS инвариантом не будет. А это значит, что по изменению dS можно идентифицировать каждую ИСО, что в рамках ТО является недопустимым.

Модель Эйнштейна и геометрия Евклида призваны описывать одно и то же реальное пространство. При этом из постулата Эйнштейна о неизбежной кривизне пространства, т.е. dS ≠ 0, следует, что в геометрии Евклида между двумя точками реального пространства можно провести две прямые линии разной длины. И это уже не про модель Эйнштейна, а про реальное пространство.

Всё это напоминает методику Лобачевского по нарочитому искажению пятого постулата Евклида, только уже не в плане параллельности, а в плане длины отрезка L между двумя заданными точками.

Однако в методе Эйнштейна есть некоторая особенность. Эйнштейн молчаливо полагает (настаивает), что отрезки нужно измерять по разным методикам: один раз линейкой, а другой раз с помощью часов и луча света.

Покажем, что выражение (2), безосновательно названное Эйнштейном метрикой dS, в заданной Эйнштейном интерпретации не может быть не равным нулю. Если нам это удастся, то это будет отрицанием всей ТО.

Исходя из первого постулата Эйнштейна, все измерительные масштабы при переходе из одной ИСО в другую изменяются пропорционально, так что наблюдатель ни каким способом не может внутренними средствами своей лаборатории идентифицировать движение своей ИСО, и вынужден считать её неподвижной.

Поскольку, скорость света объявлена константой, то при измерении длины отрезка L с помощью часов получим L= c dt , т.е. dt = L /c. Тогда разность двух измерений будет:

ddS = L1 – L2 = L – c dt = L– c (L/c) = L – L ≡ 0.

Таким образом, наблюдатель всегда будет обнаруживать равенство двух измерений. Получается, что невозможно нарушить равенство dS = 0, не нарушив первый постулат Эйнштейна.

Вообще-то, для метрики, рассматриваемой в общем случае, действуют свои законы-леммы. Вот одна из них.

Если хоть одна из координат метрического интервала не равна нулю, то интервал тоже не равен нулю; интервал всегда положителен. Таким образом, выражение (2), которое явно не удовлетворяет этой лемме, не может рассматриваться как метрика, а континуум пространства-времени, как это уже отмечалось, не может быть определен как метрический. В этом весь фокус.

Википедия.

«Если основой построения геометрии служит понятие расстояния между двумя точками пространства, то прямую линию можно определить как линию, путь вдоль которой равен расстоянию между двумя точками». Конец цитаты.

 

Оставим эйнштейновский математический иллюзион, и обратимся к физической сути гипотезы кривизны пространства.

Предположим, что есть кривое пространство, которое имеет всюду одинаковую кривизну. Тогда, следуя геометрическому формализму, получается, что оно замкнуто. Это значит, что луч света, направленный в произвольную сторону, через конечное время вернется в точку излучения с обратной стороны.

Попытавшись мысленно представить траекторию замкнутого луча, мы испытаем известные трудности. Нужных траекторий окажется бесконечное множество.

В причинном мире этого вполне достаточно, чтобы утверждать невозможность замкнутого пространства.

Но апологеты кривых пространств не воспринимают логику философии.

Попытаемся разобраться в этом вопросе на примере двумерного пространства.

Обратимся к сферическому пространству. Встанем на экватор, и направим по нему луч света. Луч вернется, как и следует, с обратной стороны. Но где он повернул? Последуем за лучом — поворота нет. Это само двухмерное пространство извернулось в трехмерном пространстве – и замкнулось. Вот, теперь понятен принцип замыкания прямой геодезической линии. Чтобы замкнулось трехмерное пространство, совершенно необходимо четырехмерное пространство. А его, как все признают, не существует. Просто нет – и всё. А значит, нет и не может быть замкнутого трехмерного пространства.

Возможно, в рамках четырехмерного континуума можно сформулировать математический формализм, который позволит корректно объединить время и трехмерное пространство. Но зачем? Совершенно очевидно, что это представление будет громоздким и непомерно сложным. И ничего нового к нашим представлениям и нашим возможностям не добавит.

К настоящему времени с помощью десяти тензорных уравнений Гильберта-Эйнштейна сумели решить только три тривиальные задачи для двух обращающихся тел шаровой формы.

Непомерную сложность математического аппарата четырехмерного континуума пространства-времени можно представить наглядно. Сделаем это.

Пусть требуемый формализм такого континуума реализован, и мы имеем описание реального пространства в этом формате. Возьмем сечение континуума по произвольной координате времени t1, т.е. зададим конкретное время. Сечение сформирует объемную, трехмерную картину мира в момент t1. Это будет объемный образ одного мгновения прошлого.

Зададим далее dt – получим следующий слепок. Получилась машина времени.

А в будущее можно? Можно. Только надо заполнить континуум будущего. А для этого надо рассчитать каждую точку. А если не каждую, то хотя бы точки, интересующие нас.

Вот такая модель, может быть, и возможна. Но кто захочет ею пользоваться и за неё платить? И как долго будет идти расчет? И это не модель Эйнштейна, его-то модель, как мы выяснили, неадекватна, т.е. она местами — ложна. А где конкретно – неизвестно.

Если мы мыслим какое-то движение в псевдо-геометрическом континууме, как это часто делают популяризаторы с четырехмерным пространством-временем, то мы этот континуум бессознательно пополняем дополнительной координатой времени. Это метод нашего мышления. Это наш, тот самый, коварный стереотип. Мы, принципиально, ничего не можем себе представить вне времени. Даже если мы пытаемся представить нечто совершенно неподвижное, то оно неподвижно во времени.

Непроизвольное введение времени повышает мерность любого континуума на единицу. Так что, рассматривая движение в неподвижном 4-х мерном пространстве-времени, мы оперируем 5-ти мерным континуумом. Нам для этого не надо делать никаких усилий, всё делает наш стереотип мышления, и делает это подсознательно, так что мы этого даже не замечаем. Но оперировать при этом мы можем только сечениями, понижающими мерность до родного трехмерного пространства. Четырехмерное (и выше) пространство не существует, даже в больном воображении.

 

Вернемся к нашему примеру с двумерным кривым пространством.

Чтобы это пространство отличать от предметного (Земли, глобуса), надо наделить его отличительными качествами. А мы их еще и не сформулировали.

Помните, мы посветили лучом вдоль экватора – и луч изогнулся. Вот это и есть один из признаков кривого пространства – луч изогнулся.

А если это будет не луч, а длинный прямой штырь? И штырю навязывается то же самое качество, т.е. кривизна.

Таким образом, кривизна пространства диктует (навязывает) свою кривизну всем реальным объектам.

Но главное не в этом. Главное в том, что кривизна диктует искривление предметов, не прилагая усилий и не затрачивая энергии, а это по канонам философии — невозможно.

И вот здесь возникает философский вопрос. Философский, потому что практика не может дать ответ на вопрос о несуществующей сущности.

Что должно происходить, если мы будем вращать прямой стержень вокруг его оси в кривом пространстве? Какие возможности у кривого пространства? Ведь, никто их не знает. Мы просто предположили, что кривые пространства есть. Но какие они? И вот, зашли в тупик.

Логика нашего исследования диктует: если кривизна нашего штыря реальна, он же в замкнутом пространстве замкнется. Но тогда вращение вокруг оси невозможно. А значит, и для стержня любой длины тоже невозможно. И это совсем другой физический мир. И мы его не знаем. Его нет. Или это параллельный мир Эверетта, где можно всё, что придет в голову.

В криволинейном пространстве движение жестких объемных тел, а тем более их вращение, должно сопровождаться деформацией этих тел, и вследствие этого движение невозможно.

Если же твердые тела не являются жесткими, то их перемещение должно вызывать затрату энергии на деформацию – и движение по инерции перестает быть нескончаемым.

Как ни старайся, а бытовую кривизну пространства получить невозможно.

 

Несколько слов о Лобачевском и его геометрии.

 

Некоторая странность формулировки пятого постулата Евклида спровоцировала теоретиков на мысль, что Евклид сомневался в корректности своих представлений о  параллельности, и эти теоретики попытались улучшить формулировку Евклида, и даже попытались доказать её избыточность. Ведь сомнение Евклида в данной ситуации равнозначно недопониманию им сути проблемы.

А вдруг Евклид ошибся!

Однако все попытки закончились неудачей. Пятый постулат был сохранен, но формулировку его все-таки изменили. При новом издании геометрии Евклида Гильберт заменил V постулат Евклида формулировкой Прокла. «В плоскости через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной».

Во времена всеобщего сомнения произошло знаменательное событие.

Глубокое исследование V постулата, основанное на совершенно оригинальном принципе, провёл в 1733 году итальянский монах-иезуит, преподаватель математики Джироламо Саккери. Он опубликовал труд под названием «Евклид, очищенный от всех пятен, или же геометрическая попытка установить самые первые начала всей геометрии».

Идея Саккери состояла в том, чтобы заменить V постулат противоположным утверждением, а именно, его отрицанием; вывести из новой системы аксиом как можно больше следствий, тем самым, построив «ложную геометрию», и найти в этой геометрии противоречия или заведомо неприемлемые положения. Тогда справедливость V постулата будет доказана от противного.

Саккери рассматривает три гипотезы о 4-м угле четырёхугольника Ламберта, что равнозначно V постулату.

Гипотезу тупого угла он отверг сразу по формальным соображениям. Легко показать, что в этом случае вообще все прямые пересекаются, а тогда можно заключить, что V постулат Евклида справедлив — ведь он как раз и утверждает, что при некоторых условиях прямые пересекаются. Отсюда делается вывод, что «гипотеза тупого угла всегда целиком ложна, так как она сама себя разрушает».

Таким образом, было доказано, что реального пространства с положительной кривизной существовать не может.

После этого Саккери переходит к опровержению «гипотезы острого угла». Он допускает, что она верна, и, одно за другим, доказывает целый ряд следствий. Сам того не ведая, он продвигается довольно далеко в построении будущей геометрии Лобачевского. Многие теоремы, доказанные Саккери, выглядят интуитивно неприемлемыми, но он продолжает цепочку теорем. Наконец, Саккери доказывает, что в «ложной геометрии» любые две прямые или пересекаются, или имеют общий перпендикуляр, по обе стороны от которого они удаляются друг от друга, или же удаляются друг от друга с одной стороны и неограниченно сближаются с другой. В этом месте Саккери делает следующий вывод: «гипотеза острого угла совершенно ложна, так как противоречит природе прямой линии».

Саккери не приводит ни одного наглядного примера, который бы подтверждал его вердикт, и заканчивает свое исследование.

И самому Саккери, и его окружению, посвященному в его работу, совершенно ясно, что доказана невозможность геометрии, допускающей альтернативную формулировку V постулата Евклида, т.е. допускающей кривизну пространства.

Причина, побудившая Лобачевского усомниться в этом, и повторить исследование Саккери, нам не известна. Но это произошло.

Лобачевский решил самостоятельно провести доказательство от противного. Для этого он использует следующую преднамеренно абсурдную формулировку.

«Через одну точку, лежащую вне прямой линии на плоскости, можно провести как минимум две параллельные прямые», т.о. Лобачевский отрицает новую редакцию V постулата Евклида.

Далее Лобачевский приступил к построению ложной (неевклидовой) геометрии. Лобачевский не касается исследования варианта с тупым углом, считая его заведомо неприемлемым, для построения альтернативной геометрии. Он исследует вариант с острым углом, т.е. пространство с отрицательной кривизной.

Чем дальше Лобачевский продвигался в построении альтернативных теорем, тем больше проникался таинственной гармонией новой геометрии. В конце концов, он влюбляется в свое детище – и вот, перед нами новый Пигмалион.

Добравшись до ожидаемого абсурда, а он таки добрался, Лобачевский получает ошеломляющий вывод: в новой (ложной) геометрии сумма внутренних углов треугольника может равняться нулю. Разве не абсурд? Но новый Пигмалион не желает убивать свое детище, как поступил Саккери.

Лобачевский убеждает себя: а вдруг реальное пространство все-таки кривое, и предлагает подождать результатов эксперимента. Он даже начинает разрабатывать этот эксперимент. Его суть в том, что в очень большом треугольнике сумма внутренних углов будет чуть-чуть меньше π, что и требуется обнаружить.

Давайте рассмотрим эффект треугольника в космическом масштабе. Допустим, что реальное пространство реализует кривизну Лобачевского. В этом случае всегда найдется такой равнобедренный, треугольник, острая вершина которого будет  иметь нулевой угол. Тогда всё, что попадет на поверхность конуса, образованного вращением этого треугольника, будет для наблюдателя превращаться в точку.

Переводя взгляд по звездному небу с объекта на объект, мы будем видеть, как часть звезд на небе смыкается в одну точку, а когда мы смещаем взгляд, возникают в другом месте. Но ничего подобного на небе мы не видим.

Таким образом, Лобачевскому был доступен наглядный эффект, опровергающий его искреннее заблуждение, но он не захотел посмотреть на небо.

У Лобачевского кривизна отрицательна. Распределение массивных тел такую кривизну создать не может.

Эйнштейн выбирает геометрию Римана, которая допускает оба знака кривизны, безотносительно к применимости в реальном пространстве. Таким образом, действия Эйнштейна, если он был посвящен в суть проблемы пятого постулата Евклида, можно рассматривать как откровенную фальсификацию. Ведь, невозможность реального пространства с положительной кривизной была доказана. А отрицательная кривизна, которая реально тоже не существует, Эйнштейна не устраивала.

 

Есть очень странное обстоятельство. Со времен Эддингтона метрология сделала огромный шаг вперед, такой, что отклонение света звезд, вызванное Луной, уже наверное можно измерить с достаточной точностью, чтобы убедиться в искривлении луча света гравитацией Луны. И не надо ждать затмений Солнца, и преодолевать сопутствующие сложности. Но никаких сообщений об этих измерениях нет.

Мы вынуждены выбирать из двух возможностей: либо экспериментаторы не могут провести этот эксперимент (но где обоснование), либо они уже измерили отклонения (что скорее всего) – и молчат. О чем они могут молчать? Молчать можно только об одном – о нулевом отклонении. Фотон не имеет массы [5], и не искривляет континуум пространства-времени Эйнштейна.

 

Завершающие выводы.

 

Реальное пространство является трехмерным, прямолинейным пространством Евклида.

Геометрия Лобачевского реально существует, но только в качестве экзотического искусственного построения в рамках геометрии Евклида [2].

Четырехмерный континуум пространства-времени Эйнштейна существует по прихоти автора, но не является метрическим, и не может обеспечить адекватное отображение реального пространства.

 

Нижний Новгород, июнь 2018 года.

 

Источники информации

  1. Альберт Эйнштейн / Собрание научных трудов в четырех томах/ «Наука», Москва 1966.
  2. Кулигин В.А., Корнева М.В., Кулигина Г.А /«Внутренней кривизны» пространства не существует!/ Интернет.
  3. Интернет. /Кривизна простра́нства-вре́мени/.
  4. Интернет. /Аксио́ма паралле́льности Евкли́да, или пя́тый постула́т/.
  5. Леонович В.Н. / Импульс фотона, фотонный двигатель и философия/, Интернет: http://www.sciteclibrary.ru/rus/catalog/pages/13311.html .

Темная материя. Информация к размышлению

 

 

Всякое мнение о науке вообще, должно опираться  на накопленный наукой свод знаний об окружающем нас мире. В полном объеме этот свод знаний никому не доступен, т.к. включает в себя кроме опубликованных работ ещё неопубликованную и скрываемую информацию, а ещё не сформулированные, интуитивные догадки и мысли.

Поскольку реальный мир априори гармоничен, то свод истинных (правильных) знаний об этом мире должен отвечать жесткому требованию сбалансированности, т.е. обязательному условию внутренней непротиворечивости.

Однако, в силу объективных обстоятельств, не все усвоенные знания являются истинными, т.е. абсолютно адекватными природе. Некоторые наши представления являются ошибочными, а некоторые — заведомо приблизительными.

Индикатором наличия ошибочных знаний являются парадоксы, которые возникают в рамках моделей мира, создаваемых человечеством. В природе же парадоксов нет. Как нет в природе бесконечных значений параметров локализованных систем.

Два последних утверждения являются критериями адекватности представляемых моделей мира.

Чем больше парадоксов в учении, тем больше ошибок в нем скрыто.

 

Выборка фундаментальных первооснов, произведенная из свода знаний, формирует научную парадигму. Использование единой парадигмы обеспечивает непротиворечивость частных теорий.

 

Одной из причин возникновения ошибочных представлений, формируемых человеком, являются специфические особенности человеческого мышления.

Скорость мышления во все времена определяла, и продолжает определять,  фактор выживаемости субъекта. Это обстоятельство послужило причиной формирования у людей природного принципа экономии мышления. Человек обычно мыслит не в рамках последовательной логики, а заготовленными образами (прецедентами-стереотипами), которые он лишь незначительно трансформирует под ситуацию. Эта методика и реализует потребную скорость реакции.

Но диалектика компромисса гласит: выигрываем в скорости – проигрываем в качестве. Вот этот, совсем не обязательный, проигрыш качества и лежит в основе многих прошлых и настоящих заблуждений.

Для противодействия отрицательным следствиям принципа экономии мышления сформулирован принцип «бритвы Оккама», первичную суть которого можно выразить одним словом «не спеши». Но этот мудрый принцип не стал стереотипом.

А жизнь заставляет спешить. Конкуренция – тоже двигатель прогресса. А есть ещё и честолюбие.

 

Принцип экономии мышления действует и в организации научной деятельности. Для экономии косвенных затрат на творческое мышление, из всей научной информации формируется классифицированный свод официально апробированных знаний.

Сбалансированный свод апробированных знаний, изложенный в официальных источниках, утвержденных академиями наук, принято  называть «официальной наукой».

Современный объем знаний так велик и разнообразен, что непреложное требование его сбалансированности, отражающей гармонию природы, временно бездействует. В результате этого, в официальной науке уживаются два несовместимых учения, каждое из которых официально объявлено фундаментальным.

Это Теория относительности Эйнштейна и Квантовая Теория.

Реакция на эту несуразицу не заставила себя долго ждать. На базе несовместимых научных платформ, за счет ловкого лавирования и фальсификаций, возникла новая мистико-идеалистическая (и очень агрессивная) платформа-конгломерат от науки, на базе которой развилось и процветает производство и продажа-насаждение всевозможных эпатажных учений мистического толка.

Экспансия этого агрессивного мистицизма так велика и энергична, что захватила руководящее большинство во множестве академий наук, а также в Нобелевском комитете.

Отход официальной науки от материализма можно понять и обосновать только необычными (непостижимыми) результатами, получаемыми в экспериментах квантовой принадлежности, которые исследователи не могут объяснить ни с помощью классической физики, ни с помощью ТО, ни с помощью самой Квантовой Теории, не противоречащей здравому смыслу.

Авторитеты спасовали перед мистической видимостью результатов – и признали эту видимость реальностью.

Таким образом, в настоящий момент наукой правит мистика.

Установки Квантовой Теории, которая официально признана фундаментальной наукой, используются лишь в качестве необязательного, подсобного инструмента: если хочу — квантую, если не хочу — не квантую.

Такой подход приводит к тому, что многие явления квантового происхождения объяснены, со всевозможными натяжками, в рамках рудиментарных вне квантовых, представлений. Фактический отказ от своевременного перехода к операторному и тензорному квантовому представлению, приводит к тому, что скрываемый таким образом квантовый эффект искажается в своей сути. Когда же возможности классической и частично освоенной квантовой физики для объяснения ошибочно интерпретируемого эффекта иссякают, то этот эффект предстает перед исследователями уже в мистическом обличии. Особенно эта тенденция плодовита в условиях экспансии, так называемой спонтанности.

Спонтанность это и есть замаскированная под псевдо научный термин квантовая мистика. А материальный мир принципиально является причинным. Ничто не может случиться без причины.

Нет в природе спонтанных событий, а есть события, происходящие по неизвестной для нас причине. Нет в природе объекта, соответствующего волновой функции электрона или любого другого материального объекта.

Стоит это понять, и начать воспринимать волновую функцию как математический инструмент с ограниченными, специфическими возможностями — как вся мистика рухнет.

Обычно, исследователи, занимающиеся экспериментированием, очень болезненно воспринимают мистические толкования. Однако руководители от науки, т.е. академики-чиновники, не испытывают, видимо, никаких терзаний. Они целевым финансированием преодолевают сопротивление экспериментаторов.

Официальная наука, взяв на вооружение агрессивный мистицизм, проповедует учение о Большом Взрыве – детище новой философии, философии инфляции.

Для непосвященных поясним, своими словами.

Инфляция в физической философии –  это вседозволенность в моделировании природы, реализующаяся как временное (по желанию авторов) обесценивание (инфляция в обычном смысле) любых фундаментальных знаний; и временная же их замена на любые, потребные авторам, законы.

Это и есть самое страшное чудовище, порожденное сном разума.

Любознательный обыватель и активная интеллигенция уже зомбированы учением о Большом Взрыве, исходящем из недр Академии.

Казалось бы, цель мистификаторов достигнута. Однако раскрученное производство не может быть остановлено. Требуется новый продукт для эпатажа публики. И вот, возможность представилась.

Знакомьтесь, новый объект Вселенной – темная материя.

 

Темная материя формально определяется очень просто. По мнению авторов, это неведомое состояние неизвестного вида материи, характеризуемого необычным сочетанием физических качеств: «Тёмная материя в астрономии и космологии, а также в теоретической физике — гипотетическая форма материи, которая не испускает электромагнитного излучения и напрямую не взаимодействует с ним. Это свойство данной формы вещества делает невозможным её прямое наблюдение [Википедия]».

В этом достаточно лаконичном определении много лукавства.

Во-первых, исследуемый объект определяется не системой его свойств и качеств, а отрицанием качеств, присущих другим объектам. Практика определения чего бы-то ни было, посредством отрицания обычно приводит к отрицанию отрицания. Так  у Галилея исследователь не мог измерить скорость своей лаборатории, не выглянув в окно. Но это утверждение оказалось справедливым только для линейной относительности. Оказалось, что такой вселенной не существует – и этот постулат Галилея оказался ложным.

Следующий Отрицатель – Эйнштейн – вновь проповедует это отрицание, уже в криволинейном мире. И сколько верующих будет разочаровано в скором времени.

Во-вторых, приведенное лаконичное и четкое определение темной материи создает иллюзию (ожидание) простоты её представления по остаточным (не отрицаемым) свойствам обычного вещества. Однако это ожидание обманчиво. Полное устранение одного качества приводит вовсе не к уменьшению количества стандартных качеств, но вызывает ещё вынужденную трансформацию оставшихся, и возникновение совсем новых качеств. Это обстоятельство требует изучения и анализа определения на природную гармонию и допустимость. Но ничего подобного авторы идеи не сделали. Например, отсутствие излучения искажает понятие «температура вещества» неузнаваемым образом. Однако в дальнейших авторских манипуляциях свойствами темной материи, температура используется очень активно и, именно, в её традиционном понимании, т.е. явно в формате самообмана.

Попробуем уяснить некоторые свойства темной материи на основе её определения.

Итак, темная материя (ТМ) не взаимодействует с электромагнитными волнами (ЭМВ). Это значит, что ТМ не отражает и не поглощает ЭМВ, т.е. она совершенно прозрачна. И непосредственно в определении, нас уже пытаются этим удивить: смотрите, мы никогда не сможем непосредственно наблюдать объект из ТМ.

Ну и что? Магнитное поле мы тоже не видим, и не очень страдаем от этого. Зачем же понадобилось авторам удивлять читателя уже в определении? А затем, чтобы отвлечь от естественного вопроса. Если темная материя не взаимодействует с ЭМВ, то как она взаимодействует с  полями стационарными: электрическими и магнитными. Для ответа — логики здесь недостаточно. Надо исследовать варианты.

Если ТМ не взаимодействует с названными полями, то кванты ТМ (авторы их называют частицами) не будут отталкиваться от заряженного барионного вещества и придут в непосредственное соприкосновение с нуклонами и электронами, что в природе происходит только в исключительных условиях. Последствия будут непредсказуемыми, и, самое главное, массовыми. Но в быту мы ничего загадочного не наблюдаем. Значит, ТМ не вступает в непосредственный контакт с нуклонами, и свойством сверх проницаемости не обладает. Из этого следует, что ТМ каким-то образом (нам не известным) все-таки взаимодействует с магнитным веществом. Но как? Химические связи исключаются. А это целый спектр электрических и магнитных взаимодействий. Таким образом, описание электрических и магнитных свойств ТМ становится очень проблематичным.

Кроме банальных вопросов авторам идей темной материи можно задать ещё один вопрос, пока непривычный для авторов космологических гипотез. Зачем в гармоничном мире нужна темная материя? Каково её назначение? Что будет, если такой материи во Вселенной не будет?

Для бритвы Оккама уже одного молчания на этот вопрос достаточно для отсечения, т.е.  отклонения, идеи темной материи. Но продолжим.

Получается, что единственным источником информации, к тому же косвенным, о свойствах ТМ является обнаруженная астрономами аномалия движения звезд в составе галактик.

Дело в том, что уже давно астрономы обратили внимание на странное поведение звезд в составе галактик. А именно, звезды средней и дальней области галактик движутся с почти  одинаковыми угловыми скоростями, что явно противоречит закону всемирного тяготения.

Астрономы долго сомневались в справедливости своих наблюдений, но момент истины настал, когда были проведены прецизионные исследования, которые заставили официальную науку утвердиться во мнении, что для объяснения аномального движения звезд галактик необходимо пополнить действующую парадигму новой природной сущностью – темной материей.

Действительно, аномальное движение звезд можно обосновать наличием ТМ, но для этого темная материя должна иметь вполне конкретное, устойчивое и совсем не равномерное распределение в галактике. А темная материя, все-таки напоминающая своими свойствами инертный газ, к этому не способна.

Тем не менее, официальная наука настаивает на существовании темной материи, и создается впечатление, что авторы идеи явно пытаются представить ситуацию как революционную.

Однако принцип Оккама призывает к разумному сопротивлению.

 

Обратим внимание, что Вера Рубин, один из авторов исследования, приведшего ученый мир к окончательному убеждению в существовании темной материи, предпочла в качестве причины явления, подтвержденного ею, назвать гипотезу Модифицированной ньютоновской динамики (MOND), заметив: «Если бы я выбирала, то я бы хотела открыть, что это именно ньютоновские законы должны быть изменены для правильного описания гравитационных взаимодействий на больших расстояниях. Это более привлекательно, чем Вселенная, наполненная новым типом суб-ядерных частиц».

Таким образом, Вера Рубин заявила себя противником идеи «темной материи».  И она имеет достаточно веское основание считать, что обнаруженная неполнота наших представлений скрыта именно в неполноте, заложенной в формулировку закона Ньютона. Доказательство такой неполноты у исследователей имеется.

Уже достаточно давно экспериментально установлено, что «гравитационная постоянная», либо вовсе не является постоянной, либо, что скорее всего, в закон Ньютона входит ещё неизвестная безразмерная переменная величина, которая в обычных условиях очень близка к единице. Этот факт не афишируется, но и не скрывается.

Попробуем разобраться в этом метрологическом эффекте, проявляющемся в том, что экспериментально полученные значения гравитационной постоянной различны в разных экспериментах; и при этом не совпадают на величину, которая хоть и мала, но явно превышает погрешность измерений.

Чтобы понять суть происходящего, нам придется вернуться в начало XXI века, во времена воцарения ТО Эйнштейна. Что же тогда произошло?

А произошла величайшая научная революция, философская оценка которой так и не дана до сих пор.

Дело в том, что заинтересованные силы подменили истинную революцию в науке на «бурю в стакане», вызванную учением Эйнштейна.

Проблематика оценки учения Эйнштейна в том, что стечение обстоятельств и эти самые, заинтересованные силы, сумели оттеснить от участия в этой оценке философию, а сами философы-современники это сделать позволили.

В результате этого отстранения, так и не дана достойная оценка той истинной революции в науке, в которой участвовало и учение Эйнштейна, называемое Теорией Относительности.

А случившуюся революцию вызвало вовсе не учение ТО, которое само явилось лишь следствием технического прогресса, вызвавшего накопление практических знаний, не укладывающихся в общепринятую научную парадигму.

Сформулируем кратко суть реально произошедшей революции.

Итак, до рассматриваемой революции и, значит, и до экспансии ТО, научное сообщество пребывало в уверенности, что мир космологически линеен, и описывается в рамках линейного всеобщего принципа относительности Галилея.

Однако, из математических моделей, построенных на основе этого принципа, следовало, что в природе допустимы локальные сингулярности. Многие математические решения физических задач приводили к бесконечным значениям локальных параметров. Ученые, понимая, что это не соответствует действительности, видимо, успокаивали свои сомнения по этому поводу надеждой на корректирующий принцип: математически допустимо — но в природе не реализуется. В связи с этим, в практических пособиях просто рекомендовалось не рассматривать (отбрасывать) точки сингулярности, полученные теоретически.

С философской точки зрения такой подход недопустим. Казалось бы, должна была возникнуть, хоть какая, философская дискуссия. Но не возникла. Оставим этот вопрос историкам.

Между тем, бум технического прогресса изменил представление об окружающем мире.

Оказалось, что мир, в котором мы живем, является принципиально нелинейным. Это открытие нашло свое отражение в преобразованиях Лоренца.

Физически безразмерный фактор Лоренца наводил на мысль о возможной его универсальности и фундаментальности, что и подтвердилось. Но это еще не всё.

Преобразования Лоренца продемонстрировали, что принципиальная нелинейность мира имеет удивительнейшее свойство – она в огромном диапазоне практических возможностей человека является технически не обнаружимой. Прогнозируемая  преобразованиями Лоренца, реальная величина отклонений от линейного представления — ничтожно мала. Но, все-таки, не равна нулю.

Природа, при относительно малых скоростях физических процессов, как бы имитирует свою линейность.

Вот это и есть наиважнейший философский вывод произошедшей революции. Осознание человечеством этого обстоятельства — и является сутью и движущей силой этой научной революции. Стало ясно, что для человечества характер реализуемой природой нелинейности, долгое время играл роль своего рода ловушки-обманки.

Выход из природной ловушки, её преодоление, логически должен был бы вызвать сбалансированный пересмотр представлений об устройстве мира, основанном уже на новых интерпретациях ранее накопленных знаний, и на увеличении этих знаний путем новых, целевых экспериментов. Но появился талантливый честолюбец, который решил осчастливить человечество, освободив его от кропотливого труда переосмысления.

Эйнштейн решил всё сделать сам, и лишь силой своего ума, т.е. теоретически.

Результат всем известен.

 

В философском аспекте, нелинейность природы является диалектической необходимостью. Только ипостась нелинейности в состоянии бесконфликтно исключить из модели мира локальные бесконечности.

Таким образом, принципиальная нелинейность природы вполне могла быть предсказанной. Но в условиях рыночных отношений, проникших в науку, не нашлось достойных философов, которым по силам было преодолеть математическую экспансию первого линейного приближения.

Осознав характер нелинейности физического мира, законодательно исключающий физические бесконечности, можно сформулировать очень важную лемму.

Всякий физический процесс, развивающийся в локальной системе, и на данном этапе своего развития представляющийся наблюдателю линейным, при своем дальнейшем развитии (пусть и предположительном), связанным с беспредельным увеличением задающего параметра, должен неизбежно заканчиваться эффектом (реакцией) насыщения, или разрушением системы.

Естественно, что состоянию насыщения предшествует промежуточная зона – зона нелинейного, экстремального приближения к величине параметра насыщения.

Эта лемма имеет фундаментальный статус, т.к. принципиально не может иметь исключений, и не имеет фактора погрешности.

Фундаментальность требует уважительного отношения, поэтому данной лемме необходимо дать название. Назовем её пока леммой о принципиальной невозможности неограниченных линейных зависимостей, или короче – леммой об ограниченности линейных процессов (леммой ОЛП).

Действие только что сформулированной леммы настолько естественно, что не воспринимается человеком в качестве практической рекомендации (установки) в процессе теоретических размышлений или любой практической деятельности. Это обстоятельство сформировало один из самых замаскированных стереотипов мышления, а именно: мы знаем, что любой процесс не может быть бесконечно линейным, и в постоянных напоминаниях не нуждаемся, т.к. практика решает эту проблему самостоятельно.

А если практика не предоставляет такой возможности?

В этом случае возникает ложный, лукавый стереотип практического отсутствия. Можно сказать, что именно этот стереотип, до данного момента, так и оставался не выявленным и не осознанным, что и привело к абсурдной ситуации.

Два наиважнейших закона физики: закон Кулона и закон всемирного тяготения  Ньютона, были сформулированы без учета фактора об ограниченности линейных зависимостей.

А в практической деятельности значения области нелинейности этих двух законов были технически недосягаемы, т.е. не было нужды учитывать эффект насыщения.

 

Для анализа и устранения допущенной оплошности в записи закона всемирного тяготения проведем следующий мысленный эксперимент.

Рассмотрим малое тело, скажем нейтрон, удерживаемое в гравитационном поле большого тела, сторонними  силами. Гравитационное поле непрерывно и равномерно возрастает.

Что будет происходить? Нас учат, что пробное тело (нейтрон) будет испытывать непрерывное и неограниченное увеличение силы притяжения. Таков стереотип, который навязан нам официальной наукой. Однако этот стереотип является заблуждением, как мы только что выяснили выше.

Сила этого, вышеназванного стереотипа была продемонстрирована при анализе рассчетов Джона Мичелла, который в рамках линейного принципа относительности Галилея рассчитал, что при определенных, вполне допустимых в природе условиях, вторая космическая скорость для звезд типа Солнца, может достигать и превышать скорость света. При выполнении этих условий звезда должна стать невидимой, если свет имеет  корпускулярную природу. Так зародилась идея Черных дыр. И никто не усомнился в постулатах беспредельной линейности.

В 1796 году Лаплас включил обсуждение этой идеи в свой труд «Exposition du Systeme du Monde», однако в следующих изданиях этот раздел был опущен, видимо, как явная математическая несуразица, не стоящая внимания. Но опять же, это была только интуиция мэтра.

Наивно полагать, что наш нейтрон может развить сколь угодно большое усилие на удерживающий механизм. Никто так и не думает; но и не задумывается над ситуацией, хотя математически получается, что должна происходить именно такая несуразица.

Стоит только задуматься над этим вопросом  в нашей ситуации с нейтроном – как элементарная логика приведет к формулировке леммы об ограниченности линейных процессов. И этот вывод вовсе не является никаким открытием. Это называется «снять шоры».

При неограниченном экстенсивном возрастании напряженности внешнего поля, интенсивное воздействие этого поля на пробное тело не может расти беспредельно, и непременно достигнет сначала нелинейного участка, а затем и состояния насыщения реакции на внешнее воздействие.

В режиме насыщения сила притяжения, действующая на пробное тело, перестанет изменяться (возрастать), несмотря на продолжающееся увеличение интенсивности потока гравитонов. Это очень интересный для нас эффект, и необычный по отношению к весу пробного тела. Необычный, только потому что эффект на практике еще не обнаружен, а теоретически никем не рассматривался.

 

В случае достижения режима насыщения поле притяжения двух тел, одно из которых достаточно велико, (например, ядро галактики), можно разбить на четыре зоны.

  1. Зона полного насыщения. Здесь закон всемирного тяготения будет выглядеть так:

F = γ·Mнас·m,

где Mнас – константа насыщения, максимальная эффективная масса, способная восприниматься пробным телом; γ – гравитационная константа. Сила притяжения в зоне насыщения не зависит от расстояния между телами и от дальнейшего увеличения большого тела.

  1. Зона частичного насыщения, в которой закон всемирного тяготения не линеен и может быть описан оператором:

F = γ· Mнас ·m → γ·K(R, M0)·M·m/R → γ·M·m/R2,

где K(R, M0) – безразмерный коэффициент, аналогичный фактору Лоренца в отношении массы; M0 – инвариантная масса инерции большого тела; M – условная, переменная масса гравитации большого тела, в которую можно бы включить и коэффициент K(R, M0), но тогда математическая модель потеряет наглядность.

  1. Зона обратно квадратичной зависимости, в которой закон всемирного тяготения имеет классический вид:

F = γ·M·m/R,

где M = Мграв = М0, а R – расстояние между телами.

  1. Дальняя зона нелинейной малости напряженности, в которой закон всемирного тяготения имеет вид:

F = k·γ·M·m/R,

где  k — безразмерный коэффициент < 1, зависящий от геометрии малого тела, см. [1]. В данной статье этот вариант не рассматривается и является альтернативой гипотезы MOND.

Во всех формулах выше масса гравитации, кроме эффекта насыщения, испытывает релятивистскую зависимость, M= M0√(1-V2/C2), а  m = m0√(1-V2/C2) где   M0 и  m0  это массы инерции этих тел. Масса инерции не зависит от скорости тел относительно физического вакуума [1].

Вокруг сверхтяжелого тела (ядра галактики) облако пыли или семейство звезд будет обращаться на некотором участке удаленности подобно твердому телу; в этой области закон тяготения при частичном насыщении может быть аппроксимирован законом:

F = K(M0)·γ·M·m/R,

а такая переходная область неизбежно реализуется в зоне частичного насыщения. Исходя из расчетов Мичелла, эффект гравитационного насыщения должен начать сказываться уже для звезд с массой, превышающей 500 масс Солнца.

Параметры движения звезд, находящихся в области частичного насыщения не могут быть использованы для определения массы галактик в соответствии с законами Кеплера. А будучи примененными (по недоразумению), дадут существенно заниженный результат, что и произошло.

 

Обращаем внимание читателя на то, что в выражении массы гравитации M, выражения (1), квадратный корень, называемый иногда фактором Лоренца, стоит при M0 и m0 в числителе, а не как в ТО, где он находится в знаменателе.

Выбор Эйнштейна обоснован особенностью поведения электронов в циклотронном ускорителе, хотя эту особенность математически можно связать и с другими параметрами ускорителя, влияющими на траектории ускоряемых электронов. Однако Эйнштейн волевым решением связал эту особенность только с параметром массы электрона, и получил известный закон возрастания массы при увеличении скорости электрона относительно наблюдателя.

В [1] этот выбор произведен на основе анализа данных системы взаимосвязанных экспериментов, обозначенных ниже.

Если некоторой системе сообщить дополнительную энергию, например, методом упругого сжатия заданного количества нуклонов, то система (образовавшееся атомное ядро) реагирует на это прибавление энергии дефектом своей массы.

Таким образом, чем больше внутренняя энергия (например, атомного ядра), тем оно относительно легче, но сохраняет при этом то же количество действующего вещества. Из этого следует (пока гипотетически), что масса гравитации, определяющая эффективное притяжение, условно уменьшается в соответствии с увеличением внутренней энергии, а масса инерции, видимо, должна иметь инвариантную природу, и определяться именно  количеством собственно рассматриваемого вещества.

Если внутреннюю энергию тела (объекта) повышать за счет увеличения его линейной скорости относительно физического вакуума, то логично, чтобы вес тела тоже уменьшался, а не увеличивался, как в ТО. Причем, два тела, движущихся параллельно, т.е. с нулевой относительной скоростью, тоже должны взаимодействовать ослаблено, по сравнению с телами неподвижными относительно неподвижного пространства.

Вследствие выше сказанного, фактор Лоренца должен быть именно в числителе, где он у нас и стоит.

Исходя из этого принципа, можно сделать следующий прогноз о дефекте массы любого компактного тела переменной массы.

Накопление массы тела приводит к увеличению внутреннего напряжения между элементами тела. На это уходит примерно половина энергии пополняющего (падающего) тела в процессе природной аккреции. Вторая половина делится между остаточным импульсом движения и теплом, которое излучается. Внутренняя энергия деформации (потенциальная энергия) увеличивающегося тела вызывает его дефект массы. Таким образом, интеграл (математическая сумма) веса разрозненных элементов тела всегда больше суммарного веса компактного тела, что и является сутью дефекта массы.

Из всего выше изложенного следует, что телу с массой М0 невозможно сообщить энергию, превышающую Emax = M0C2. Это утверждение является революционным по отношению к огромному количеству исследований, проведенных на БАК и других мощных коллайдерах. Почти все интерпретации результатов экспериментов необходимо переосмыслить. Однако Стандартная Модель практически не пострадает, напротив, лишь выиграет, т.к. надуманная гипотеза о партонах окажется излишней.

 

Вернемся, однако, к эффекту, уверенно подтвержденному Верой Рубин, и послужившему поводом для идеи о темной массе.

Теоретики астрофизики дружно направили свои усилия в тупик, необоснованно объявив, что периферийные звезды галактик движутся аномально быстро. Из этого утверждения автоматически (согласно стереотипу мышления) следует, что звезды внутренних областей галактик движутся нормально. А нормально – это значит близким к классическим представлениям образом.

Вот эта, терминологическая некорректность (ошибка), вызванная небрежностью интерпретаторов, и послужила причиной начала ложной революции.

 

Как сказал мудрец: сон разума рождает чудовищ.

К этому можно только добавить: если от этих чудовищ своевременно не избавиться, то чудовища начинают плодиться.

В свете представленных выводов, становится очевидным, что экзотическая интерпретация якобы аномального движения звезд в составе галактик, как следствия существования темной материи, т.е. новой космической сущности, обладающей только свойством гравитационного притяжения, является совершенно ненужной и, скорее всего, несостоятельной.

 

Результаты проведенного анализа закона всемирного тяготения, взятые совместно с новым осмыслением дефекта массы, позволяют развить гармоничную гипотезу процесса формирования галактик.

Итак, рассмотрим процесс формирования галактик с учетом эффекта насыщения, и с учетом релятивистского эффекта уменьшения гравитационного взаимодействия при увеличении скорости тел до скорости света, а также с учетом инвариантности массы инерции.

Бесспорно, что в центре каждой галактики находится её ядро или, более корректно, её центральный объект (ЦОГ) колоссальных размеров, массу которого можно оценить величиной, получаемой по формуле Кеплера с использованием наблюдаемых параметров движения периферийных звезд. Эта величина, из общих соображений, будет являться ограничением снизу.

Предположительно, будем считать ЦОГ состоящим из нуклонной плазмы огромной плотности, близкой к плотности атомных ядер, но не превышающая её.

Вращающийся ЦОГ формирует внутри себя стационарные смерчи (по отдаленной аналогии с Юпитером и Солнцем). В стволах этих вихрей, за счет флуктуаций возникают области, характеризуемые перепадами плотности вещества ЦОГ. При благоприятных условиях, в некоторых из этих областей происходит синтез тяжелых ядер атомов всего ряда таблицы Менделеева. Реакция эндотермическая.

Вследствие того, что плотность ядер атомов выше средней плотности ЦОГ, в зоне начавшегося синтеза возрастает контраст пространственного разрежения вещества. Это позволяет  электронам занять свои места в ближних оболочках атомов, и скомпенсировать тем самым падение давления в области разрежения, сохраняя при этом минимум плотности вещества.

Сила Архимеда выталкивает вращающийся фрагмент, с наработанным тяжелым веществом, по каналу вихря из ЦОГ в ближний космос. Скорость выброса велика, но не может быть близкой к скорости света, что позволило бы выбросу покинуть ЦОГ самостоятельно.

Вырвавшись из ЦОГ, выброс начинает стремительно расправляться в диск, и как парус принимает на себя альфа-нуклонное излучение ЦОГ (нуклонный ветер), скорость которого близка к скорости света.

Этот эффект является ключевым в обосновании механизма выброса звезд из ЦОГ на галактические орбиты.

На выброс действуют следующие силы: сила притяжения, ограниченная эффектом насыщения и фактором Лоренца; сила инерции; а также сила давления нуклонного ветра. Импульс нуклонного ветра максимален, т.к. его масса инерции релятивистскому эффекту не подвержена, а скорость частиц близка к скорости света. Таким образом, наш выброс из ЦОГ выносится в дальний космос, и пропитывается при этом нуклонами и альфа-частицами – будущими атомами водорода и гелия, которые не несут на себе первичного вращательного момента, и как следствие, сформируют потом тело звезды.

Сложный процесс формирования звездной системы из произведенного выброса описан в [4]. Не будем его повторять здесь. Нас интересует только характер движения новой, образовавшейся звезды в составе формирующейся галактической системы.

В нашу задачу не входит производство точных расчетов. Нам достаточно продемонстрировать наблюдаемый феномен движения звезд в составе галактического семейства.

В каждый конкретный момент времени дифференциальная скорость любой звезды определяется законом всемирного тяготения, действующего в данной сложившейся ситуации. С точки зрения математической модели, если её привести Закону Ньютона, эффективные ситуации непрерывно меняются. Таким образом, звезда движется как бы переходя с одной эллиптической траектории на другую.

Достигнув своего афелия, звезда, согласно нашим стереотипным представлениям, должна бы зеркально повторить свою траекторию от афелия к перигелию. Но, круто снижаясь к перигелию, звезда вновь попадет в область нуклонного ветра, который еще раз несколько скруглит её траекторию.

К тому же ЦОГ за прошедшее время несколько похудеет за счет других выбросов, что так же уменьшит крутизну снижения траектории звезды по сравнению с крутизной её восхождения. И так будет повторяться при каждом новом обороте звезды.

Таким образом, траектории всех звезд постепенно сглаживаются, приближаясь к круговым. При этом масса ЦОГ (и инерционная, и гравитационная) постоянно, за счет выбросов, уменьшается. Благодаря этому эффекту, поперечные размеры галактик по мере увеличения их звездного населения, всё время будут расширяться, что особенно будет заметно в средней и в  около центральной зоне галактики.

Каждая «старая» звезда, уже почти занявшая свою стационарную орбиту, при каждом следующем выбросе из ЦОГ, попадающем на более высокую орбиту, будет безынерционно отодвигаться от центра галактики порционным образом.

Этот эффект, по незнанию, можно принять за гипотетическое пространственное расширение, или расширение, происходящее по инерции. Однако это расширение не имеет никакого отношения ни к инерционному расширению, ни к пространственному. И всякая математическая ретроспектива, если она не учитывает физическую природу расширения, даст ложный результат.

Данное расширение галактики немедленно прекратиться, как только прекратится процесс формирования новых выбросов, или он будет скомпенсирован падением на ЦОГ старых звезд или стороннего вещества.

Перед нами пример процесса расширения условно замкнутой системы, который не связан ни с расширением пространства, ни с расширением по инерции.

Расширение Вселенной по закону Хаббла вообще не применимо к бесконечной Вселенной. Если же Вселенная конечна, то обязательно необходимо знать природу наблюдаемого эффекта, а она нам пока неизвестна.

 

Гармоничная Вселенная живет своей бесконечной жизнью, в которой нет места ни темной материи, ни Черным Дырам (тупикам природы), ни другим, выдуманным по недоразумению «чудовищам». А чтобы ничего подобного не случалось, научное сообщество должно выработать принцип моделирования природы, учитывающий переход от принципиально квантового моделирования к адекватному макро моделированию этого же мира. А для этого необходимо отказаться от официальной поддержки одновременно двух, принципиально несовместимых научных концепций. Такая политика приводит к формированию уже не двух, а множества парадигм, фактически на каждый случай. Эти парадигмы плодят так называемые гипотезы «ad hoc», гипотезы, оторванные от всеобщей гармонийй.

Частные теории, разработанные на основе таких парадигм, не складываются в гармоничную модель мира. Однако незаметно, чтобы это обстоятельство тревожило официальную науку. Честолюбие порождает чванство. Это чванство от науки навязывает всем мнение, что Квантовая Теория практически разработана. Официальная наука кокетливо называет оставшиеся (якобы ничтожные) недоработки теории «неполнотой». Однако обратите внимание на изложение Квантовой Теории – оно пестрит терминами «спонтанные события». А за каждым спонтанным событием скрыты неизвестные нам процессы и явления. Бездна неизведанного.

 

Не секрет, что кандидатом на отстранение от науки является ТО Эйнштейна.

Но судьбу этого учения нельзя решать всеобщим голосованием, слишком много зомбированных апологетов, в число которых, видимо, входит и всё правительство. В создавшейся ситуации Правительство обязано проявить мудрость в решении этой проблемы. Для чего надо организовать открытую дискуссию, но не под эгидой Академии.

Дело в том, что установившаяся практика поступления зарубежных грандов привела к фактическому управлению (посредством финансового манипулирования) российской наукой спецслужбами США. Принцип грандов – деньги вперед, располагает исполнителей к ангажируемости, с последующей трансформацией в агентов влияния.

Спецслужбы США заинтересованы в сохранении создавшейся тупиковой ситуации, и всеми доступными средствами, вплоть до ложных научных сообщений, создают видимость справедливости ТО.

Однако необходимое отстранение ТО не только откроет горизонты, но и может вызвать временный хаос «обрушений» множества действенных, практических методик и приложений, разработанных с помощью компенсирующих, но ошибочных по своей сути положений.

Отстранение ТО должно сопровождаться заменой практически используемых рекомендаций ТО, на новые адекватные рекомендации.

Приведем неполный перечень предполагаемых замен.

  1. Геометрия мира в квантовых масштабах должна описываться новой геометрией Евклида, разработанной на его первозданных аксиомах, в которых нет безразмерной точки, как физической, так и математической.

Это – еще не разработанная, удивительно-необычная геометрия.

Макромир же должен описываться классической геометрией, не посягающей на квантовые масштабы.

  1. Постулат эквивалентности массы инерции и массы гравитации заменяется на следующую операторную запись: масса инерции – инвариантна; эффективная масса гравитационного взаимодействия равна массе инерции, умноженной на фактор Лоренца. Именно, умноженной, а не разделенной, как в ТО.
  2. Формула эквивалентности массы и энергии справедлива только для дефекта эффективной (гравитационной) массы. Всякая энергетическая подпитка системы вызывает дефект суммарной, эффективной массы.
  3. Физический вакуум не является источником энергии. Добывать можно только ранее запасенную энергию. Энергия – способность совершать работу. Работу способно совершать только вещество.
  4. Постулат увеличения массы тел при увеличении их относительной скорости, заменяется на релятивистское уменьшение эффективной массы гравитации, при увеличении скорости тела относительно физического вакуума.
  5. Скорость распространения гравитации и электрического поля не равна скорости света в субъективно-эффективном макро представлении, хотя в квантовом представлении эти скорости близки к скорости света.

Субъективная скорость распространения гравитации в макромире равна отношению расстояния между наблюдаемыми телами к длительности кванта времени, т.е. не является константой, и называется мгновенной скоростью.

  1. Фотон является специализированным переносчиком энергии, и не имеет ни массы, ни продольного импульса. Эффективная энергия фотона задается крутизной его пространственной квантовой конфигурации — геометрическим параметром, который можно однозначно связать с частотой условных колебаний.

Взаимодействие фотона с веществом описывается сложным квантовым оператором, функции которого еще не все изучены, т.к. не изучали по причине неправомерного применения классической геометрии для описания краевых эффектов при прохождении фотоном щелей и отверстий.

  1. Электрические и гравитационные поля являются по своей природе импульсными и сканирующими.

Вещество может генерировать излучаемые фотоны, не теряя своей массы, но не может генерировать гравитоны, которые являются принадлежностью данной элементарной частицы. Таким образом, все излучаемые гравитоны должны возвращаться к излучившим их частицам, реализуя этим режим сканирования и, одновременно, свойство инвариантности массы инерции. Глюоны Стандартной Модели, если она выживет, должны иметь аналогичные свойства, а не рождаться в потребном количестве.

  1. Магнитного поля, как специализированной природной сущности, не существует. Магнитное поле описывает динамику электрического заряда, и имеет принципиально тензорный характер. Попытка векторного описания искажает сущность магнитного поля.

 

Все предложенные замены аргументированы в [1].

 

 

Нижний Новгород, январь 2018г.

Контакт с автором: vleonovich@yandex.ru

С другими публикациями автора можно познакомиться на странице http://www.proza.ru/avtor/vleonovich сайта ПРОЗА.РУ.

 

Источники информации

 

  1. Леонович В.Н., Концепция физической модели квантовой гравитации. Интернет, Новости Науки и Техники, http://www.sciteclibrary.ru/rus/catalog/pages/10168.html , 2010г.
  2. Прохоров А.М., Большая Советская Энциклопедия (3 редакция).
  3. Физический энциклопедический словарь. М. Советская энциклопедия, 1983.
  4. Леонович В.Н., Формирование Солнечной системы. Интернет,

http://www.sciteclibrary.ru/rus/catalog/pages/10304.html .

  1. Гуревич Л.Э., Чернин А.Д., Происхождение галактик и звезд. Издательство «Наука», 2005 г.

 

 

Фотон квантовый. Информация к размышлению

Фотон квантовый. Информация к размышлению

Леонович Владимир

 

Ключевые слова: фотон, квант, когерентность, дуализм, физический вакуум, поляризация света, лучистый энергообмен.

 

Человечество познает мир посредством своего интеллектуального анализатора, подаренного ему природой. Это наш мозг — биологический компьютер, оснащенный органами чувств. Образная (компьютерная) модель мира, которая естественным образом создается нашим мозгом в процессе деятельности за выживание, называется эффективной картиной (или моделью) мира.

Эффективная модель мира не всегда совпадает с реалиями. Но это несовпадение постепенно и постоянно устраняется результатами практической деятельности человека. Наиболее наглядными несовпадениями эффективного представления с природными реалиями все знают. Это верх и низ на Земле, это обращение Солнца вокруг Земли, это цветовая гамма, в которой мы всё видим, хотя в природе нет цвета, есть только спектр энергии фотонов.

Человечество заинтересованно в устранении всяческих несовпадений нашего эффективного представления с истинным устройством природы, но полностью от них освободиться не удается. Однако, чем адекватнее наши эффективные представления, тем успешнее наша деятельность.

 

Можно с уверенностью заявить, что свет является самым изучаемым объектом природы, как в отношении сроков изучения, так и в отношении объема произведенных экспериментов. И не смотря на это, свет остается одним из самых загадочных феноменов природы.

Исторически сложилось так, что именно при исследовании световых потоков научное сообщество, пасуя перед непостижимостью поведения фотонов, стало постепенно отказываться от выверенных философских критериев.

Уже во времена Ньютона все понимали и соглашались с тем, что всякая теория, даже подтверждаемая множеством опытов, может быть опровергнута одним надежным отрицательным экспериментом.

Казалось бы, со светом так и случилось. Корпускулярное представление о фотонах было опровергнуто волновыми опытами Юнга.

На основании вышеизложенного философского критерия, после опровержения корпускулярной концепции должна последовать разработка новой, волновой, концепции. Однако ничего разрабатывать не пришлось.

Дело в том, что волновая теория вещественных сред уже существовала. Её и применили без должной оглядки на то, что эфир (физический вакуум) явно не относится к вещественным средам.

При этой пертурбации возник казус философского толка. Теперь уже волновая концепция фотонов могла быть опровергнута любым опытом, подтверждающим корпускулярность фотонов, а таких опытов было предостаточно. Вот глубинную суть этого, реверсивного развития событий, философы и естествоиспытатели не осознали в свое время. А в результате не состоявшегося осознания должна была возникнуть логичная мысль (вывод), ну хотя бы подозрение, что фотон не является ни волной, ни частицей.

Фотон — это нечто особое.

Изучение этого нечто могло бы привести к более адекватному пониманию мира. А получилось, что человечество, наскоро объединив в фотоне частицу и волну, заложило основу лукавого принципа дуализма в науке о квантах.

Конечно, дуализм, как пробная точка зрения, как инструмент, вовсе не абсурден. Абсурдна попытка выдать концепцию дуализма квантовых частиц за фундаментальный природный принцип. На этом абсурде возникла и процветает основная беда современной квантовой теории (КТ) — это универсальный метод КТ, который, пасуя перед непонятными явлениями, обращается к мистике, преподнося эту мистику как потустороннюю, непостижимую реальность. Главный аргумент этого метода в том, что конечный образ (результат) мистической модели почти всегда совпадает с действительностью, и обычно (достаточно часто) совпадает с прогнозом подобранной математической модели.

 

Так или иначе, испробовав несколько вариантов представлений: то в образе волны, то в образе частицы,- свет был признан потоком частиц с волновыми признаками или наоборот – волновым потоком с корпускулярными признаками.

Фотон оказался не единственным представителем, нуждающимся в подобном двойственном описании, и для этих ситуаций необязательный принцип дуализма был развит в обязательный принцип дополнительности.

Принцип дополнительности не ссылается на диалектический принцип единства и борьбы противоположностей, но видимо напрасно. Диалектика всегда присутствует в процессе мышления, но чрезвычайно редко явно выставляется в продукте мышления, являясь виртуальным приемом этого мышления. Принцип дополнительности, напротив, выпячивается на первое место в описании конечного продукта мышления.

Однако этот, искусственно внедренный принцип, не может быть признан научным инструментарием, т.к. не имеет критериев своей применимости. Его автор, Нильс Бор, призывал к максимальной осторожности при обращении к этому принципу. Тем не менее, теоретикам-последователям не просто удалось внедрить этот принцип в квантовую науку, им удалось, наперекор Бору, сделать его излишне популярным.

Однако, вопреки ожиданиям, при изучении фотона оказалось, что интерференция последовательности разрозненных когерентных фотонов не может быть непротиворечиво описана даже в рамках принципа дополнительности.

 

В предлагаемой статье физическая модель фотона принципиально рассматривается без обращения к принципу дополнительности Бора, к которому автор обращается только в историческом аспекте. Таким образом, здесь исследуется материальный фотон, который реализует принцип причинности, и проявляет себя сообразно своей сущности, которая и выявляется в наблюдаемых явлениях и экспериментах. А наша задача – понять эту сущность.

Вторично обратим внимание на курьезное обстоятельство. Весь вещественный мир собран из первичных элементов: протонов, нейтронов и электронов. Структурно этот мир построен из тел, молекул, атомов и собственно первичных элементов. Этот вещественный коктейль способен, при некоторой своей плотности, образовывать разнообразные среды, в которых могут распространяться известные нам волны. Ассортимент типов волн гораздо меньше, чем ассортимент сред, что наводит на мысль об универсальности принципов волнового движения в вещественных средах. Разработав волновую теорию вещественных сред, описываемых при помощи статистических методов,  мы упорно пытаемся применить эту теорию к локальным возбуждениям (фотонам) в непонятной, но явно не вещественной среде – физического вакуума. Не странно ли?

Ведь мы уверены, что вакуум это не вещественная среда.

Вот, и не будем об этом забывать.

 

В качестве определения понятия фотон в Википедии, и других энциклопедиях, приводится пространный, но всё равно неполный, список противоречивых свойств фотона. Не будем приводить цитату на три страницы, но будем пользоваться сведениями, приводимыми в справочниках и учебниках, сопровождая их ссылкой на официальную науку.

 

Итак.

Каким для нас должен представляться фотон, если мы воспользуемся развернутым официальным определением?

Если фотон волна, то фотон образован элементами неразрывного пространства. При этом, компактная группа элементов пространства, образующая фотон, выведена некоторым способом из нормального состояния, т.е. как принято в научном лексиконе, пространство локально возбуждено. Это возбуждение образует очень устойчивую и очень стандартную, динамичную структуру — фотон.

Сразу возникает вопрос философского толка. Возможно ли существование двух принципиально различных фотонов с одинаковой энергией?

Официальных деклараций по этому поводу не обнаруживается, но из эффекта Доплера и из принципа разумной достаточности следует, что все фотоны идентичны по своим функциональным возможностям, т.е. по своему устройству. Таким образом, в мире существует только одна, универсальная конструкция фотона. Любой фотон, не нарушая его целостности, может быть переведен в состояние с любой, позволительной для фотонов энергией. Это свойство фотона реализуется энергетическим обменом, происходящим при доплеровском  отражении.

Получается, что в природе не существует разновидностей фотонов. Запомним этот  предварительный вывод.

Если бы фотоны генерировались только атомами, то предыдущее положение было бы очень естественным. Но официальная наука предписывает способность генерировать фотоны и атомным ядрам, и отдельным электронам, и плазменным потокам. Таким образом, вопрос о квантовом стандарте конструкции фотона остается открытым, и всё еще требует изучения и обоснованной констатации.

В связи с этим возникает практический вопрос: что произойдет, если фотон с заданной энергией столкнется с атомной структурой, в которой не будет подходящей разности энергетических уровней.

При несовпадении энергии фотона с доступными уровнями атома, фотон, предположительно, должен, либо отразиться, либо миновать встреченный атом, что соответствует прозрачной среде. Оба варианта входят в понятие рассеяние. В обеих ситуациях фотон явно испытывает воздействие  вещества, но это воздействие не сопровождается обменом энергии. Однако информационное описание фотона, после такого воздействия может существенно изменяться. Таким образом, информационные преобразования могут происходить без затраты энергии. При этом расшифровка полученной информации невозможна без затраты энергии, т.е. без совершения работы.

 

Официальная наука ничего не предлагает в качестве пространственных квантов, формирующих физический вакуум, кроме бозонного поля Хиггса (не путать с тяжелым бозоном Хиггса, который является флуктуацией поля Хиггса, а точнее результатом несчастного случая – релятивистского столкновения вещественных элементов). Поле бозонов Хиггса является неразрывным, как и положено пространственной среде, но распространяется со скоростью света, и сразу во все стороны.

Предложить природе такую конструкцию модели вакуума – рука не поднимается.

Совершенно логично напрашивается модель пространства, сформированного неподвижными квантами [3]. Но все идеи (в этом плане) предшествующих мыслителей разбивались о невозможность относительного перемещения недеформируемых квантов в неразрывном пространстве. Декарт интуитивно уловил ключевую идею решения. Он пришел к выводу, что пространственный эфир должен быть всепроницающим. Однако Декарт не смог воплотить эту идею в конструктивную форму, как не смог и Гук, который продвинулся несколько дальше в обобщенном, интуитивном описании проникающего эфира.

Роберт Гук об эфире: «Я предполагаю существование тонкого вещества, которое включает и пропитывает все другие тела, которое является растворителем, в котором все они плавают, который поддерживает и продолжает все эти тела в их движении и который является средой, передающей все однородные и гармонические движения от тела к телу».

 

 

Оставим временно квантовое пространство, и обратимся к интерференционным световым явлениям, а конкретно, к их волнообразным проявлениям (картинкам).

Однако откуда такая уверенность, что картинки интерференционные, т.е. результат фазового сложения когерентных волн. Мы же знаем, что фотоны между собой не взаимодействуют. Кроме того, мы точно знаем, что последовательное воздействие двух фотонов на детектор не может реализовать эффект вычитания, из чего следует, что в зону интерференционного минимума фотоны либо не попадают, либо, попав туда, ни с чем не взаимодействуют. Таким образом, образование волнообразной картинки никак не связано с фазовым сложением электромагнитной волны фотонов. Значит, «интерференционная» картинка формируется не фазовым сложением волн, и не в зоне детектирования, где она только проявляется. Картинка неявно закладывается в структуру фотона, каким-то, нам не известным, способом. Видимо, это происходит в структуре щелей, и проявляется при статистическом процессе поглощения/отражения потока фотонов.

Это не предположение. Это строгий логический вывод.

А кто изучал щели интерферометров как квантовые динамические структуры? Что-то не наблюдается таких публикаций. Обычно щели рассматриваются как геометрические, эфемерные отверстия.

 

Обратимся теперь к теории лазеров.

Суть лазерного излучения в том, что фотон, случайно излученный возбужденным атомом некоторой специфической вещественной структуры, вызывает индуцированное излучение идентичных фотонов соседними атомами. Это так. И не подлежит сомнению.

По умолчанию считается, что излучение индуцированных фотонов инициируется пролетающими мимо фотонами.  Этот факт не обсуждается, и даже не постулируется, он преподносится, как очевидная неизбежность. И эта молчаливая убежденность является причиной того, что странности процесса лазерного излучения не исследуются, а маскируются теоретическими фантазиями.

Действительно, каким образом истинно нейтральная частица, фотон, пролетая в образе электромагнитной волны мимо соседнего атома, может вызвать излучение идентичного, обязательно когерентного фотона, не изменив при этом своего состояния. Ведь данная ситуация никак не подходит под случай чисто информационного обмена. В случае индуктивного излучения обязательно должен происходить энергетический обмен.

Возбужденный электрон  атома сначала должен получить некоторое приращение энергии, и лишь после этого излучить фотон. На этот процесс нужна энергия и нужно время. А времени, при точечном фотоне, нет. Получается, что фотон это цуг волн.

Естественно предположить, что возбужденные атомы излучают фотоны по одному внутреннему алгоритму, и эти излучаемые фотоны описываются схожими состояниями, в том числе и стартовыми фазами каждого фотона. Однако, согласно теории лазерного излучения, стартовая фаза каждого излученного фотона должна быть равна случайной фазе пролетающего (индуцирующего) фотона.

Поняв, как это происходит, можно узнать нечто новое об устройстве атома. Но теоретики, уже подобрав устраивающую их модель, к этому не стремятся, и даже блокируют новаторские исследования [4].

Теоретики уверены, что даже если всё происходит не совсем так, как они это описывают, то всё равно на их математическую модель это не повлияет. И это — так и есть.

Когда о фотоне мыслят как о цуге волн, этим подразумевается пространственная протяженность фотона по линии распространения, и эта протяженность равна нескольким длинам волн (количество не уточняется). В кристалле рубинового лазера длина волны примерно равна протяженности десяти атомов решетки.

Представление в цугах так нелепо, и так не соответствует экспериментальным данным, что большинство исследователей от него уже отказалось. Однако официальных рекомендаций на отказ от этого представления нет, и всем, кому это нужно, можно его использовать. А требуется оно теоретикам лазерного излучения.

Одним из условий работы лазера в предлагаемой физической интерпретации, является достаточно продолжительное взаимодействие пролетающего (длинного) фотона и возбужденного атома. Продолжительное взаимодействие нужно именно для того, чтобы обосновать принудительное равенство фаз возбужденного и возбуждающего фотонов.

Кроме того, обратим внимание, эта лукавая интерпретация работы лазера использует еще и понятие стоячей оптической волны, что не совместимо  с квантовой природой реальных фотонов, даже взятых в образе волн.

Пусть попробуют теоретики от официальной науки объяснить, что происходит в пучностях стоячих оптических волн. Это что, скопление фотонов? Или это энергетическая пучность, т.е. резкое повышение частоты фотонов в этом месте? Явная беспомощность принципа дополнительности — на лицо. Однако ответ для настойчивых оппонентов есть. Он как всегда в одном ключе: перед нами квантовый процесс, а квантовые процессы непостижимы для нашего воображения, по определению.

Любой философ древности мог бы дополнить это обоснование: квантовые процессы непостижимы только в рамках предлагаемых моделей.

 

Попробуем пересмотреть наши официозные представления о фотоне, начав с философского утверждения, что фотон это — и не волна, и не частица, а нечто особое.

Итак.

Фотон это, несомненно, материальный объект.

Во времена Ньютона этого утверждения, возможно, было бы достаточно для выбора парадигмы. Но в настоящий момент этого утверждения явно недостаточно. Мы вынуждены еще выбрать одну из двух концепций материализма.

Одна концепция рассматривает материю как сущность, способную бесконечно делиться. Основополагающим элементом концепции является безразмерная вещественная точка. Это концепция Ньютона, Эйнштейна и РАН. Приверженцы этой концепции слово вещественная никогда не используют, заменяя его словом материальная, что звучит не так абсурдно. Но так или иначе – точка в этой концепции является массивной. Этот абсурд и позволяет Вселенной сжиматься в одну точку, а звездам – в черные дыры.

Вторая концепция предполагает мир принципиально квантовым. В квантовом мире нет места безразмерным объектам, как нет места и локальным объектам с бесконечными параметрами. Любой материальный объект имеет конечный объем и конечные, другие параметры. И для каждого материального объекта может быть указан минимальный элемент (квант), из которых (квантов) объект и сформирован.

Эта, вторая, концепция витает в мыслях, излагаемых там и сям; она никем не оспаривается, но и не имеет официальной поддержки, т.к. не взята на вооружение ни одной из научных школ. (А мы попробуем взять).

Не странно ли? Но в науке господствует компилятивная парадигма, допускающая совместное существование двух несовместимых концепций: ТО Эйнштейна, и Квантовой Теории,- и всё это происходит под эгидой РАН, и также иностранных Академий.

Перечислим в произвольном порядке некоторые неоспоримые параметры фотона квантового.

Фотон – объект локализованный, и не делящийся на составные части. При этом фотон не является частью каких-либо устойчивых объектов или образований. Никакой континуум фотонов не образует среду.

Странно, но фотон не вписывается в привычное представление о квантах, ни по каким параметрам, кроме одного. Содержание энергии в фотоне меняется ступенчатым образом. Энергия одной ступеньки и является фотонным квантом, которого в природе, похоже, не существует, т.к. фотон с частотой 1 Гц и длиной волны 300 000 км пока не обнаружен.

Если в природе не существует фотонов с частотой 1Гц, то какая же тогда минимальная частота фотона? Действующая квантовая модель не дает ответа.

 

Фотон не может формировать устойчивые фотонные объекты. А именно это свойство является основным и отличительным признаком частиц.

Компилятивное определение понятия квант допускает как материальное, так и не материальное представление кванта, например, у фотона это ступенчато-параметрическое представление. Не разделив эти понятия, научное сообщество рискует попасть в сети самообмана.

Фотон, несомненно, является унифицированным переносчиком квантованных порций энергии. Хотя фотон не делим, но переносимая им энергия может порционно изменяться в процессе его жизненного цикла, но не произвольно, а только в строго определенных ситуациях. Пока из таких ситуаций известна только одна: это зеркальные отражения фотонов, сопровождаемые эффектом Доплера.

 

Атом, пребывающий в возбужденном состоянии, излучает фотоны с энергией, кратной постоянной Планка h. Но стоит поместить этот атом в магнитное поле, как энергия фотона может принимать значения равные nh±ћ/2, где h и ћ несоизмеримы. Таким образом, официальная парадигма требует существования, по крайней мере, двух типов фотонов, точнее, двух масштабов их квантовых ступенек.

 

 

Есть множество экспериментальных и теоретических оснований для утверждения, что фотон не имеет ни массы, ни импульса. Однако официально поддерживается мнение, предложенное Эйнштейном, что фотон имеет конкретную массу и импульс, и таким образом, участвует в гравитационных и механических взаимодействиях. При этом фотон передает веществу скоростной импульс, а обратно может получать только импульс с приращением собственной инертности, т.е. реальной массы. Ну, какое свойство фотона ни возьми – всё не как у всех.

Традиционные оговорки, что масса покоя фотона равна нулю, абсурдна, т.к. не имеет физического смысла. Они (оговорки) используются лишь для отвлечения внимания от вздорного утверждения о массивности реального (движущегося) фотона.

Между тем, отсутствие переносимого импульса у фотонов – очень информативный фактор, который в корне меняет интерпретацию многих экспериментов. Из него следует, что фотон может быть поглощен только вещественной системой, способной реализовать одновременно два противоположно направленных импульса. Из этого следует, что элементарные частицы принципиально не могут поглощать и излучать фотоны [5].

 

Исключительность фотона проявляется кроме всего прочего в том, что фотон не подпадает под  действие квантового принципа неопределенности. Обладая известной скоростью, фотон формально допускает неограниченную точность измерения своих координат.

 

Официальная наука объявляет фотон истинно нейтральной частицей. Но рассмотрим простейшие случаи изменения направления движения фотона при отражении от зеркальной поверхности или при прохождении сред с градиентом плотности, т.е. при явлениях аберрации. Во всех случаях фотоны не поглощаются веществом, и явно не входят с носителями вещества в контактное взаимодействие, т.е. в формате элементарных частиц среды. Однако при этом смена направления и поляризации происходит.

Такое поведение возможно только под действием постоянных электрических полей, формируемых электронами и протонами среды.

Анализ множества экспериментов указывает, что действенным фактором при этих взаимодействиях является не только величина поля, но ещё и градиент.

Если это так, то нам придется признать, что фотон является отличным квантовым детектором градиента электрического поля. Механизм детектирования является объектом будущих исследований.

Вдумаемся, если у фотона нет инерции, но фотоном можно управлять, меняя лишь признак направления его движения, то это значит, что в структуре фотона есть элемент, поворачивая который вместе со всем фотоном, мы можем задавать направление движения фотона. Перемещение фотона в направлении, заданном внутренним параметром фотона, без всяких внешних сил – это новое качество модели (не фотона), определяемое нашим новым знанием, и относящееся к новой парадигме новой физики.

 

Обратим внимание на один из метрологических эффектов квантовой природы, реализующийся при регистрации интерференции. Дело в том, что один и тот же фотон принципиально не может участвовать в двух актах регистрации. Это очевиднейшее утверждение. Выясним, к чему же оно приводит.

Если в качестве экрана для визуального наблюдения картины интерференции света применить фотобумагу, то визуальная картинка при экспонировании принципиально не может совпасть с получаемым чуть позже фотоизображением. Действительно, если мы увидели отраженный фотон, то он уже никак не может создать след (черную точку) на фотобумаге. И наоборот, если фотон оставил след на бумаге, то мы его уже никогда не увидим отраженным, т.к. он уже исчез.

Таким образом, в момент двойной фиксации картины интерференции (визуальной и фотографической) реализуется как минимум два потока фотонов, каждый из которых формирует похожие, но разные, картинки. Возникает подозрение, что суммарный поток может оказаться однородным по плотности, т.е. не содержащим изображения. А это означает, что, возможно, эти два потока формируются не фазой энергетического состояния, как предполагалось до сих пор, а фазой другого параметра, который мы не знаем и не учитываем, но который влияет на способность к поглощению и отражению фотонов именно таким, похожим на волновой процесс, образом. Но ведь никто не проверял.

Вспоминается предположение Эйнштейна о возможном существовании скрытых параметров. В свое время это предположение, сделанное им по поводу парадокса ЭПР, было искажено оппонентами, и подменено незнанием значений параметров, которые, в принципе, известны исследователям. Однако совершенно очевидно, что Эйнштейн имел в виду параметры, о существовании которых мы не подозреваем. Таким образом, концепция Эйнштейна предполагала дальнейшее углубление исследований, тогда как концепция оппонентов это исследование отвергала. В результате победы оппонентов, необходимые эксперименты не были проведены, что привело к торжеству мистических представлений.

Физик, не признающий фундаментального принципа причинности, может позволить себе делать необоснованные и непредсказуемые выводы, по своей прихоти относя, или не относя, их к законам природы. Попав в  правящую академическую элиту, такой физик становится опасным для общества.

 

Таким образом, возвращаясь к фотонам, мы еще раз утверждаемся в мысли, что ни о какой волновой природе интерференции света речи быть не может.

Однако картинка наблюдается – и это значит, что когерентный поток фотонов в какой-то области сближения фотонов с веществом модулируется определенным образом. Ни глаз, ни фотоэмульсия такой областью быть не могут. Значит, областью модуляции являются тонкие щели первого и второго экранов интерферометра.

 

Итак, у нас два эксперимента. Первый, с одной щелью, второй – с двумя.

Не хватает только третьего, с двумя щелями, одна из которых в тени веерного рассеяния фотонов первичного луча.

Почему в арсенале экспериментаторов нет интерференционных картинок от трех (и более) отверстий. А также нет картинок для щелей с разными отклонениями от заданной симметрии. И нет картинок, отличающихся формой экрана перекрытия потока фотонов от одной из двойных щелей до детектирующего экрана.

Может быть, такие эксперименты уже проведены, но общественности их не показывают? Ведь если они противоречат хотя бы одной из фундаментальных теорий: ТО или КТ,- то в соответствии с решением РАН о запрещении критики ТО, они не подлежат публикации.

Кроме того, уже давно можно было бы без особого труда уже проверить гипотезу, об отклонении фотонов градиентом электрического поля поверхностного слоя электронов. Для этого достаточно исследовать дифракцию на электрически заряженной струне. Это совсем не сложно.

 

Теоретики от КТ, мистифицирующие физический процесс интерференции, утверждают, что интерференционная картинка исчезает даже при намерении установить траекторию фотона. Для проверки этой придуманной страшилки можно предложить следующий эксперимент.

Соберем стандартную установку для наблюдения интерференции от двух щелей. Установим над вторым экраном с двумя отверстиями подвижный сплошной экран, перемещающийся над вторым не касаясь его. Пусть этот экран сначала будет расположен в стороне от отверстий, так далеко, что не будет влиять на интерференцию. (Или уже будет?) Никто не проверял.

Не прекращая наблюдения за интерференцией, будем пододвигать затеняющий экран к интерферирующим отверстиям, со стороны одного из отверстий.

Будем наблюдать, как изменяется интерференционная картинка и как она восстанавливается при обратном движении.

То же самое можно проделать еще с одним таким же экраном, установленным с другой стороны (снизу) от основного экрана со щелями.

Для получения дополнительной информации можно исследовать картинку в зависимости от материала основных экранов, и от расстояния затеняющих экранов от основного экрана, а ещё интерференцию от щелей разной длины.

Можно получить достаточное количество разнообразной информации, способной прояснить реальные (а не мистические) свойства фотонов. Эти эксперименты очень просты. Однако сообщения о них отсутствуют. А это значит, что они кому-то мешают.

Ангажированные исследователи, пытаются выявить исключительно волновые признаки, вызывающие интерференционные картинки. Однако можно бесконечно искать в черной  комнате черную кошку, которой там нет. А по сути — происходит именно это.

При прохождении фотона вблизи границы твердого тела он искривляет свою траекторию, реализуя дифракционное рассеяние. Первая щель сортирует поток фотонов по углу рассеяния, в соответствии со случайными значениями некоего параметра фотона, который мы определим как осциллирующий. Каждое значение случайного параметра задает свой угол отклонения. Таким образом, когерентность (или нечто иное) после первой щели уже сформирована. Однако при прохождении второго экрана с двумя щелями, узкий луч, вырезаемый каждой щелью, опять на этих щелях испытывает веерное рассеяние, формирующее, или не формирующее, интерференционную картинку. В чем причина? Можно гадать, а можно экспериментировать.

Относительно какого опорного состояния фотона происходит природное изменение фазы, влияющей на отклонение и отражение фотонов. Пока не ясно.

Каким образом происходит модуляция предполагаемого здесь осциллирующего скрытого параметра, тоже пока не ясно.

Предположительно, краевые эффекты одиночной щели существенно отличаются от краевых эффектов двух близких и параллельных щелей.

Все, достаточно подробно описанные в доступных источниках эксперименты по интерференции, не противоречат предположению о скрытом параметре. Но вариативность проведенных экспериментов совершенно недостаточна для выявления этого параметра.

Используемая сейчас эклектическая парадигма, ошибочно считая фотон частично волной, частично корпускулой, объясняет многое (но далеко не всё), и этим сдерживает поиск неведомого, или уводит  этот поиск в ложном направлении.

При касательном прохождении границы твердого тела, фотон испытывает действие переменного поля поверхностных электронов. Проявление этого воздействия вынуждает нас предположить, что фотон не может быть истинно нейтральной частицей.

Однако фотоны не оказывают никакого взаимного влияния друг на друга.

Получается, что фотон не имеет собственных электрических полей, но имеет собственный электрический заряд, скорее всего дипольный. Получается диполь без собственного электрического поля. Это нечто небывалое. Это гипотеза новой физики. Но эта гипотеза стучится в дверь, и позволяет многое объяснить из того, что до сих пор не поддавалось объяснению, и её надо иметь в виду в будущих исследованиях.

На основе предполагаемого здесь принципиально нового квантового свойства,- одностороннего действия,- не нарушающего ни один закон сохранения, можно создать сверхчувствительный сенсор, минимально возмущающий исследуемый объект.

 

Переносимую фотоном энергию принято соотносить с частотой фотона.

Планку ничего не стоило связать энергию фотона с длиной волны. В природе от этого ничего бы не изменилось. Изменилась бы только наша планковская константа, что иллюстрирует её непричастность к природным инвариантам.

Волновая природа фотона нами уже отвергнута. А что ещё кроме частоты и длины волны можно связать с энергией фотона? Такие параметры, более широкого действия, в арсенале природы есть. Это крутизна. Или градиент.

Если модель фотона – волна, то чем больше частота фотона,  тем больше крутизна волны. А если фотон не волна, то частота как параметр отпадает, а крутизна остается действующим параметром, и освобождает интерпретаторов от непосильной ноши в образе громоздких цугов.

 

 

Производство вещества из чистой энергии, а конкретно – из фотонов, является чрезвычайно сомнительной, околонаучной декларацией. Производство вещества никогда не наблюдалась в непосредственном акте столкновения фотонов. Все, так называемые рождения пар позитрон-электронов, происходят на ядрах атомов, что предполагает скорее эффект выбивания пар, чем их рождение из чистой энергии.

В связи с этой, естественной интерпретацией, возникает практический вопрос – во что превращается нуклон, из которого выбита позитрон-электронная пара, и какова его (нуклона) дальнейшая участь. Но официальная интерпретация блокирует это направление исследований.

 

Приверженцы идеи о наличии импульса у фотонов, опираются на фотоэффект и опыты Лебедева, а также на эффект Доплера. Действительно, никому непонятно, откуда может взяться дополнительная энергия у отраженных фотонов, если у них не будет импульса.

Хотя исследования последних лет опровергли выводы Лебедева, эти исследования замалчиваются, и официальная наука продолжает упорно настаивать на наличии импульса у фотонов [6].

Изменение энергии зеркально отраженных фотонов неожиданно оказалось связанным с изменением тепловой энергии зеркала. Этот эффект обнаружен при исследовании лазерного охлаждения. Эффекту присвоена характеристика «лазерный», т.к. он обнаружен в лазерных исследованиях. Однако это, видимо, общий квантовый эффект, реализующийся для произвольных потоков отражающихся фотонов. Но в лазерах он максимально интенсивен и заметен.

 

Последний параметр фотона, который мы рассмотрим, — это тот, который принято называть поляризацией. Что это такое, надо ещё разбираться. Но мы этого делать не будем. Доверимся на этот раз официальным теоретикам, которые, признав, что так называемая поляризация не может быть корректно описана с помощью принципа дополнительности, обратились для этого к эрмитовой матрице. Одного этого факта уже достаточно, чтобы утверждать, что фотон не является ни волной, ни частицей.

В этой, уже создавшейся ситуации, нас ставят в тупик не столько удивительные свойства фотонов, сколько реакция на эти свойства правящей академической элиты, продолжающей учить студентов тому, что фотон это и волна, и частица. Если уж пользоваться этой неудачной компиляцией, то надо добавить и третью составляющую – фотон это квантовый объект, описываемый шестимерной матрицей.

Осталось пояснить, почему матрица фотона шестимерная. Дело в том, что квантовое пространство принципиально не может быть изотропным [3], оно имеет,  предположительно, сотовую структуру, что и задает размерность матрицы.

Множество наблюдаемых непостижимых квантовых явлений объясняется нашим неведением о природном механизме преобразования квантовой геометрии в геометрию Евклида, которая описывает наш эффективный, макроскопический (пользовательский) мир. Реальным проявлением этого механизма является фундаментальное вращение всех квантовых конструкций вокруг шести осей симметрии пространства.

Вращение, снимающее анизотропию пространства, происходит последовательно вокруг каждой оси, но воспринимается нами как одновременное. Однако детектировать мы можем только одно направление вращения.

Эти, нивелирующие вращения, мы воспринимаем как спин.

 

Вывод, к которому мы пришли,  является следствием (и подтверждением) того, что  мы достигли той глубины квантовых уровней, где статистика уже неприменима, т.к. действуют только фундаментальные квантовые законы, к которым неприменимо понятие «приблизительно». Эти законы описываются булевой алгеброй и соответствующими программами операционного исчисления. Здесь правит не аналитическая математика, здесь правит универсальный программно-операторный метод, способный описать любой квантовый природный процесс, что и иллюстрирует эрмитова матрица, с помощью которой наиболее полно описывается частное свойство фотона — поляризация.

При исследовании поляризации фотона теоретики не сразу добрались до эрмитовой матрицы. Однако, когда добрались, то не решились на философское обобщение, состоящее в том, что фотон это уникальный природный объект, с малым (возможно минимальным) содержанием строительных элементов – пространственных квантов, т.е. запрограммированных (возбужденных строго определенным образом) квантов физического вакуума.

 

Дополнительные аргументы в пользу уникальности фотона, который, таким образом, не может быть отнесен ни к электромагнитным явлениям, ни к явлениям корпускулярным, — можно найти в работе [7], автор которой, Эткин В.А., глубоко (как профессиональный электродинамик) и широко (как прирожденный философ) изучил и представил проблему лучистого энергообмена.

 

Правильная интерпретация наблюдаемых фотонных эффектов помогла бы исследователям оптимально организовывать свои опыты и максимально эффективно применять полученные знания на практике. Дело в том, что в свете предъявленных сомнений, ни теория лазерного излучения, ни теория лазерного охлаждения, ни многие другие фотонные теории не могут считаться адекватным описанием реальных физических процессов.

 

 

Нижний Новгород, январь 2017 г.

 

Источники информации

  1. Википедия.
  2. Физический энциклопедический словарь. М. Советская энциклопедия.
  3. Леонович В.Н. «Концепция физической модели квантовой гравитации», Интернет  http://www.proza.ru/2011/01/12/1571
  4. Ораевский А.Н. «Сверхсветовые волны в усиливающих средах» УФН. Том 168, №12 1998г.
  5. Леонович В.Н. «Импульс фотона, фотонный двигатель и философия» Интернет, http://www.sciteclibrary.ru/rus/catalog/pages/13311.html
  6. Костюшко В.Е. «Экспериментальная ошибка П.Н. Лебедева – причина ложного вывода об обнаружении им давления света» Русское Физическое Общество, Энциклопедия Русской Мысли. Т. XVI, стр. 34
  1. Эткин В.А. «О неэлектромагнитной природе света» , Интернет

http://samlib.ru/e/etkin_w/oneelectromagnitnoyprirodesveta.shtml .

 

 

 

О магнитной природе ядерных сил на примере взрыва сверхновых

            Леонович Владимир

 

Ключевые слова: протон, нейтрон, сильное взаимодействие, взрыв сверхновой, Тунгусский метеорит, ядерный взрыв.

 

Головокружение от успехов – один из неизбывных пороков общества. Порок не очень заботит общество, т.к. наносимый ущерб относительно мал. Проблемы, связанные с проявлениями порока, решаются (или гасятся) обществом по мере поступления.

Успехи теоретической математики, достигнутые на базе квантовой физики, создали очередную проблему подобного рода. Любое экспериментальное открытие в квантовой физике практически моментально получает математическую интерпретацию. Такая расторопность обеспечивается особым статусом квантовой теории, который лидеры теории сумели навязать обществу. Суть этого статуса озвучил Ландау: мы (надо понимать — научное сообщество в лице его лидеров – квантовых теоретиков) можем гордиться тем, что умеем рассчитывать и управлять процессами, физического смысла которых не понимаем.

Если сейчас создать свод законов квантовой физики, то он будет похож на справочник по сопротивлению материалов — изобилие формул в ранге законов. Однако, ни у кого не возникает желание создавать такой свод, т.к. составляющие его  законы постоянно и очень существенно изменяются.

Математическая эйфория, сопровождающая порочный статус, возникнув в среде квантовой физики, распространилась и за её пределы. Особенно это ощущается в астрофизике, где интерпретация наблюдений очень зависит от субъективного фактора. Но в данном случае нас интересует теория атомного ядра. Экспериментально установлено, что ядро очень компактно и состоит из протонов и нейтронов. Нонсенс. Протоны не могут быть устойчивыми в контактной близости. Такого не может быть!  Однако, прецедент преодоления таких парадоксов уже есть. Достаточно классифицировать явление как квантовое – и объяснение превращается в простое описание происходящего. Протоны не разлетаются – значит есть удерживающее «сильное взаимодействие». Поскольку слабое взаимодействие реализуется гравитонами, а электромагнитное (среднее) – фотонами, которые обеспечивают силу отталкивания электронов в 10раз превышающую их притяжение, то по аналогии сильное взаимодействие должно реализоваться особыми, тяжелыми частицами – мезонами. И не беда, что давным-давно известно: на базе частиц можно реализовать только взаимодействие отталкивания; это ведь относится к классической физике.

Вдумаемся, что произошло. Эксперимент обнаружил ошеломляющий результат. Казалось бы, появился интереснейший фронт для новых исследований. Но нужны средства, а их выделение заблокировано авторитарным мнением.

Может быть ситуация такова, что действительно выход только один – смириться с позицией-диагнозом Ландау. Попробуем хотя бы убедиться в безвыходности ситуации.

Вот перед нами теория спин-спиновых взаимодействий. Она процветает. Выявлено множество законов. Но нет понимания их сокровенного смысла, природного назначения, главной функции. Зачем, например, спин фотону?

Диагноз Ландау освобождает от обязанности думать там, где истина дается с огромным трудом или даже требует ломки привычных представлений. Но хорошо, что не все смирились с диагнозом. Вот мнение думающего ученого, академика А.А. Тяпкина, по поводу одной идеи другого думающего, нобелевского лауреата Ю. Швингера.

«…Я могу сослаться лишь на гипотезу крупного теоретика, лауреата нобелевской премии за 1965 год Юлиана Швингера. Он в 1969 г. [5] высказал весьма неожиданное предположение о том, что магнитные заряды, которые безуспешно пытались обнаружить, на самом деле в виде дипольных моментов входят в основу любого вещества; они принимаются нами за особые коротко действующие ядерные силы, необычно большие по величине. Отметим, что эта удивительно красивая и смелая гипотеза прежде всего отвечает симметрии электрического и магнитного взаимодействия, заложенной в уравнениях Дж. Максвелла, а значительная величина магнитного заряда по сравнению с электрическим зарядом, как это было показано еще в 1931 году П. Дираком, непосредственно следует из законов квантования этих зарядов [6]. Коротко действующими же эти магнитные силы оказываются в силу того, что в веществе они существуют только в виде сильно связанных магнитных диполей. Эта почти забытая физиками идея Ю. Швингера не только красивая, но и удивительно рациональная в своей основе, поскольку сводит ядерные силы к магнитным.»

Вот достойное применение спин-спиновым взаимодействиям: ядерные силы, т.е. близкодействие в смысле современного понимания сильного взаимодействия. Разовьем эту идею как рабочую гипотезу, дополнив её по ходу изложения несколькими естественными предположениями.

Для начала рассмотрим и оценим функциональную роль атомного ядра.

Для определенности рассмотрим процесс падения с малой высоты одного кристалла алмаза на параллельную грань другого алмаза, установленного в плоском и слабом гравитационном поле.

Ядра атомов, образующих внешнюю грань неподвижного кристалла, находятся в одной плоскости, и могут совершать колебательные движения (тепловые и пр.) около центра своего равновесия, узла кристалла. Ядра ничего не касаются; каждое из них подвешено в электромагнитном поле кристаллической решетки. Поле подвески создают электроны из состава оболочки данного атома.

Электроны соседствующих оболочек атомов никогда не сталкиваются друг с другом (в механическом представлении), имеет место только рассеяние электронов, т.е. некоторые изменения их траекторий и обмен энергией. Если попытаться получить характеристики этого рассеивания в рамках дискретных уровней запрета Паули, то ничего не получится. Но при этом атомы, как и их ядра, взвешены в электромагнитном поле.

Таким образом, получаем — кристалл это упорядоченная взвесь атомных ядер и электронов. Если увеличить атом до размеров футбольного стадиона, то ядро предстанет кучкой теннисных мячей в центре поля, а электроны – маленькими горошинами, летающими над трибунами. В бытовом представлении это практически пустое пространство. И вот из такой пустоватой взвеси микроэлементов массивного вещества составлены все твердые тела. Эта просторная взвесь нуклонов и электронов у алмаза имеет удивительную прочность, хотя каждый атом нейтрален.

Вместо определения «нейтрален» по отношению к атому напрашивается более энергичная конструкция — «абсолютно нейтрален». Но именно здесь стереотип мышления скрывает истину. Атом абсолютно нейтрален только при усреднении, уничтожающем за границами электронной оболочки переменные поля. В действительности же такое поле существует и в каждый конкретный момент оно имеет вполне конкретное значение, даже если атом находится в невозмущенном состоянии. Вот эти быстропеременные поля и формируют динамическое, устойчивое взаимодействие, обеспечивающее прочность алмаза, как на сжатие, так и на растяжение. Самое замечательное в этом процессе то, что при отсутствии условий, необходимых для взаимодействия, признаки и параметры, обеспечивающее это взаимодействие, не обнаруживаются. Они возникают только как реакция на начальное взаимодействие, вызванное внешними причинами, и развиваются уже как внутренние признаки замкнутой системы. На это обстоятельство необходимо обратить особое внимание, т.к. его недооценка влечет искаженные представления о действительности, что вызывает фантазии мистического свойства.

Магнитный момент и кулоновское поле, формирующие необходимую потенциальную яму, отсутствуют у свободного атома. Эти поля возникают как реакция на сближение атомов, т.е. по ситуации, и формируются там, где надо. К тому же, оба поля формируются групповыми токами электронной оболочки, т.е. нет постоянного объекта статического заряда, и нет выделенных электронов, движущихся по петлевым траекториям, соответствующим сформированному магнитному моменту.

Эта естественная мысль заблокирована принципом (запретом) Паули, и даже не обсуждается. К тому же, изучать природу этого взаимодействия сложно, проще ввести некие силы (Казимира, Ван дер Вальса и пр.). В этом случае достаточно только определить значение этих сил экспериментальным путем. Здесь уместна цитата из Энгельса, обращенная к творчеству Гегеля. “Что касается специально Гегеля, то он во многих отношениях стоит гораздо выше современных ему эмпириков, которые думали, что объяснили все необъясненные еще явления, подставив под них какую-нибудь силу: силу тяжести, плавательную силу, электрическую контактную силу и т.д., или же, если это никак не подходило, какое-нибудь неизвестное вещество: световое, тепловое, электрическое и т.д. Эти воображаемые вещества теперь можно считать устраненными, но спекуляция силами, против которой боролся еще Гегель, возрождается как забавный призрак”.

 

Что же происходит при падении одного алмаза на другой, если оба алмаза электрически нейтральны. Заявляя об электрической нейтральности тел, мы готовим почву для самообмана, т.к. явно считаем, что сближение алмазов будет происходить до механического контакта. Механический контакт – это всеобщий стереотип, за которым стоит целая отрасль знаний, называемая теорией сопротивления материалов. Но задумайтесь, и сами ответьте на вопрос: могут ли в процессе механического контакта тел столкнуться два электрона или, тем более, два ядра.

Все механические взаимодействия есть результат статистического усреднения электромагнитных взаимодействий, у которых, как известно, нет четко обозначенной границы.

Так с чего же начинается твердое тело? В квантовой теории этот вопрос не корректен. Там вопрос необходимо формулировать в формате волновой функции. При решении разных задач, граница твердого тела может быть определена по-разному. В нашем случае уместно за границу принять плоскость, касательную к внешнему слою электронов, перемещающихся с линейной скоростью, приблизительно равной 1/137 скорости света.

При сближении тел на дистанцию, при которой оболочки атомов геометрически (т.е. гипотетически) имеют возможность соприкоснуться, электроны сближающихся тел своевременно меняют траекторию, и за счет нарушения прежнего равновесия и симметрии формируют групповое кулоновское поле и групповой магнитный момент. Естественно, электроны в момент сближения испытывают сильное кратковременное кулоновское отталкивание, а также воздействие силы Лоренца. Направленность этих сил может быть очень разной, но не произвольной. В результате сложнейших комбинаций взаимодействий, электронные оболочки внешних граней алмазов деформируются таким образом, что возникнут силы, которые остановят движение падающего слоя электронных оболочек алмаза. Но деформация электронных оболочек на этом не закончится. В наших рассуждениях мы еще не учли реакцию ядер. Начальная фаза взаимодействия остановит взаимное движение наружных электронных оболочек, но ядра продолжат движение по инерции, создавая напряжение, вызванное смещением от центра равновесия, которое дополнительно исказит электронные оболочки. В результате — остановятся и все ядра. Но ядра при этом чуть-чуть нагреются, т.е. начнут колебаться около центра равновесия.

Далее, в процесс соударения включатся внутренние слои тела, и т.д. Процесс завершится новым состоянием динамического равновесия для всех оболочек и ядер каждого атома. Этих состояний у каждого атома такое великое множество, и они (состояния) отрабатывают такие малые гравитационные смещения, что никаких разрешенных квантовой механикой уровней электронных орбит не хватит.

В этом заключении нет отрицания квантовых достижений в фотонной оптике. Очевидно, что квантовый характер излучения относится исключительно к фотонам, и не относится к состояниям электронных орбит. Электронные орбиты распределяются по зонам устойчивости, подчиняющимся законам резонансного взаимодействия. В каждой зоне устойчивости электроны имеют достаточную, очень большую, степень свободы.

Это простое и естественное предположение простительно упустить в момент разработки теории Паули, но после открытия излучения Черенкова, не рассмотреть такую возможность – является неосмотрительной оплошностью.

Квантовое объяснение излучения Черенкова,  преподносимое как очередной триумф теории, скорее можно отнести к фиаско последней. С какого квантового уровня, и на какой, переходят электроны при излучении фотонов, не изменяя при этом свою волновую функцию?

 

При дальнейшем исследовании функций электронной оболочки в атомах, примем как рабочую гипотезу предположение об отсутствии квантовых состояний электронов в атоме, заменив их соответствующими зонами устойчивости.

Если от мысленного эксперимента с падающими алмазами перейти к полномасштабным  механическим взаимодействиям, включая самые мощные взрывные процессы, то и в этом варианте невозможно найти повода для контакта между электронами и ядрами атомов. При этом электронные оболочки испытывают огромные ускорения и деформации. Тем не менее, как только бурные процессы заканчиваются, все электроны оказываются в строго определенных динамических состояниях, и все физические и химические параметры атома оказываются строго определенными.  Что обеспечивает стандарт физико-химических параметров атома? Официальную версию о самоорганизации электронов вокруг каплеобразного ядра поставим на последнее место. Самым естественным носителем стандарта может быть устойчивая объемная структура ядра; структура, которой, как видим, природа обеспечила максимально комфортные условия.

Внимательный анализ таблицы Менделеева однозначно свидетельствует, что строительным материалом атомных ядер являются не протоны и нейтроны в отдельности, а их стабильные связки протон-нейтрон. Такая связь может обеспечиваться или магнитными моментами нуклонов, или декларированным сильным взаимодействием. Сильное взаимодействие, в соответствии с рекомендациями мудрецов, мы опять отодвинем на последнее место, и рассматривать не будем.

Отказавшись от услуг сильного взаимодействия, необходимо предложить альтернативную идею, обеспечивающую преодоление кулоновского отталкивания. Такой идеей является предположение о непрозрачности нуклонов для кулоновских полей. Из этого предположения следует, что кулоновским полем пары протон-нейтрон является кардиоида с очень узким минимумом, к тому же размываемым с удалением от нейтрона. Можно не использовать геометрический образ кардиоиды, полагая, что нейтрон создает узкую и короткую тень в шарообразном поле протона.

Из таких строительных блоков, на пример, можно построить нитевидное ядро гелия. Но для этого необходимо потратить энергию на преодоление кулоновского отталкивания. Процедура аналогична зарядке арбалета. Сблизив два блока протон-нейтрон, и придав им требуемую конфигурацию, мы таким образом создаем напряженную конструкцию, существующую за счет функции-защелки, реализованной магнитным моментом и тенью нейтрона.

Не занимаясь дальнейшим конструированием всех ядер таблицы Менделеева, можно отметить общие свойства этих конструкций. Это будут ажурные, кораллоподобные конструкции, отвечающие жестким требованиям симметрии, вызванной необходимостью компенсации боковых воздействий от соседних протонов объемной структуры. Очевидно, что с ростом размеров такой конструкции, прочность её будет уменьшаться, что будет выражаться в сокращении срока полураспада. Кроме того, можно предположить некоторый кризис роста, когда логически законченная симметричная конструкция должна продолжать свой рост, и может это делать только за счет нарушения симметрии с привлечением дополнительных нейтронов.

Исходя из общих положений, можно сделать следующий прогноз. Среди тяжелых элементов возможны такие конструкции атомных ядер, которые имеют изотопные признаки, т.е. некоторое различие в свойствах, связанные с различной топологией, несмотря на полное совпадение состава нуклонов.

Из общих соображений так же следует, что все элементы могут рассматриваться как радиоактивные, а реакций синтеза с выделением энергии просто не существует.

Для сомневающихся приведем следующие аргументы в пользу выдвинутой гипотезы. Не все разработчики водородной бомбы уверены в том, что ими создана бомба именно на основе синтеза. В американских публикациях сообщается, что возможно дейтерий увеличивает плотность нейтронного потока и за счет этого повышает эффективность ядерного распада, не синтезируя гелия. По неофициальным сведениям, последнее испытание термоядерного устройства оказалось неожиданно мощным. Его мощность была так велика, что не могла быть объяснена потенциальной возможностью водородного заряда. Пришлось признать, что в цепную реакцию было вовлечено вещество, не относящееся к заряду. А это означает, что такое устройство становится принципиально непредсказуемым. Испытания были прекращены по инициативе исследовательской группы.

Кроме этого, уже настало время признаться (самим себе) в том, что всё время ядерный дефицит массы, вопреки здравому смыслу, интерпретируется в пользу теории Эйнштейна, не взирая на очевиднейшие противоречия. Так, вес протона и электрона, на которые распадается нейтрон, больше веса самого нейтрона; а суммарный вес отдельного электрона и отдельного протона больше веса атома водорода, хотя по теории Эйнштейна должно быть наоборот. Ведь вращающийся электрон, а его линейная скорость на орбите равна С/137, должен быть тяжелее спокойного (неподвижного). То же самое для любого атома или химического элемента, чем больше запасенная внутренняя энергия, тем больше дефицит массы.

Наши знания о протонах и нейтронах пока не позволяют построить конкретные ажурные конструкции ядер всех атомов, но сам принцип ажурной конструкции ядра позволяет понять природу взрыва сверхновых. Рассмотрим общие свойства ажурных ядер. Протоны удерживаются в тени нейтронов не только магнитным притяжением, но и  поперечной составляющей кулоновского поля объемной конструкции протонов; эта суммарная составляющая значительно слабее радиальных составляющих, и выполняет функцию усиления «защелки». При нарушении заданной конфигурации за счет флуктуаций, сместившийся протон вместе с опирающейся на него конструкцией ядра выталкивается из оболочки атома, реализуя природную радиоактивность. Но смещение протонов можно вызвать и бомбардировкой ядра энергичными частицами, что происходит в атмосфере Земли под действием космического излучения.

В сохранении устойчивой конфигурации атомного ядра огромное значение должны иметь электронные оболочки, обеспечивающие амортизацию при ударных (с большим ускорением) межатомных взаимодействиях. В свою очередь поле объемной конструкции ядра определяет стандарт устойчивой динамической структуры электронной оболочки.

Исходя из рассмотренной концепции, структура ядра гелия должна представлять вытянутую цепь, см. рис. 1, и являться одним из типовых элементов конструкции любого элемента таблицы Менделеева.

alfa-chastica

Эта конструкция естественным образом объясняет причину общего для всех радиоактивных элементов α-излучения. Особенно наглядно это видно на ядерной реакции

14N+p → 11C+ α, где азот под действием облучения протонами превращается в изотоп углерода. Реакция сопровождается α-излучением. Структурная схема реакции представлена на рис.2, где объемная структура ядра условно (и совсем не похоже) изображена на плоскости.

raspad-azot-uglerod

Рассмотрим теперь поведение ажурной структуры атомных ядер в составе звезды. В горячих звездах при столкновении атомов, их электронные оболочки для обеспечения взаимодействий, происходящих с огромными ускорениями, испытывают сильнейшие деформации, но они кратковременны и не нарушают структуру атома. Когда же звезда остывает, ее вещество замедляется и уплотняется. Атомы при этом сближаются так, что геометрические области правильных электронных оболочек начинают пересекаться. Что происходит с реальными траекториями электронов, можно только догадываться, но то, что электроны не склонны сталкиваться – эта тенденция сохраняется. Оболочки начинают испытывать постоянную деформацию, снижая качество выполнения функции стабилизации ядра. Более того, деформированные траектории электронов начинают оказывать негативное воздействие на устойчивость конструкции ядра атома, переводя его в радиоактивное состояние со все уменьшающимся периодом полураспада. В конце концов, наступает ситуация, при которой «защелка» не выдерживает, т.е. протоны ядра смещаются из области тени нейтрона (глубокого минимума) и, попадая в нормальное (сильное) кулоновское поле, разрывают ядро. Все «защелки» взорвавшегося ядра и «защелки» соседних атомов также находятся в ослабленном состоянии, поэтому даже при относительно слабых ударных взаимодействиях они тоже взрываются. Возникает цепная реакция и происходит взрыв сверхновой. Таким образом, по этой модели естественным концом звезды любого типа должен быть взрыв сверхновой, если звезда не взорвется раньше по другой причине. Единственным условием, при котором звезда может избежать взрыва, является недобор критической массы.

Взрыв звезды инициируется в её центре. Оболочка звезды, даже если для нее в начальный момент не выполняются условия взрыва, при взрыве центральной области, получает ударное ускорение такой интенсивности, что тоже взрывается по схожему алгоритму, тем более что плотность активирующих нуклонов огромна.

Оболочка звезды из остаточного водорода не участвует в процессе освобождения энергии и служит всего лишь для создания начального давления, а при взрыве — амортизатором.

Есть основания считать, что человечеству пришлось быть свидетелем мини взрыва по типу сверхновой. Это взрыв Тунгусского метеорита. Все известные, парадоксальные характеристики этого взрыва прекрасно вписываются в модель взрыва сверхновой, но с учетом некоторых особенностей. Дело в том, что ослабление «защелок» в этом случае происходило не за счет давления, а за счет физического удаления значительной части электронов, т.е. за счет интенсивной ионизации.

Сразу возникает вопрос, почему такой взрыв был только один. Видимо, потому что метеорит был уникальный. Во-первых, он видимо прилетел из дальнего космоса, т.е. его скорость могла быть больше, чем у обычных метеоритов, а температура ниже, что содействует взрыву. Во-вторых, он очень быстро вращался. О частоте его вращения можно судить по частоте гула, который он производил. Быстрое вращение способствовало равномерной (по его поверхности) ионизации вещества, что привело к объемному взрыву, в котором участвовало почти всё вещество метеорита. При отсутствии вращения могла бы взорваться только малая часть. Кроме того, всеми свидетелями отмечается явная и необычная реакция поверхности Земли на пролет метеорита. Это могло быть только реакцией на огромный электрический заряд, образовавшийся на метеорите. Взрыв ионизированного вещества вызвал ионизацию большой области атмосферы, что привело к необычным грозовым разрядам, которые также отмечаются свидетелями.

Еще одним свидетельством в поддержку данной гипотезы могли бы быть так называемые космические ливни, которые правильнее называть лавинами, как иногда и поступает Лекомцев В.А. [8]. Но интерпретация этого явления не совсем соответствует действительности. Дело в том, что при столкновении космической частицы с элементами земной атмосферы происходит последовательное (лавинообразное), ударное (по типу второй фазы взрыва оболочки сверхновой) расщепление ядер азота, кислорода и углерода. При этом энергия лавины непрерывно пополняется за счет энергии расщепляющихся атомов атмосферы (по современным представлениям эта реакция энергозатратная). К счастью, плотность энергии лавины все-таки падает — и лавина затухает. Неправомерное присвоение всей (или значительной её части) энергии лавины одной космической частице, многократно завышает её истинную начальную энергию, что влечет бессмысленный поиск источников сверхмощного излучения в космосе. Но это отвечает интересам некоторой части научного сообщества.

На этом цель статьи можно было бы считать достигнутой. Сделав несколько совершенно не фантастических предположений (скорее даже естественных), была построена модель строения ядра атома без привлечения понятия сильного взаимодействия. Модель не только соответствует современным знаниям о веществе, но и позволяет объяснить некоторые ранее необъяснимые явления.

Однако, исключительный характер взрыва сверхновой (взрыв от охлаждения) затрагивает философский аспект, а именно, кругооборот вещества во Вселенной. По этому поводу необходимо добавить несколько слов.

Взрыв Сверхновой является ядерным взрывом с максимально возможным делением вещества. Взрыв Сверхновой это естественное завершение одного из циклов в процессе самосовершенствования материи. Взрыв переводит вещество в состояние с максимальной энтропией, готовя его для начала нового восхождения к вершинам гармонии. По современным теориям, тяжелое вещество, начиная уже с меди, не может синтезироваться в недрах звезд. Откуда же тогда оно берется. Логика подсказывает единственный пока ответ. Гравитация должна собрать нуклонное вещество в гигантские образования, которые уже не могут взорваться по алгоритму сверхновых, т.к. состоят только из нуклонов и электронов, и за счет энергии гравитации синтезировать в недрах этих образований весь ряд элементов таблицы Менделеева. Данные нейтронные образования, по всей видимости, должны находиться в центрах галактик. Такая возможность более подробно рассмотрена в авторских статьях «Формирование звезд и спиральных галактик» [9] и «Формирование Солнечной системы на основе квантовой парадигмы» [10].

 

Нижний Новгород, декабрь 2011г.

 

Контакт с автором E-mail: vleonovich@yandex.ru

 

СПИСОК ЛИТЕРАТУРЫ

  1. Физический энциклопедический словарь. М. Советская энциклопедия, 1983.
  2. Ландау Л.Д., Румер Ю.Б., К., 1965.
  3. Прохоров А.М.: Большая Советская Энциклопедия (3 редакция).
  4. Тяпкин А.А., Обнаружение аномальных свойств при исследовании Черенковского излучения, ОИЯИ, Дубна.
  5. Швингер Ю. Магнитная модель материи, //УФН, 1971, Т. 103, С.355.
  6. Dirac P.A.M.  // Proc. Roy. Soc. (London), Ser. A, V. 133, P.60 (1931); Phys. Rev. 1948, V.74, P.817
  7. Форд К., Мир элементарных частиц, М., 1965.
  8. Лекомцев В.А., О возможности обнаружения сверхсветовых частиц в шальных экспериментах, Интернет
  9. Леонович В.Н., Формирование звезд типа Солнце в составе спиральных галактик, Интернет, http://www.sciteclibrary.ru/rus/catalog/pages/10304.html.
  10. Леонович В.Н., Происхождение Солнечной системы на основе квантовой парадигмы, Интернет, http://www.sciteclibrary.ru/rus/catalog/pages/11553.html.

 

 

 

 

Атом. Попытка философского осмысления

Атом. Попытка философского осмысления

Предисловие

Прежде чем приступить к анализу заявленной сущности, конкретизируем некоторые отличия философского подхода от общепринятого, научного подхода.

На первый взгляд принципиальной разницы быть не должно. Но ведь существует понятие философский подход, значит, и различие существует.

Наиважнейшим различием является то, что философский метод, не включая в свои правила требования беспристрастности, тем не менее, естественным образом реализует это условие в большей мере. Философ, анализирующий частную проблему в составе общей, обычно не является автором частной разработки, и уже в силу этого более беспристрастен.

Кругозор философа в рамках используемой им парадигмы обычно шире по сравнению с кругозором специалиста, хотя знания специалиста в своей отрасли гораздо глубже.

Мыслитель, избравший философию основным родом своей деятельности, должен владеть методологическими достижениями философии, что доступно любому исследователю, но часто не является их достоянием.

Философ профессионально владеет диалектической логикой и, что очень важно, более строго следует ей.

Действие законов философии, выведенных в результате философских обобщений, равносильно действию естественных природных законов. В этом смысле законы философии весьма конструктивны. Однако их конструктивность проявляется обычно в ограничительном аспекте. Философские законы жестко ограничивают неуемную творческую фантазию спецов теоретиков. И это является причиной того, что многие теоретики исподволь помыкают законами философии в угоду своим честолюбивым устремлениям.

Профессиональный ученый может совмещать в себе исследователя и философа. Но это трудно. Это требует дополнительных усилий за счет некоторого отвлечения от избранной специализации. В современной жизни такие случаи редки, тогда как в древности это было нормой.

Введение

Практическая деятельность человечества сопровождается непрерывным увеличением знаний об окружающем мире. Осмысливая и систематизируя накапливаемые знания, проверяя эти знания на практике, человечество осознало и восприняло ряд непреложных философских истин. Одна из таких основополагающих истин состоит в том, что окружающий нас мир, в образе Вселенной, реален и гармоничен. Изучение законов гармонии Вселенной является одним из основных направлений деятельности философии.

В настоящее время Вселенная, как гармоничная система, существует совместно с человечеством. Но мир будет существовать и в случае, если человечество исчезнет, как мир существовал и раньше, до появления человечества.

Реальность окружающего мира мыслится в формате его материальности. Материя — непреложная данность бытия. Материю нельзя ни уничтожить, ни произвести,- вот два «нельзя» из обоймы философских ограничительных законов. Материя не имеет ни начала своего бытия, ни конца; она беспредельна в пространстве и пребывает в безостановочном движении. Движение материи подчиняется законам причинной логики, исключающим всякую парадоксальность. В природе нет, и не может быть, парадоксов – и это утверждение является одним из самых действенных и конструктивных законов диалектики.
Использованная выше общепринятая формулировка о подчинении природных процессов и явлений законам природы является не совсем корректной и, более того, является весьма коварной. Природа, не подчиняется ни каким законам. Природа только реализует свою фундаментальную логику – это и есть единственный природный закон. То, что мы узнаем о природе и формулируем в форме законов, является законами природных моделей. Эти законы всегда приблизительны. А природа не знает приблизительности, природа всегда конкретна в рамках квантовой неопределенности. Приблизительны только наши прогнозы, основанные на наших приблизительных моделях.
Всякий парадоксальный вывод, полученный при помощи безупречной логики, свидетельствует о том, что он основан на ложной посылке (предположении, постулате).
Если используемая модель приводит к парадоксальному выводу, значит, модель содержит фатальную ошибку.
Формирование субъективного, адекватного философского восприятия мира требует от субъекта сбалансированных энциклопедических знаний, которые ему обязана предоставить школа. Малейшее изменение в философских фундаментальных концепциях влечет кардинальные изменения в самобытном мировосприятии исследователей.
Стремительно возросший объем научных знаний в начале ХХ века, при их недостаточной систематизации, явился для многих исследователей непреодолимой преградой в формировании их адекватного, самобытного представления о мире.
Сиюминутный успех в ограниченной области знаний порождает завышенное самомнение субъекта, перерастающее иногда, явно или не явно, в гордыню. А гордыня, вкупе с пренебрежением к философии, чревата глубочайшими заблуждениями.
Вот образец богоподобного поведения современного кумира, Стивена Хокинга, (пример взят из его произведения «Краткая история времени»).
Цитата. «… В итоге в 1970 г. мы с Пенроузом написали совместную статью, в которой наконец доказали, что сингулярная точка большого взрыва должна существовать, опираясь только на то, что верна общая теория относительности и что во Вселенной содержится столько вещества, сколько мы видим. Наша работа вызвала массу возражений, …Но с математической теоремой не очень поспоришь, и поэтому, когда работа была закончена, ее приняли, и сейчас почти все считают, что Вселенная возникла в особой точке большого взрыва. По иронии судьбы мои представления изменились, и теперь я пытаюсь убедить физиков в том, что на самом деле при зарождении Вселенной никакой особой точки не было». Конец цитаты.
Оказывается, устройство мира зависит от иронии судьбы одного человека. А в чем ирония? Автор (Хокинг) несколько запоздало расширил свой кругозор. Но достаточно ли?
Человек, участвуя в общем движении материи, может влиять на это движение и его результаты. Но человек не может влиять на законы движения материи. Законы движения материи можно только познавать. Однако окончательно познать мир невозможно, по причине того, что это свойство заложено в принцип устройства мира. Часть не может вместить целое. Кто не понимает, что является лишь частью необъятного мира, и решает, что он познал материю, тот обречен на ошибки, чреватые трагическими последствиями.
Природа наделила человека способностью приспособления к изменяющимся условиям существования. И человек в процессе своего развития выработал уникальное качество, являющееся основой его интеллектуального самосознания и его интеллектуальной деятельности, – способность предвидения.
Совершенствование способности предвидения с целью его практического применения привело к необходимости формализации познанных законов движения материи, что, в свою очередь, потребовало создания системы типовых, упрощенных за счет пренебрежения малыми отклонениями, идеализированных законов движения.
Идеализация – это прием упрощения реальной действительности, необходимый для применения приемов математического формализма в рамках удовлетворительной, для практических нужд, погрешности.
Идеализация и формализм – неразлучны с приблизительностью.
Природа следует своему закону неукоснительно и без всяких погрешностей. Погрешность — это свойство нашего формализованного представления, и наших технических возможностей при измерениях. Но только этими возможностями мы и можем пользоваться.
Приблизительность формализованных прогнозов движения материи может приводить, и приводит, к возникновению парадоксов, хотя в природе их нет. Эти парадоксы возникают тем чаще, чем менее полна (или даже ошибочна) модель принятой формализации. Всякая, даже очень хорошая модель имеет ограниченную область своего применения, за пределами которой модель приводит к ошибочным выводам, первым признаком которых являются парадоксы. И в этом рациональная суть парадоксов.
Всякий парадокс – это повод для поиска скрытой ошибки.
Вот что пишет по поводу геометризации мира Эйнштейном фанатичный математик, практически не владеющий философией, Фридман А.А. в своей работе «Мир как пространство и время», 5 сентября 1922, Петроград, изд. Наука, Москва 1965.

Цитата. «… Таким образом, время свергается со своего пьедестала. Исполняются слова великого немецкого математика Минковского, и физический мир предстает перед нами в своем истинном свете, как совокупность вещей, называемых явлениями, характеризуемых при арифметизации четырьмя числами , , , . Физический мир может служить, на основании сказанного, интерпретацией пространства четырех измерений; явления физического мира становятся интерпретацией точки четырехмерного геометрического пространства.
Вместе с этой новой точкой зрения на физический мир отпадают и те трудности исследования его, на которые мы указывали в конце предыдущего отдела: время перестает мешать нашим исследованиям, наоборот, потеряв свое преимущественное положение, смешавшись с пространственными координатами, время становится деятельным помощником при исследовании уже не физического пространства и не физического времени, которых самих по себе нет, а совокупности пространства-времени – физического мира».
Конец цитаты.

Своей естественной оговоркой в конце цитаты, назвав геометрический мир миром физическим, Фридман превратил своё высказывание в полный абсурд.
Одной из первых, жизненно необходимых формализаций, коварно проявившей свою, скрытую от авторов неполноту, было представление о геометрической точке и о понятии нуль. Числовая геометрическая ось, как формализация бытовой мерной линейки, самым естественным образом вошла в быт человека.
Проблема, вызванная частичной неадекватностью этого представления обнаружилась лишь при формировании геометрии как науки, т.е. изначально только в теоретическом аспекте.
Научный подход в математике и геометрии требовал четкого определения понятия «число». Число естественно мыслилось как количественная мера вещественных объектов, выраженных в штуках. Но странно, в таком представлении нет места для числа нуль. А представление-то уже сложилось.
Любой количественный ряд заканчивается наименьшим числом – единицей, которая символизирует обобщенный цельный образ объекта счета или его конкретной части, выбранной в качестве масштаба. Нуль – это понятие, и символ. Символ, который обозначает отсутствие объекта счета. Нуль монет не имеет физического смысла, т.к. ничем не отличается от нуля овец или от нуля камней. Нуль – не число счета. Математическое деление на отсутствие, т.е. на нуль, – бессмысленно, а вовсе не равно бесконечности.
Но нуль на мерной линейке и на числовой геометрической оси вызывающе занимает свое числовое место.
Изобретение дробных чисел, казалось бы, позволило решить проблему, определив число нуль, как предел дробной последовательности, стремящейся к нулю. Но странное дело, нуль, определенный через предел, приобрел неоднозначность. Можно поделить нуль на нуль – и получить в результате конкретное число, величина которого определяется характером последовательностей. Но если нуль, определенный как предел, попытаться поделить на нуль, полученный в результате штучного вычитания, то проблема деления на отсутствие возникнет вновь.
Проблему так и не решили. Отложили – и забыли. Но забытье не останавливает жизнь. Забытье — это сон разума, а сон разума порождает чудовищ. И чудовище родилось. Этим чудовищем является безразмерная материальная точка. С философских позиций, безразмерная материальная точка – это очевиднейший абсурд. Нет размеров – нет объекта. Нет объекта – нет материи объекта. Не бывает безразмерных материальных точек.
Геометрическая точка – это комбинация трех цифр, обозначающая местоположение в формальной системе координат. Комбинация трех цифр как образ геометрической точки не прижился в сознании человека, привыкшего мыслить образами. Геометрическая точка мыслится в образе бытовой точки. Возник забавный, но коварный, курьез. Геометрическая точка, призванная быть идеализацией бытовой точки, и таковой являющейся, обрела в качестве своего символьного обозначения бытовую точку.
Аксиоматическое утверждение: «В любом отрезке содержится бесконечное количество точек», — некорректно с точки зрения полноты описания, и по сути является ловушкой. Действительно, если точки содержатся — значит, эти точки есть; а если точки есть, то они объективны; а если они объективны, то они материальны. Хотя переход «объективны – материальны» является ложным посылом, перед нами действующий стереотип мышления.
Не могут геометрические точки содержаться, в чем бы то ни было. Безразмерные точки на заданном отрезке можно только определить и обозначить, зато действительно — сколько угодно.
Стереотип утвердился, когда материальная безразмерная точка еще никаких проблем не вызывала, и термин «материальная точка» никого не насторожил. На базе безразмерной материальной точки было создано учение Эйнштейна, Теория Относительности. Это учение, в основу которого положено чудовище в форме материальной безразмерной точки, в свою очередь послужило основой для создания следующего поколения сонма чудовищ: черных дыр, больших взрывов и прочей востребованной экзотики. Эту экзотику придумали неучи-предприниматели на потребу жаждущих зрелищ.
Но с проблемой безразмерной материальной точки это уже никто не связывает. К проблеме не обратились даже тогда, когда появилось веское основание, т.е. когда возникла квантовая теория. Более того, квантовую теорию, в ущерб самой теории, создали так, чтобы она как можно меньше затрагивала проблему нуля и точки.
Для того, чтобы избежать проблемы нулевой точки, существующую квантовую теорию пытаются свести к теории поля, т.е. к теории чистой, подвижной энергии. В этом представлении материальные точки не нужны, более того, они там являются обузой и помехой. Весь мир в этом представлении является формой существования энергии, а вещество – это всего лишь энергетический вихрь или вообще что-то невообразимое — флуктуация (отклонение от нормы) в мировом энергетическом океане. Вздор, конечно, но всё это на полном серьезе. Ведь, если фотон — это универсальная квантовая, т.е. неделимая мера энергии, а из энергии создан мир, то получается, что фотон и есть тот объект, из которого создано мироздание. Согласитесь, не очень удобная модель, особенно с учетом волнового дуализма фотона, и его неспособностью быть неподвижным. Но таково реальное состояние, в котором пребывает сейчас квантовая полевая теория.
Если отличительной чертой философского метода является тест на всеобщую гармонию, то отличительной чертой метода современной квантовой теории является нежелание соотносить наработки, созданные в одной области, с тем, что сотворено в соседней области этой теории.
Вернемся к формализации количества материи с помощью числовой оси с дробными числами.
Если единица — это мера количества вещественных объектов, то что же реально могут описывать дробные числа? Каков их физический смысл? Дробные числа описывают те же самые вещественные объекты, только в масштабах с чуждой, искусственно выбранной, формальной единицей измерения. Формальное отношение к дробным числам приводит к соблазну разделить любую мерную единицу на сколь угодно большое число её элементов, что и произошло в классической геометрии.
Но можно ли и материю реально дробить до бесконечности? Ведь, если нельзя, то какой смысл решать проблему бесконечно малых величин, не существующих в природе.
Классическая теория, опираясь на Евклидову геометрию, утверждает, что бесконечно малое существует. Математический формализм чужд физической проблеме. Математики никогда не задумывались о границе применимости своего математического аппарата. Более того, они пытаются возвести математику в ранг владыки мира. По их теперешнему понятию, любой математический пассаж имеет в природе свое материальное воплощение. Вот и возникли 4-х мерные (и более мерные) геометрические пространства и параллельные (эвереттовы) вселенные. Нескончаемый сонм живучих и множащихся чудовищ. Живучих, потому что это околонаучное шоу тешит обывателя. Эйнштейновская ТО чужда обывателю, т.к. она его унижает своей заумью, но Черные дыры и Большой взрыв – это уже научная экзотика, пряность к пресному бытию сибарита-содержателя.
Знание, которое нам преподают под видом геометрии Евклида, является только малой толикой этой геометрии, т.к. по определению Евклида, точка — это то, что не имеет частей, а вовсе не абсурдный безразмерный объект. Вдумаемся, Евклид однозначно определил точку как квант вещества в современном понимании. Если перед нами неделимый элемент материи, то это и есть материальная геометрическая точка. Вовсе не безразмерная.
Безразмерная точка тоже не имеет частей, и имеет право быть основой одной из геометрий Евклида, которую и создали. Но безразмерная точка не является реальным объектом, т.к. является всего лишь геометрическим местом. Современная геометрия Евклида – это идеальная геометрия местоположений. Идеальная – значит, приблизительная. Однако Евклид в своих Началах закладывал реальную геометрию. Дело в том, что реальным объектом не может быть не только безразмерная точка, но и идеальная линия, и идеальная плоскость. Реальные объекты всегда объемны, а именно, они трехмерны. Хотите убедиться в этом – попытайтесь построить 4-ую геометрическую ось, т.е. реально пространственную, чтобы она была ортогональна 3-м известным осям. Попытка обречена на неудачу. И не потому, что человек ограничен в своих возможностях, а потому, что так устроен мир. Мир – трехмерен, и мир — подвижен.
Объем является непреложным атрибутом материального объекта.
Реальная геометрия всегда трехмерна, и описывает исключительно одно реальное пространство, оперируя при этом множеством других искусственных, идеализированных пространств, что и служит причиной множества заблуждений.
Классическая геометрия оперирует тремя псевдо-реальными пространствами: одномерным, двумерным и трехмерным. Иных размерностей геометрического пространства не бывает даже в идеализированной геометрии. Многомерны лишь математические массивы, которые не могут быть полноценными моделями геометрического пространства, но могут быть использованы для описания реальных объектов и процессов в некоторых, специально оговоренных ситуациях. Это азбука философии, но философия у формалистов не в почете.
Каждый, кто пытается внедрить в научный обиход геометрическое пространство с размерностью превышающей три, либо профан, либо фальсификатор.
Реальные объекты всегда имеют конечный размер, и не могут иметь бесконечных или неограниченных параметров, т.к. реализация бесконечного параметра требует бесконечного числа материальных носителей, которые, как уже выяснили, сами по себе всегда имеют конечные размеры и параметры. Таким образом, объект с бесконечным параметром может быть только бесконечного размера, т.е. не существует. Это азбука квантового мировоззрения.
Авторы современных квантовых теорий даже не пытаются разрабатывать квантовые геометрии, но тем не менее, претендуют на полноту своих квантовых построений, которые становятся абсурдными при использовании для их описания оскопленной идеализированной геометрии Евклида с безразмерными точками.
Все силы квантовых теоретиков брошены сейчас на поиск модели, которая позволила бы примирить квантовую теорию с правящим учением Эйнштейна. Такую модель найдут, конечно, как нашли правила перенормировки. Но зачем всю жизнь ходить в обуви, которая жмет.

Квантовая теория, и её успехи, вроде бы, признаются всеми, но как-то странно, без констатирующего философского обобщения, и без установления соответствующего статуса. Это позволяет всем желающим продолжать пользоваться фарисейскими представлениями, основанными на применении компилятивной парадигмы, включающей в себя, в том числе и представление о безразмерной физической точке, т.е. изначально ложного утверждения.
Как следствие, в самобытной философии исследователей бытуют и уживаются два представления о делимости материи: беспредельная делимость и делимость квантовая.
Например, сплошь и рядом в построениях популяризаторов квантовой концепции мира используется обращение к силовым полям бесконечной протяженности. Эти авторы лекций и учебников даже не осознают абсурдности квантового поля с бесконечной протяженностью. Ведь, достигнув предела квантовой малости, поле должно, либо перестать уменьшаться, и длиться далее в бесконечность как константа, либо оборваться. Естественно, реализуется последнее.
Материальный квант любого типа (если их несколько), и пространственный квант в том числе, который естественно мыслится минимально информационно наполненным, невозможно представить абсолютно аморфным и изотропным. Любой тип кванта явно должен иметь внутреннюю, но непосредственно уже недоступную нам, структуру. Видимо, именно это имел в виду Ленин, конкретизируя мысль философов прошлого, когда писал о неисчерпаемости якобы точечного электрона.
В некотором интервале масштабов мир устроен как последовательность квантовых вложений: молекулы, атомы, частицы. Причем внутренние структуры этих квантовых уровней доступны для непосредственного исследования. Попытки продолжить тенденцию в сторону уменьшения масштаба приводят к пониманию того, что, начиная с некоторого уровня квантовых вложений, структура кванта наиболее глубокого вложения становится недоступной для расчленения средствами квантовых объектов более высоких уровней. Познание внутренней структуры материального кванта с этого уровня возможно только в рамках трансцендентной метафизики. Основой метафизического постижения мира является построение умозрительных моделей на базе философских обобщений и выводов, с последующим сравнением результатов, прогнозируемых моделью, с наблюдаемыми реалиями. В принципе этот прием составляет метод «черного ящика». Неделимый квант и есть «черный ящик».
Стандартная Модель, например, описывает кварковую структуру элементарных частиц, проверяя справедливость своих предположений методом столкновения и разрушения элементарных частиц. Но как установить (выявить) структуру кварков, если кварки по отдельности, вне частиц, не существуют. Только совпадением теоретических предсказаний, относящимся к поведению наблюдаемых осколков частиц, с их реальным поведением.
Стандартная Модель – это модель с атрибутами метафизических вкраплений.
Аморфное, и бесконечно делимое на части материальное нечто, должно состоять из фрагментов с размерами, стремящимися к нулю. Вот это и есть убийственный приговор для данного представления. Разве можно построить теорию (модель) на элементах, не имеющих конкретного размера?
Что значит «стремящиеся»? Это образное, фигуральное выражение. Ничто, никуда не стремится. Просто, какой бы масштаб ни был выбран – он всегда будет неадекватным, а нулевого масштаба не существует. Это и есть приговор беспредельной делимости.
Из аморфного вещества, как из глины, можно создать условные кирпичики всевозможной формы. А из этих кирпичиков создать геометрические (архитектурные) объекты любой сложности. Но не хватит никакой фантазии, чтобы привести эти геометрические объекты в нескончаемое, гармоничное движение.
Возможности геометрии ограничены отсутствием времени и его атрибутов, т.е. отсутствием движения, а это значит, что геометрия, как ей и положено, мертва. Геометрию вещественного, реального мира оживляет механика. Мы так привыкли к этому, что не задумываясь, приписываем механическое движение к атрибутам геометрии. Обратим внимание, ТО Эйнштейна заявлена как геометрическая теория. И, при постановке задачи, Эйнштейн оперирует только пространственными координатами. Но, нарушая научную этику, по ходу решения частных задач, исподволь возвращает движение (т.е. время) в свое уже 4-х мерное геометрическое представление, делая его то ли 5-ти мерным, то ли 4-х мерным, но с мерцающим двойным стандартом: то 4-х мерное, то 3-х мерное плюс время. Последнее обстоятельство создает условия для полного произвола теоретиков, манипулирующих 4-ой или 5-ой координатами.
Наблюдаемый реальный мир не дает никаких оснований для безразмерно точечного, аморфного, моделирования.
Осознав принципиально квантовое устройство мира, и отслеживая структуру его уровней, можно сделать обобщающий вывод.

По мере перехода от одного квантового уровня структуры материи к другому, более низкому, количество исходных квантовых элементов, неуклонно уменьшается. В конце концов, оказалось, что на атомном уровне всё разнообразие вещественного мира создано всего из трех элементарных частиц: электрона, протона и нейтрона.

Экстраполируя тенденцию сокращения количества исходных элементов структур, приходится предположить, что следующий квантовый уровень содержит всего один основополагающий элемент – универсальный материальный квант. Квант – являющийся носителем всего мирового разнообразия.

Грандиозная сложность предполагаемого устройства универсального кванта, необходимого для построения Вселенной, поражает, еще до начала моделирования кванта.

Мир, созданный на основе одного, универсального элемента принципиально неисчерпаем, т.к. по сути, универсальный квант является непостижимой инверсией всей Вселенной в самоё себя, представляемое универсальным квантом. А человек является только частью Вселенной, пытающейся отобразить в себе максимально большую долю Вселенной, которая принципиально не может быть всем миром.

Как можно на основе одного типового квантового элемента (или даже трех) построить всё разнообразие Вселенной? Только при философском допущении наличия динамичной внутренней структуры этого универсального материального кванта. Такое допущение не дает нам права называть этот квант, да и любой другой, элементарным. Чтобы отличать этот квантовый уровень от других, условно назовем его «пространственным», это естественно, т.к. универсальный квант, содержащий минимум внутренней информации, очевидно должен формировать свободное пространство, которое составляет основную часть Вселенной.

Всё то, что уже можно определенно сказать о свойствах пространственных квантов, которые формируют все виды материи только за счет изменения своей внутренней структуры,- всё свидетельствует о невозможности расчленяющего исследования этой структуры.

Это утверждение логически следует из уверенно предполагаемых характеристик универсального кванта, дополненных общим свойством неразрывности квантов материи, из чего непосредственно следует взаимная неподвижность пространственных квантов.

Неподвижность квантов материи воспринята философами и исследователями как тупик, что и послужило, видимо, причиной отсутствия дальнейших разработок теории пространства в этом направлении. Действительно, если кванты пространства неподвижны, то как же перемещаться в таком пространстве?

Вот, именно здесь возник барьер непонимания. Барьер, создавший долговременный затор на пути к истине.

Часть 1

Движение в квантовом мире обеспечивает не механика, а информатика. Информатика, которая эмулирует и механику, и вообще все физические явления, передавая информацию по эстафетному принципу [1]. Эстафета – это почти волна. Но не волна. Или не та волна. Это и волна, и частица единовременно, а не избирательно, в зависимости от действий наблюдателя или от внешних условий. Особенности квантовой эстафеты — вот причина естественного дуализма.

Древние мыслители предвосхитили неизбежный кризис в процессе познания, когда внутренняя структура объектов исследования становится недоступной практическому вмешательству, и для преодоления этого кризиса предложили потомкам, т.е. нам, принцип познания, соответствующий понятию «метафизика».

Метафизика – это принцип, способ проникновения за грань доступного с целью расширения поля объективных физических знаний. Более поздние философы, не оценив глубину мысли авторов этой идеи, и желая конкретизировать это, не понятое ими понятие, внедрили в обиход множество других определений, искажающих изначальную суть метафизики.

Чтобы понять принципиальное устройство пространственного кванта, а детальная структура нам недоступна, необходимо как можно больше знать о всевозможных свойствах универсального кванта. Для выполнения этого условия обратимся к свойствам материи, которые нам известны и проявляются на атомарном уровне, как достаточно близком к пространственному кванту.

Однако прежде чем сфокусировать наше внимание на атоме, необходимо все же определиться, по возможности, с его составляющими. А это, как известно, электроны, протоны и нейтроны. Кроме этого, исходя из самых общих соображений, атом необходимо рассматривать в неотрывной связи с физическим вакуумом, который традиционно из анализа исключается по причине его, якобы, абсолютной индифферентности ко всему, в нем происходящему. Этот ложный стереотип порожден успешной практикой распространенного механистического подхода, нашедшего свое отображение в принципе относительности Галилея, в рамках которого эта индифферентность действительно реализуется, правда, с неощутимой для нас погрешностью.

Кроме того, системный подход требует рассмотрения, кроме четырех названных, бесспорных участников формирования атома, еще двух гипотетических частиц: фотона и нейтрино.

Часть 2.1

Начнем с фотона.
Самая революционная концепция, рожденная в рамках Стандартной Модели, – это способность взаимного превращения элементарных частиц, и их обломков, друг в друга, посредством промежуточного превращения в энергию.

Осколки частиц, а их идентифицировано уже несколько сотен, тоже назвали элементарными частицами. Можно предположить, что количество этих короткоживущих осколков будет, со временем, расти и далее.

На естественный вопрос, как заканчивается жизненный цикл виртуальных осколков вещества, Стандартная Модель ответить пока не может, ибо является описательной моделью, а экспериментальные возможности еще не достигли желаемого уровня.

В связи с этим уместно рассмотреть все формы участия фотонов в жизненном цикле атомов. Речь идет о способности вещества производить фотоны, превращаться в фотоны и способности фотонов производить массивное вещество, составляющее атом.

Квантовая теория поля пытается нас уверить, что элементарные частицы являются особой формой существования энергии. В доказательство приводится явление аннигиляции античастиц, а также явление дефекта массы. В обоих этих явлениях вещество выступает в роли специализированной потенциальной энергии, как бы порох, который способен превращаться в фотоны.

При аннигиляции электрона и позитрона наблюдается возникновение двух фотонов, или более. Два – обязательно. Параметры этих двух фотонов предполагаются практически идентичными. Это по одним источникам.

По другим источникам в результате аннигиляции рождается короткоживущий бозон, который тут же распадается или на два мезона, или на два кварка, которые моментально обрастают глюонами, забираемыми из пространства, и превращаются в два адрона.

Рождение пар, видимо, должно происходить в обратном порядке. Для этого должно произойти лобовое столкновение двух абсолютно одинаковых фотонов.
Лобовое столкновение двух фотонов, как причина и источник рождения двух частиц, весьма сомнительно, ведь волны не могут сталкиваться. При этом, встречным нейтральным фотонам нужно сформировать пару неких устойчивых, зеркально симметричных вихрей-зарядов, с четко заданными, нормированными параметрами, и со структурой, которая по сложности и информативной наполненности явно должна превосходить структуру фотонов. Каждое из таких столкновений должно приводить к возникновению типовых, т.е. неотличимых от уже существующих, частиц, которые обладают массой, т.е. содержат в своем составе Бозон Хиггса.

Читатель нигде не найдет выше приведенного, уничтожающего описания процесса рождения электрон-позитронной пары. Но всё взято из официальных справочников. Просто теоретики, решая частные задачи, вводят произвольные постулаты без оглядки на смежные области квантовой теории. А если эти постулаты свести вместе, что должны делать сами теоретики, то получается выше приведенная абракадабра. И это еще без привлечения мюонов, кварков и глюонов.

К тому же, аннигиляция, в качестве действенного способа добычи энергии, явно отвергнута природой, избравшей сугубо асимметричную форму существования вещества.

Кроме того, никто еще не наблюдал ничего похожего на столкновение фотонов. А если фотон это локализованная волна, то вообще нет никаких надежд на такое столкновение.

Это по поводу формирования электронов из энергии. А как образуются другие элементарные частицы и множество неустойчивых частиц, со структурами существенно различающимися? Тоже из стандартных фотонов? Всего лишь с другой энергией? Всё очень сомнительно. Везде напрашивается философское «нельзя».

Чтобы избежать сомнительности, заинтересованные исследователи придумали добывать пары античастиц одним фотоном, но из атомного ядра. А еще придумали создавать эти пары из энергии вакуума с помощью флуктуаций или поляризации вакуума. Здесь вопросы неуместны, т.к. это из области теории инфляции, в которой всё допустимо.

Инфляция – это полное бездействие (обесценивание) известных законов природы, взамен которых действуют законы, необходимые авторам инфляционных фэнтези.

Флуктуация – это случайное событие, состоящее в отклонении от среднего значения параметра, характеризующего некоторый статистический процесс. Конкретная причина конкретной флуктуации является неизвестной. Большая флуктуация всегда является результатом однонаправленного, но тоже случайного, сложения (которое почему-то часто называют резонансом) определенных, но неизвестных, событий наблюдаемого процесса.

Однако в настоящее время флуктуацию иногда трактуют как беспричинное событие, чем вводят и себя, и всех остальных в заблуждение, т.к. беспричинное событие – это антинаучное понятие, отрицающее все законы сохранения.

Так или иначе, наблюдаемое искусственное рождение вещества возможно только в симметричном исполнении, т.е. в паре с антивеществом. Это обстоятельство, с учетом факта отсутствия заметного количества антивещества в природе, явно свидетельствует о том, что количество вещества во Вселенной не увеличивается. Существующее же вещество, окружающее нас, превратить в энергию невозможно. Вещество – основной переносчик и преобразователь энергии. А квант энергии – это порционная мера скалярного количества обобщенного движения материи.

Таким образом, квантовая теория поля, претендующая на полноту описания мира, по сути, является мифологической, т.к. апеллирует к придуманным, исходным состояниям инфляционной Вселенной. А самое главное она часто манипулирует выдуманными под каждый конкретный случай, загадочными явлениями квантового мира, и не собирается что-либо делать, чтобы эти явления стали менее загадочными. Удачные манипуляции, которые удается подогнать под наблюдаемые явления, афишируются, а неудачные замалчиваются, создавая в итоге видимость триумфального успеха теории.

Метафизический метод познания, без которого не обойтись в современных квантовых исследованиях, требует максимальной прозрачности аргументации, а также не мыслим без дискуссионной апробации, а именно это перестало быть нормой в науке.

Наблюдаемые процессы аннигиляции сомнительны в плане предположения о полной аннигиляции массивного вещества. Аннигиляция становится менее сомнительной в плане предположения об участии в аннигиляции только зарядов. При аннигиляции протонов остается множество осколков массивного вещества. А при аннигиляции электронов, якобы полной, нет полной гарантии, что не остаются массивные осколки неизвестного вещества, не имеющего заряда, судьба которого не может быть установлена в современных методиках измерения.

Интерпретация результатов квантовых экспериментов, связанных с разрушением протонов, в связи со спецификой индикации, несет неизбежный элемент произвола в его толковании, обусловленного набором стереотипов, которым толкователь подвержен. Кроме того, выбор сенсоров и места их установки в значительной мере предопределяет результат эксперимента, т.е. зависит от воли и эрудиции исследователя.

Часть 2.2

Оставим на время фотон, который мы рассмотрели в качестве основного носителя энергии, и обратимся к нейтрино.

Известны удивительные физические свойства нейтрино, которыми он наделен своими создателями. Но публикуемые описания не полны. Некоторые из удивительных, а точнее – странных, свойств нейтрино тихо замалчиваются. Попытаемся выявить их с философских позиций, т.е. в рамках вселенской гармонии, в которой нейтрино должно принимать участие.

В философском аспекте нас будут интересовать не только физические свойства, но и функциональное назначение нейтрино в природе.

Итак, заявлено, что нейтрино — это частица. Таким образом, это однозначно не электромагнитное поле.

Однако масса покоя нейтрино изначально объявлена равной нулю. Уже странно. При этом энергия нейтрино меняется от нулевых значений до 0,8 МэВ. Значит, нейтрино это релятивистская частица, и распространяется она со скоростью света. Но уверенности в этом нет. Почему? Всё очень не просто. Дело в том, что без последней оговорки о возможном несовпадении скорости нейтрино со скоростью света, нейтрино становится очень похожим на фотон, только неуловимый, и диапазон энергии не так широк. А в природе дублеров не бывает.
Вот мудрые создатели нейтрино и ввели искусственное, и смутное, различие: скорость нейтрино равна скорости света, но без гарантии.

Однако в 2015 году за открытие нейтринной осцилляции, якобы подтверждающей наличие инертной массы нейтрино, была присуждена Нобелевская премия. Значит, нейтрино все-таки движется, а не распространяется. И скорость его движения, без сомнений, меньше скорости света. Меньше. Но какая? Пока не известно. Но если скорость нейтрино не равна скорости света, то она может быть какой угодно. Получается, что пора искать медленные нейтрино. А такие нейтрино должны весить в полтора раза больше электрона.

Кроме того, если у нейтрино есть масса, то нейтрино содержит в своем составе бозон Хиггса, масса которого приблизительно уже известна и рана 125 ГэВ/С^2. Получается, что нейтрино это вовсе и не нейтрино, а какая-то совсем иная сущность, о которой Паули даже не подозревал. Видимо, Нобелевский комитет, как и квантовые теоретики, тоже работает по секциям. Одна секция отвечает за бозон Хиггса, другая за нейтрино, а между собой секции не общаются.

Измерять скорость гипотетической, неуловимой частицы неимоверно сложно. Значит, всё так и останется до следующего открытия, которое косвенным образом определит скорость нейтрино или отменит его массивность. Таким образом, двойной стандарт для авторов, склонных к фальсификации и самообману, обеспечен.

Приведенных данных вполне достаточно, чтобы определить место нейтрино в классификационном ряду Стандартной Модели. В этом ряду нейтрино находится между фотоном и всеми остальными частицами. Таким образом, нейтрино это все-таки ближайший родственник фотона.

Как и фотон, нейтрино — нейтральная частица. Спин нейтрино равен 1/2, а его спектр энергии непрерывен и меняется приблизительно от 0 до 0,8 МэВ.

Энергетический спектр нейтрино достаточно широк. Это значит, что энергия нейтрино должна выражаться формулой E=kEo, где k – 1, 2, 3 …, а Eo – минимально возможная порция энергии, т.е. квант энергии, без которого не мыслится квантовая теория, но для которого в теории нейтрино нет ещё обозначения.

Однако представлением E= kEo никто не пользуется, видимо, чтобы не привлекать внимания к коэффициенту k и к кванту Eo, и к их физическому смыслу. У фотона этот коэффициент отождествляется с частотой. А с чем отождествить его у нейтрино? А чему равно Eo? Неужели это опять ħ/2. Почему же нас держат в неведении.

Отличие нейтрино от фотона состоит в том, что фотон образуется в пространстве за счет работы, совершаемой атомом, а для нейтрино такой возможности не просматривается. Рождение нейтрино – это следствие и признак преобразования нуклонного вещества. Чем больше в пространстве нейтрино — тем меньше нейтронов и тем больше распавшегося вещества, т.е. протонов и электронов.

Если тяжелое вещество создано в звездах, то звезды должны производить достаточное количество нейтронов. А в молодой звезде ничего, кроме протонов и электронов, нет. Создавая нейтроны, звезды должны интенсивно поглощать нейтрино. Однако звезды напротив интенсивно излучают нейтрино.

Если нейтрино не поглощается в той же мере, что и излучается, то по плотности нейтрино можно судить о возрасте Вселенной.

Бесконечность Вселенной во времени предполагает её динамическое равновесие, а для этого необходимо, чтобы нейтрино не только излучались, но в таком же количестве и поглощались. Хотелось бы знать, хотя бы теоретически, в каких природных процессах происходит равновеликое поглощение нейтрино. К-захват явно не может справиться с такой нагрузкой.

Таким образом, без ответа остается естественный философский вопрос: зачем природе понадобилось собирать энергетическую дань в форме нейтрино, которые сами по себе в природе не востребованы. Ответов как всегда минимум два. Либо мы не знаем чего-то очень важного, и значит, Стандартная Модель не полна; либо нейтрино является порождением недоразумения. Логика не отвергает третий вариант, в котором ошибочны обе гипотезы.
Неразбериха с нейтрино началась с самого рождения частицы. Спасая закон сохранения энергии в акте бета-распада, когорта великих из Тюбингена одобрила идею Паули о неуловимой гипотетической частице, списав на нее экспериментально обнаруженный дефицит энергии.
Ключевым словом в этом сообщении является слово «экспериментально». Вот именно на эксперимент и следовало направить всю мощь интеллекта первооткрывателей.
Но случилось – как случилось.

Обратим внимание на распространенную и устойчивую формулировку при описании произошедшего события. Оказывается, что участники сотворения нейтрино «спасали закон сохранения». В этой формулировке отразилось и недопонимание понятия «закон природы», и недопонимание роли наблюдателя в познании законов природы, и мания собственного величия. Уж если и спасали, то не природный закон (человечество над законами природы не властно), а спасали себя и человечество от очередной природной загадки.
И, похоже, спасли.

Итак, в каждом акте бета-распада рождаются протон, электрон и нейтрино. Поскольку скорость протона постановили считать равной нулю, а скорость электрона и, соответственно, его энергия имеет непрерывный спектр, то и скорость нейтрино должна меняться по соответствующему, компенсирующему закону.

Возникает естественный вопрос — как развивается процесс распада нейтрона во времени. Вопрос не праздный. Если распад происходит одномоментно, то допустим вариант с неподвижным протоном, что и постулировал Паули. В этом случае электрон и нейтрино испускаются и двигаются в противоположные стороны, унося равный по величине импульс.

При последовательном распаде, с участием виртуального бозона, протон быть неподвижным принципиально не может.

В варианте, предложенном Паули, удивительным является именно то, что нейтрино абсолютно точно компенсирует количество движения электрона, которое меняется случайным образом. Поскольку масса покоя нейтрино была заявлена равной нулю, то компенсация энергии электрона возможна только за счет вариаций релятивистской массы нейтрино, которая обязана изменяться квантовым образом.

Так, что же сомнительного было в организации экспериментов при изучении бета-распада, на что не обратил внимания Паули и все его соратники. Нелепостью данных экспериментов было постулирование неподвижности протона, рожденного неподвижным нейтроном. Это обстоятельство воспринимается с большим удивлением, т.к. в дальнейшем для косвенного доказательства реальности нейтрино, Лейпунским была предложена проверка методом измерения протонной отдачи в момент испускания нейтрино.

Проверка была реализована, и отдача была обнаружена. Однако проверка проведена не на протонах, а на ядрах атомов, что не совсем одно и то же, т.к. объявлять ядро атома безразмерной точкой — уже неприлично. При этом в проведенных экспериментах вновь не учитывалась ещё одна из возможных составляющих отдачи, а именно, не учитывался момент количества движения ядра атома. А это то, что не может не учитывать профессиональный исследователь.

А что, если атомное ядро это не капля, а напряженная ажурная конструкция из протонов и нейтронов, способная не только вращаться, но и колебаться, поглощая энергию. Что тогда?

Обратимся к теории бета-распада, разработанной Ферми.
Вот квинтэссенция его теории, представленная его уравнениями:
n → p + e(+) + ν(-)
p → n + e(-) + ν(+)   [2]
Первое из уравнений описывает распад нейтрона на протон, электрон и антинейтрино, а второе описывает гипотетический распад протона на нейтрон, позитрон и нейтрино. При этом протон постулируется одной из самых стабильных частиц. В шахматах этот прием называется гамбитом, т.е. жертва стабильностью протона для достижения позиционного преимущества.

Оба процесса совершенно независимы. Подставьте второе уравнение в первое – и перед вами модель вечного двигателя первого рода. Из чего следует, что процесс, описываемый вторым уравнением, в природе не реализуется.

Не верится, что Ферми мог допустить такую оплошность. Но здесь анализируется то, что нам преподносится официальной наукой, так что перед нами идея модели вечного двигателя Ферми.

Ситуация напоминает академический фокус с массой фотона. Масса фотона равна m= nħ/c2. При этом масса неподвижного фотона постулируется равной нулю, хотя известно, что неподвижных фотонов не бывает.

Казалось бы всё просто, если у фотона есть масса – докажите экспериментально, и двигайте науку дальше. Однако все эксперименты свидетельствуют о нулевом приросте массы после поглощения фотона. Вот, и пришлось поглощение фотона постулировать как неподвижный фотон, только писать об этом не принято, т.к. всем понятно, что после поглощения, фотона уже не существует.

Вспомним философскую проблему нуля. Сколько весит нуль пудовых барашков?

Нейтрон является самой тяжелой и самой сложной элементарной частицей. Есть даже исследователи, которые считают нейтрон составной частицей, образованной протоном и электроном. Про нейтрино они почему-то забывают. Эту забывчивость нельзя назвать странной. Она естественная. Ведь, если нейтрон является составной частицей, то необходимо ответить на вопрос, что собой представляет частица, образованная из протона и электрона, например, при К-захвате. А ведь в этой частице нейтрино не будет. Или будет? Стандартная Модель позволяет брать всё, что хочешь, из окружающего пространства, сколько надо, и когда надо.

Давайте посмотрим, что же окончательно предлагает нам квантовая теория по интерпретации бета-распада.

Итак, нейтрино уносит до 0,8 МэВ, при этом в каждом акте излучения оно, якобы, точно компенсирует недостающую суммарную энергию образовавшихся электрона и протона, приводя энергию распада нейтрона к константе. Этот факт не акцентируется, но именно он дает основание для введения в процесс излучения виртуального, коротко живущего бозона. Таким образом, неравномерность собственного спектра излучения нейтрино жестко связывается со спектром излучаемых электронов, хотя энергия отдачи протона при этом повисает в воздухе, и висит до сих пор.

Скорость нейтрино равна скорости света, но квантовая теория на этом как бы не настаивает, т.к. для нейтрино не гарантируется нулевая масса покоя. В 2015 году ситуация несколько изменилась. У нейтрино, косвенным образом, обнаружили инертную массу. Но очень маленькую, такую, что ни измерить, ни рассчитать невозможно.

Теперь уже изначально декларируется наличие массы, а потом, в комментарии, это наличие не гарантируется. Это, как и до обнаружения массы, служит поддержкой двойного стандарта при интерпретации моделей процессов с использованием нейтрино. Очень удобно.

Кроме того, заявленная неуловимость нейтрино, при современном состоянии Вселенной, в философской интерпретации равнозначна утверждению о нестационарности Вселенной. Действительно, учитывая интенсивность нейтринного излучения, оно должно относительно быстро насытить собою стационарную Вселенную до такой плотности, при которой интенсивность излучения должна сравняться с интенсивностью поглощения. Но данного эффекта в природе явно не наблюдается. Получается, либо Вселенная непрерывно расширяется, чтобы поддерживать дефицит плотности нейтрино, либо мы являемся свидетелями первичного, и еще не закончившегося, процесса насыщения Вселенной, т.е. мы живем в очень молодой Вселенной. Обе ситуации достаточно парадоксальны.

Усомнившись в реальности нейтрино, благодаря перечисленным обстоятельствам, можно ли представить бета-распад без участия нейтрино?

Можно. При бета-распаде внутри нейтрона происходит формирование (создание) электрон-позитронной пары. При этом электрон испускается наружу, а позитрон или его аналог остается в составе протона. На формирование двух противоположных зарядов требуется энергия, которая и обнаруживается в качестве дефицита. Возникает проблемный вопрос фундаментального свойства. В какой форме эта энергия всегда присутствует в нейтроне? И какая сила преодолевает кулоновское притяжение электрона и позитрона?

Нам достоверно известно, что масса нейтрона больше суммы масс электрона и протона. Если этот факт соотнести с эффектом дефицита массы, то эффект получается на первый взгляд с обратным знаком. Всё очень странно.
Но и факт отталкивания положительного и отрицательного зарядов в бета-распаде тоже не менее странен.
Вот, когда будет разработана модель этого странного поведения, тогда и можно строить модель бета-распада без участия нейтрино.

Пока же живет и действует вычурная и противоестественная теория нейтрино, теория неуловимой, достаточно тяжелой, до 0,8 МэВ (у электрона 0,5 МэВ) частицы, которая в каждом акте распада, то ли имеет разную массу, то ли разную релятивистскую скорость, Но без двойного стандарта не обходится.

Таким образом, существование сомнительной частицы искусно поддерживается искусственно создаваемой неопределенностью, попросту – неразберихой.

Часть 2.3

Обратимся к электрону.
Если в результате новых открытий становится понятно, что некоторый стереотип не соответствует истине, то это вовсе не означает, что ошибочный стереотип уже отменен. Стереотип именно тем и характерен, что он исключен из осознанного процесса мышления. В силу этого свойства, ложный стереотип необходимо изживать сознательно и с усердием.

Например, от привычного, предлагаемого учебниками определения электрона, как элементарной заряженной частицы, необходимо сознательно перейти к более конкретному и более полному определению, охватывающему, например, следующую ситуацию.

Встречные электроны испытают рассеяние, не вступив в непосредственный контакт. Интерпретируя эту ситуацию в обобщенном проявлении, допустимо принять, что электрон это силовое поле, которое несет свое ядро-частицу, оберегая это ядро от непосредственного контакта. Развивая эту мысль, можно придти к аналогичному выводу по отношению к атому. А именно, суммарное поле электронной оболочки атома бережно несет свое атомное ядро, храня его от экстремальных воздействий.

Учитывая выше изложенное, можно дать более корректное и более подробное определение электрона.

Электрон — это сложный природный объект, состоящий из вещественной частицы квантовой природы (неделимого ядра), характеризуемой неизменными массой и зарядом; ядро электрона поддерживает вокруг себя три локальных, неуничтожимых и абсолютно стандартных силовых поля: гравитационное, электрическое и магнитное.

В приведенном определении электрона, нет революционных составляющих – всё давно и хорошо известно. Но, тем не менее, суть определения, в некотором смысле, революционна.

Определение прямо декларирует всем известную, но не акцентируемую истину об отсутствии энергетических затрат на поддержание стабильных силовых полей элементарных частиц, а также определение конкретизирует квантовую природу электрона, из чего логически следует, что поля электрона локализованы в пространстве. А этот вывод является для многих революционным.

Магнитное поле, как производное электрического поля, можно было бы исключить. Но благодаря его причастности к квантовым, инвариантным характеристикам, правильнее рассматривать это магнитное поле как самостоятельное, в качестве фундаментального спина магнитного момента.

В гармоничном взаимодействии с протонами и нейтронами электроны образуют объемную динамичную структуру синтезированного атомарного вещества. Эта структура успешно сопротивляется контактному смыканию элементов вещества под действием полей гравитации и разноименных кулоновских полей.

Уместно задать философский вопрос: зачем природе понадобился спин. Наверное, можно предложить несколько вариантов, каждый из которых связан с известной функцией, выполняемой с участием спина. Однако, задавая вопрос, зачем понадобился спин, хотелось бы узнать (догадаться) о какой-то фундаментальной задаче, решаемой спином.
И здесь необходимо порыться в копилке застарелых вопросов фундаментального свойства.

Одним из таких охотно забытых вопросов является проблема, как на основе сугубо квантовых структур, которые в принципе не могут быть изотропными, природа предоставила человеку (эмулировала) изотропный, сферически симметричный макромир.

Спин, как фундаментальное вращательное движение вещества, помогает решать эту проблему, но частично, сводя всевозможные квантовые асимметрии к одной, осевой. Эта асимметрия присутствует во множестве объектов вещественного мира, но природа сумела устранить и её, практически из всех физических процессов. Каким образом природе это удалось? Возможно, подсказку дает атом водорода.

Эксперименты показывают, что электронная оболочка атома водорода проявляет себя как сферически изотропная. Никаких намеков на природный гироскоп или магнитный контур. Ясно, что для реализации этого эффекта орбитальная плоскость электрона должна сама участвовать как минимум в двух ортогональных, вращательных движениях. Попросту говоря, орбитальный момент атома водорода быстро кувыркается, формируя сферическую орбиталь электронной оболочки.

Распространение этого принципа собственно на электрон и остальные элементарные частицы, приводит к наблюдаемой в природе сферической симметрии вещественного мира.

Таким образом, можно предположить, что фундаментальный спин это вращение элементарной частицы сразу в трех ортогональных плоскостях. Естественно, в квантовом исполнении эти движения реализуются последовательно.

Почему же ни в одном эксперименте это движение не зарегистрировано. Видимо, это определяется особенностью метрологического обеспечения существующих измерений. Если и возможна методика, позволяющая зафиксировать трехмерное вращение, то она должна быть весьма изощренной. Совершенно ясно, что в результате одного измерения можно получить только одно направление спина. Как бы исследователи не меняли направление сенсоров, они неизбежно обнаруживают параллельный спин, что подтверждает как и наше предположение, так и официальный постулат о коллинеарности спина и направления движения электрона.

Часть 2.4

Многие из академиков охотно согласятся, что электрон — квантовый объект, но эти же академики и их последователи тут же восстанут против локальности силовых полей электрона.
Вот этот двойной стандарт и есть причина многих, временно существующих парадоксов. Входя в квантовый мир, многие исследователи не могут освободиться от полезных стереотипов классических представлений, которые совершенно недопустимы в квантовом мировоззгении.

Ни квантовый объект, ни квантовый параметр принципиально не могут быть ни нулевыми, ни бесконечными.

Квантовое силовое поле формируется конечным количеством специализированных виртуальных носителей.
Самой вопиющей, и самой катастрофической по своим последствиям, является ошибочная трактовка соотношения неопределенностей Гейзенберга. Гейзенберг либо забыл, либо не посчитал нужным дополнить свое соотношение одним очевиднейшим условием, а именно: погрешность любого квантового измерения ∆х одного избранного параметра не может быть равной нулю, и всегда большее, чем ∆X/2, где ∆X – квант измеряемого параметра. Это азбука квантового представления, которая относится к левой части соотношения неопределенностей. Правая часть соотношения Гейзенберга определяется уже квантовой природой используемой методики измерения, которая, по мнению Гейзенберга, вне зависимости от природы измеряемых параметров непременно включает в цепочку сенсорных преобразований фотонное представление измеряемых величин. Эта метрологическая погрешность не единственная в суммарной погрешности производимого измерения, но она является обязательной, и поэтому её присутствие справа со знаком больше совершенно оправдано. Знак равенства, совмещенный со знаком больше, в соотношении Гейзенберга означает, что ħ/2 является недостижимым пределом минимальной погрешности. Поэтому, когда в рассуждениях теоретиков встречаешь оборот «если один из сопряженных параметров измерен точно, то …», то перед нами теоретик-профан, или фальсификатор [3].

Использовать соотношение неопределенностей Гейзенберга позволительно только для оценки конечных измерений или расчетов. Применение этого соотношения в самих расчетах, что происходит довольно часто, приводит к неизбежным искажениям реальной действительности.

Загадочное, казалось бы, свойство силовых полей зарядов всех типов сохранять свою величину и распределение в свободном пространстве, при спокойном, философском отношении к перечисленным фактам приводит к логичному решению проблемы. Проблемы энергетического обеспечения стабильности силовых полей частиц. Это решение следующее.

Полевые виртуальные кванты, реализующие контактное дальнодействие вещества, являются неотъемлемой и не уничтожимой принадлежностью элементарных частиц. При этом полевые кванты должны последовательно и периодически взаимодействовать, как со сторонними частицами, так и со своей частицей-носителем. Для этого, после каждого квантового взаимодействия, полевые кванты должны в полном составе возвращаться к ядру элемента-носителя, т.е. к частице, откуда они и испускались.
Этого требует логика наблюдаемых физических явлений и характеристик полевого взаимодействия частиц.

Ни одна частица априори не знает, где находятся другие частицы, но в каждый конкретный момент частица получает информацию, куда и как она должна двигаться. Это очевидный факт. Во исполнение этого, кванты силовых полей излучаются регулярно и равномерно во все стороны, – и все непременно возвращаются, с соответственно измененными своими параметрами, доставляя необходимую информацию для реализации согласованного, мирового движения Вселенной. По-другому, просто, не может быть. Таким образом, силовые поля по своей сути являются сканирующими [1], и в этом смысле они переменные. Однако большая (планковская) частота повторяемости излучения позволяет рассматривать силовые поля как постоянные. При этом надо понимать, что перед нами стабильные, не излучающие волн, осцилляторы. При всяком поступательном перемещении, такой осциллятор допустимо, при необходимости, интерпретировать как псевдо волны де Бройля.

Если электрон в представлении современной квантовой теории является плоской бесконечной волной вероятности, в чем нас хотят убедить некоторые теоретики, то чем тогда в этом представлении является электрическое и магнитное поле электрона? Вопрос из обоймы вопросов системного подхода. Задавать такие вопросы не рекомендуется.
То, что квантовые теоретики знают, они заложили в свои формулы, а то, что не знают – значит, и знать не положено.

Нас убеждают, что всякий раз, когда электрон вступает во взаимодействие, его волновая функция мгновенно коллапсирует, т.е. сжимается в точку, где происходит это взаимодействие. Но разве можно указать состояние электрона, когда он ни с чем не взаимодействует. Таких состояний нет, т.к. любой объект Вселенной постоянно находится в изменчивом поле гравитации Вселенной.

По поводу сканирующих силовых полей современный ретроград скажет, что этого не может быть, т.к. никто, ничего подобного не наблюдал. Но оглянитесь вокруг, сколько всего привычного обнаружится, на что ископаемый ретроград когда-то говорил, что этого не может быть.
Никто не видел процесс распространения радиоволн, но все наблюдают известные результаты этого движения – и в итоге свыклись и признают их существование. Эта конкретная привычка — пример метафизического познания природы. Привычка входит в наше сознании как практическое достижение, превращаясь в стереотип мышления. И так будет со всеми выводами метафизического свойства, прошедшими апробацию практикой.

К тому же, отдаленные аналоги сканирующего поля все же есть, это все щупы и лоты, а также детская игрушка – возвращающийся шарик на резинке, привязанной к ладони.

Модель сканирующего силового поля, обеспечиваемого инвариантным количеством носителей, вносит определенность в интерпретацию характеристик суммарных полей. В данном представлении суммирование полей разного знака методом их компенсации явно невозможно. Если нейтрон является комбинацией положительного и отрицательного зарядов, то в пространстве всегда будут присутствовать оба поля полностью, действе которых уже может компенсироваться в момент совместного действия. Присутствие в пространстве сразу двух противоположных полей обнаруживается при вращении нейтрона. Ведь, если нейтрон имеет магнитный момент, а сам при этом нейтрален, значит, в нейтроне присутствуют сразу два заряда, один из которых более удален от его центра вращения.

Суммарные магнитные поля нейтральных атомов простираются на огромные расстояния, не проявляя своей электрической составляющей. Физики, не понимая сути явления, свыклись с ним – и перестали удивляться.

Законы сложения полей одного знака реализуют, приблизительно, правила векторной алгебры, хотя истинные законы сложения, учитывающие эффект экранирования – несколько иные (квантовые), но они пока не изучаются.

Часть 2.5

Вернемся к анализу известных характеристик электрона.
Итак, калиброванный, петлевой, токовый заряд электрона формирует шарообразное, локализованное электрическое поле. Кроме того, токовая петля формирует калиброванное магнитное поле, названное спином.

Философы, похоже, недооценили значение спина как фундаментального явления. Впервые человечество столкнулось с законом сохранения в таком формате. Вещественная частица обладает движением, от которого не может избавиться, которое она не может передать другой вещественной частице. Спин влияет только на поведение своего носителя, и не может ни исчезнуть, ни измениться.

Не осознав этого нового для нас качества частиц, нельзя глубоко проникнуть в метафизическую суть атомарного вещества. Природа, создав спин, потратила на это порцию энергии. Частица хранит эту энергию в неприкосновенности. Но всегда ли? А что происходит при аннигиляции?
Но, что такое аннигиляция. Разве мы знаем.

Мы предполагаем, что при аннигиляции две частицы не разрушаются, в бытовом смысле этого слова, а полностью переформатируются в иное состояние материи, т.е. превращаются в энергию.
Всё очень не просто, т.к. при аннигиляции должно сохраниться еще и количество движения аннигилирующих частиц. Какой же должна быть энергия фотонов в зависимости от скоростей исходных частиц?

Во что именно превращаются аннигилирующие частицы, пока известно только частично и приблизительно.
При своем поступательном перемещении в пространстве электрон создает магнитное поле, которое является дополнительным по отношению к его спину. Величина этого поля определяется затраченной работой сторонних сил, что находит свое выражение в скорости электрона относительно пространства.
В рамках ТО это простое и естественное представление нельзя даже сформулировать. Дело в том, что Эйнштейн, декларативно признав материальное пространство, тем не менее, сохранил в своем учении математический аппарат, разработанный на основе отрицания этого пространства. Таким образом, декларация оказалась лицемерной, а учение двуликим.

Самым распространенным в природе видом перемещения электронов является их обращение вокруг ядра атома.

Комбинированное электрическое и магнитное поле электрона действует на сторонние заряды, которые в свою очередь действуют на рассматриваемый электрон. В результате электрон меняет своё положение в пространстве или в системе, а также меняет форму своих полей в зависимости от движения и размещения сторонних зарядов. Таким образом, электрические поля электрона изменчивы и подвижны. Форма поля отдельного электрона в составе системы становится неопределенной. Только в свободном пространстве можно проверить стабильность полей одиночных электронов.

Инвариантные параметры поля электрона, находящегося в составе любой системы, тем не менее, должны существовать – и существуют. В квантовой модели, со сканирующими полями, таким инвариантом, естественным образом, является количество испускаемых квантов – носителей поля, т.е. объем собственного поля заряда. Этот инвариант мог бы стать эффективным инструментом для исследователей, но этим инвариантом ещё никто не пользовался.

Ни одна из квантовых концепций не рассматривает и не учитывает законы изменения моментальной формы электрического поля электронов и атомов. Это не только допустимо, но и необходимо в рамках инженерных расчетов. Однако при интерпретации конкретных экспериментов и при разработке теорий, претендующих на фундаментальность, является существенным упущением.

Известно, что излучение электромагнитного поля неразрывно связано с укоренным движением зарядов, которыми обычно являются электроны. Силовое поле, как выяснили выше, не расстается при этом со своим носителем заряда. При этом, электрические поля при смещении заряда обнаруживают некоторую задержку во времени по передаче воздействия, а гравитационные поля такой задержки не обнаруживают.

Моментальное распространение гравитации пока не имеет экспериментального подтверждения, но оно подтверждено косвенно, расчетами натурных наблюдений. В угоду ТО моментальное распространение гравитации официальной наукой не признается, хотя это очень странно. Ведь в ТО нет времени, а есть только геометрическая кривизна. Из этого следует, что любое пробное тело, помещенное в любую точку пространства, моментально должно испытать гравитационную силу. Таким образом в ОТО скорость гравитации должна бы быть не только моментальной, но даже бесконечной.

Отметим, что моментальной скоростью обладает объект, который преодолевает любое конечное расстояние за один квант времени. Но в ТО моментальных скоростей быть не может. А в природе не может быть бесконечных скоростей. Вот и пришлось Эйнштейну ловчить, назначив скорость гравитации равной скорости света, а вслед за Эйнштейном ловчит до сих пор и официальная наука.

Часть 2.6

Каков же механизм излучения электромагнитных волн? Пока никто не знает. Но и вопрос не совсем корректный. Термин «механизм излучения» сразу сужает область поиска, ограничивая её механическими представлениями, хотя понятно, что всех интересует природа излучения.

Чтобы хоть что-то прояснить в этом вопросе, попробуем воспользоваться нашими знаниями из области взаимодействия электронов с электромагнитными полями и теоремой взаимности.

Рассмотрим действие радиоволн на электроны.
Взаимодействуя с радиоволной электрон проводимости испытывает возвратно-поступательное ускорение, направленное ортогонально распространению волны. Кроме того, известно, что это ускорение лежит в плоскости поляризации волны.

В предложенных обстоятельствах желательно уточнить, что же это такое — электрон проводимости, и каким образом он поглощает квантованную энергию радиоволны.

Академическая наука предлагает вариант, в котором электроны проводимости — это полусвободные электроны, сорванные с внешней оболочки атома, которые образуют некое облако, довольно свободно перемещающееся в структуре ионной решетки проводника. Известно, что групповая скорость этого облака, при реализации бытовых токов, очень мала и измеряется несколькими миллиметрами в секунду. При этом скорость электронов в оболочке атома равна приблизительно 1/137 скорости света, т.е. очень велика.

Электроны проводимости и электроны атомных оболочек, поддерживая динамическое равновесие облака должны непрерывно осуществлять рекомбинацию.

Механизм рекомбинации нигде не описывается.
Очевидно, что для рекомбинации электронов их скорость в составе облака и в составе атомной оболочки должны быть соразмерными. Таким образом, облако получается весьма необычным.

Облако проводимости, состоящее из высокоскоростных электронов, оказалось очень неудобным для выполнения своих функций, и про скорость отдельных электронов просто забыли. Следствием этого обстоятельства стало то, что процесс рекомбинации отнесен к квантовым процессам, что позволяет не задумываться о промежуточных состояниях.

Первый вопрос, который возникает при попытке всё же понять суть явления, это по какой причине электроны покидают валентную оболочку атома.

Первое, что приходит на ум, это тепловые столкновения. И сразу – нестыковка, т.к. судя по зависимости сопротивления проводника от температуры, эффект наблюдается обратный, т.е. повышение температуры приводит к понижению проводимости.

Несоответствие еще более заметно при явлении холодной сверхпроводимости, в котором проводящее облако явно существует при практически нулевых температурах.

Приходиться сосредоточиться на поиске не ударной природы ионизации, не зависящей от температуры проводника.

Рассмотрим в проводнике два смежных атома, контактирующих своими оболочками, в геометрическом смысле. Пусть один из внешних электронов атома №1 в некоторый момент оказался в точке касания оболочек, т.е. точно между ядрами смежных атомов №1 и №2, в этом состоянии моментальные поля притяжения электрона к ядрам атомов №1 и №2 почти совпадают по величине и противоположны по направлению. Из этого состояния электрон может покинуть свою орбиталь от малейшего, удачно направленного возмущения.

Результат действия такого «удачного» возмущения в квантовой электродинамике трактуется как туннельный переход, т.е. процесс преодоления потенциального барьера без видимого приложения сторонних сил.
Назовем мимолетное состояние электрона, когда он находится в точке касания оболочек, стартовым, в плане возможной ионизации.

Облако, созданное таким способом, будет характеризоваться высокой и стабильной, парциальной температурой, с распределением по скорости, существенно отличающимся от распределения Максвелла. Это расхождение будет тем более заметным, чем интенсивнее будет процесс рекомбинации, чем короче будет время жизни электрона в облаке. Средняя скорость электронов облака проводимости будет меньше орбитальной скорости. Однако в процессе рекомбинации, этим же способом, скорость будет восстанавливаться.

В условиях сверхпроводимости время жизни электронов в облаке проводимости становится неограниченным, т.е. в этом режиме рекомбинации быть не должно.

Нескончаемый хоровод электронов сверхпроводимости по замкнутому проводнику, вовсе не идеальной формы, не может существовать сам по себе, без затрат сторонней энергии. Это значит, что система, состоящая из неподвижной ионной решетки замкнутого проводника и из потока облака электронов, образует при удачном стечении обстоятельств резонансный, самонастраивающийся контур, который черпает энергию из окружающей среды, охлаждая её. Функцию подкачки энергии в сверхпроводящий контур выполняет по всей видимости резонансная куперовская пара. Из резонансного контура можно даже отводить очень малое количество энергии, ток сверхпроводимости будет поддерживаться неизменным [4].

 

А что, если кроме облака проводимости на результирующую проводимость влияют электроны, находящиеся в стартовом состоянии, которые готовы существенно пополнить облако при возникновении внешнего напряжения. Тогда мы получим ток проводимости двойной природы: первичное облако проводимости и электроны подпитки проводимости, поступающие из стартового состояния только с момента приложения внешнего напряжения. Это позволит объяснить многие нюансы в свойствах проводимости, например, почему сверхпроводимость обычно реализуется сплавами, и почему бывают разные зависимости проводимости от температуры.

Часть 2.7

Отвлечемся пока от облака проводимости, и обратимся, для расширения нашего кругозора в плане взаимодействия полей и электронов, к взаимодействию электронов с оптическими фотонами.

Нас интересует фотонное взаимодействие электронов в четырех фазовых состояниях, а именно: для электронов в составе оболочки атома, для электронов плазмы, для электронов проводимости и для свободных электронов.

Достоверно известно, что атом способен поглощать фотоны. При этом считается, что один из электронов атома возбуждается, переходя на орбиталь с большей энергией. С этого уровня электрон может вернуться на прежний уровень, излучив точно такой же фотон. Но электрон может перейти и на другой энергетический уровень, излучив другой фотон, соответствующий данному переходу.

Как конкретно фотон взаимодействует с атомом – пока никто не знает.
Естественное предположение, что фотон излучается атомом, в официальной науке отвергнуто и подменено утверждением об излучении фотона одним электроном атома, причем только при переходе электрона с одной, разрешенной, орбиты на другую и тоже разрешенную. Характер перехода постановлено считать мгновенным, что наиболее всего соответствует экспериментальным данным. Решение было бы мудрым, если бы его охарактеризовали как вынужденное и временное.

Декларировав мгновенное распространение действия, создающего реальный фотон, академики не соотнесли свое решение с ТО, отрицающей такую возможность. Но, тем не менее, это решение, как бы укрепляет альянс ТО и Квантовой теории, приучая научное сообщество к мысли об осуществимости компилятивной парадигмы.

Официальное положение об излучении фотона орбитальным электроном можно принять только как нулевое приближение, т.к. нельзя существенно изменить траекторию любого из электронов, не повлияв значительно на все остальные. Но второй постулат Бора, о котором чуть позже, используя завоеванные квантовые привилегии, отрицает это влияние, искусственно обедняя мир атома.

При поглощении фотона электроном атома возможен фотоэффект, при котором один электрон, поглотивший фотон, покидает структуру атома. В фотоэффекте экспериментально наблюдается выброс электронов из облучаемого образца в сторону источника фотонов, что очень странно с точки зрения официальной теории, постулирующей продольный импульс фотона. Создается впечатление, что наблюдаемые при фотоэффекте электроны, являются вторично рассеянными. И тогда возникает вопрос огромной и принципиальной важности – в каком направлении происходит первичный выброс электрона из атома по отношению к направлению движения и поляризации фотона.

Дело в том, что сам по себе фотоэффект, в том проявлении, в котором его изучал Эйнштейн, вовсе не доказывает наличия продольного импульса у фотона.

Представим очень легкую, практически невесомую, но достаточно жесткую, сжатую пружину со слабой защелкой. При столкновении такой пружины с рыхлой структурой слабо соединенных шаров, возможна ситуация, имитирующая фотоэффект. Пружина, оказавшись между шарами, может разжаться и оторвать один шар за счет своей потенциальной энергии сжатия. Но для этого пружина должна упереться в соседний шар из состава рыхлой структуры. Это очень важное обстоятельство. В этом случае структура шаров получает малую долю энергии, а основную долю энергии пружина отдает оторванному шару. Однако возникший при этом импульс распределяется между шаром и системой поровну, так что суммарный импульс всегда точно равен нулю.

Энергией системы в подобных случаях принято пренебрегать. А заодно и импульсом системы, хотя для этого часто нет оснований.

Отдельно взятый шар преобразовать потенциальную энергию условно невесомой пружины в соответствующий импульс не может. Это еще одно очень важное обстоятельство, из которого следует, что, скорее всего, для поглощения фотона требуется соответствующая динамичная система.

Тщательный анализ всевозможных исследованных ситуаций, возникающих при отражении и поглощении фотона, в том числе повторение опытов Лебедева, показал, что фотон не имеет продольного импульса [5].

Из этого факта следует огорчительный для многих вывод: результирующее фотонное давление всегда равно нулю. Сотни экспериментаторов, которые безуспешно пытаются построить фотонный движитель, считающих себя неудачниками, могут успокоиться. Они не виноваты в своих неудачах. Виноваты спровоцировавшие безнадежный поиск.

А вот руководителям проекта «Пионеры» есть над чем задуматься [6]. Ведь эта команда списала загадочное поведение аппаратов в дальнем космосе на давление теплового излучения, а давления не существует.

Однако хлопоты и огорчения космических инженеров ничто по сравнению с той перестройкой, которую следует произвести в космологии.

То, что фотоны переносят энергию – факт очевидный. То, что эта энергия может преобразоваться в форму, в которой присутствует продольный импульс – тоже очевидно. Но этот импульс обязательно сопровождается равным и противоположным по направлению импульсом реакции, и это необходимо осознать.

Таким образом, фотоны являются переносчиками кванта именно тепловой энергии, в строго классическом понимании, по которому тепло – это характеристика хаотической составляющей движения. Средняя скорость теплового движения всегда равна нулю. Это не закон, это определение.

Если потоку космических частиц приписывается некая температура, исходя из скорости потока, то это является профанацией.

Принцип переноса кванта тепла представлен в примере с невесомой пружиной. Однако фотон отдает энергию не любой системе, а только строго соответствующей и находящейся в подходящем состоянии. В противном случае фотон отражается.

Известно, что требованиям поглощения и излучения способен удовлетворять атом.
А какие еще системы удовлетворяют этому требованию? Сводной информации нет. Если бы других систем не существовало вообще, то можно было бы ожидать, что между устройством фотона и устройством атома существует корреляция.

Однако судя по разрозненной, но не очень убедительной информации, излучает и поглощает всё вещество.

Если фотон не имеет ни продольного, ни какого другого импульса, а похоже, это так и есть, то фотон принципиально не может поглощаться ни одной свободной элементарной частицей. Доказывается от противного.

Из вышеизложенного следует, что свободные элементарные частицы не могут излучать фотоны. А это приводит к краху многих интерпретаций экспериментов и явлений с участием элементарных частиц, фотонов и гамма квантов.
Этот, философской значимости вывод, – нечто совершенно новое в физике частиц, и хотелось бы убедиться в этом на практике.

Далее, если допустить, что фотон это локализованный осциллятор, несущий квант энергии и перемещающийся в пространстве с максимально возможной скоростью (скоростью света), то придется признать, что отдельные элементы структуры фотона перемещаются со скоростью, превышающей скорость света.

Таким образом, фотон не может быть осциллятором. Это значит, что фотон распространяется как жесткая пространственная конфигурация, что плохо увязывается с представлениями о процессе отражения фотонов.

Кроме того, если допустить, что фотон переносит чисто потенциальную энергию, то возникает естественный вопрос по определению формы этой энергии, которая (форма) пока еще не известна.

Логика поведения фотона не вписывается ни в логику механических, ни в логику волновых взаимодействий, значит, для неё остается только логика квантовых операторов. Однако последнее замечание не несет конструктивной информации, т.к. логика квантовых операторов не имеет ограничений по своей применимости.

Логика операторов не отвергает и не нарушает общепринятую логику во всех её проявлениях, как считают некоторые теоретики [7], а лишь расширяет её. К тому же, квантовая логика испытывает бурное развитие вовсе не в квантовой теории, а в кибернетике и информатике, что создает проблемы субъективного свойства по её использованию.

Итак, атом поглощает энергию фотона, а один из электронов атома приобретает при этом дополнительное движение, т.е. импульс или момент импульса, скомпенсированные импульсами реакции. Но исследование реакции пока не производится.

При взаимодействии орбитального электрона с фотоном атома происходит, либо переход электрона на более высокий энергетический уровень, либо полный разрыв связи электрона с атомом, т.е. реализуется фотоэффект.

А что же происходит с фотоном после его поглощения? Если фотон есть виртуальное возмущение пространства, то фотон, естественно, исчезает бесследно. А если фотон является частицей, то нам необходимо проследить его судьбу. Но не будем этого делать из соображений экономии, т.к. есть все основания не доверять учению Эйнштейна о фотонах, как о частицах. Если же Эйнштейн все-таки прав, то позволим себе оставить пока белое пятно в наших умозаключениях.

Из всего вышеизложенного можно сделать следующий вывод.
Фотон – локализованный объект, представляющий собой специфическое возбуждение пространства, перемещающееся со скоростью С, и являющееся результатом взаимодействия пространства с подходящей вещественной системой. Одна из подходящих систем – это атом в некоторых избранных состояниях.

Фотоны могут поглощаться атомами и другими подходящими системами, если такие системы существуют, только полностью и без потерь, когда вся энергия фотона передается поглощающей системе, а фотон прекращает существование. Энергия фотона не может изменить суммарный импульс поглощающей системы. Обычно, в момент поглощения фотона происходит преобразование энергии фотона в калиброванный элемент тепловой энергии. Однако при фотосинтезе, возможно, происходит непосредственное преобразование потенциальной энергии фотона в потенциальную энергию синтезируемой молекулы.

За квантовый стандарт каждого фотона из полного набора возможных фотонов явно отвечает пространство.
Однако нельзя утверждать, что фотон является исключительно переносчиком энергии. Энергия – это скаляр. А фотон явно поляризован. И на поляризацию можно воздействовать. Значит, кроме энергии фотон переносит ещё и некоторую дополнительную информацию.

Как и для чего в природе используется поляризация фотона? На этот вопрос, и многие другие вопросы, еще предстоит ответить.

Фотон – это еще не разгаданное до конца явление природы.

Часть 2.8

Чтобы приступить к анализу взаимодействия вещества и пространства, необходимо уяснить, есть ли принципиальная разница между фотонами и радиоволнами, и если есть, то в чем она состоит.

Первое, что приходит на ум, это то, что для взаимодействия радиоволн с веществом, в отличие от фотонов, как будто бы не требуются атомные структуры. Это предположение находит подтверждение в том, что характеристика поглощения и излучения радиоволн антеннами не имеют линейчатых спектров.

Кроме того, нет сомнений, что радиоволны не переносят продольный импульс, т.к. наведенный ими импульс тока всегда поперечный. В рамках проведенного выше анализа было бы странно, если бы радиоволны переносили продольный импульс, тогда как фотоны его не переносят.

По аналогии с фотоном, и из общих соображений, суммарный поперечный импульс, наводимый радиоволной, должен быть нулевым. Но в системе электрон — радиоволна это требование реализовать невозможно. Таким образом, либо радиоволна переносит осциллирующий поперечный импульс, что более чем странно, либо по аналогии с фотоном радиоволна поглощается некоторой системой, включающей в свой состав электрон проводимости. А такой системой, обеспечивающей требуемую реакцию, может быть только ионная решетка проводника.

Значит, мы вновь возвращаемся в некотором роде к атому, т.е. к виртуальной системе электрон – радиоволна – ион атома. И нельзя говорить, что электроны поглощают энергию радиоволн, т.к. энергию поглощает проводник. Процесс поглощения энергии радиоволны пока ещё не совсем понятен.

Некоторую ясность в этот вопрос может внести, как ни странно, лазерное (фотонное) охлаждение вещества, движущегося навстречу фотонному лучу [8]. Авторы открытия лазерного охлаждения, получившие за это Нобелевскую премию, не обратили внимания на эффект, который возможно является вторым их открытием, и может быть, более ценным.

Дело в том, что вероятно лазерный встречный луч в этих опытах не просто тормозит атомы встречного вещественного потока, а тормозит парциально, т.е. часть атомов, поглотив фотон, замедляется, а некоторая часть, поглотив встречный фотон, напротив — ускоряется. Это видно из диаграммы, приведенной Филипсом У.Д. в своей нобелевской лекции, см. рис.1.

Если исходить из официальной парадигмы, то Филлипс У.Д. и его соавторы при такой интерпретации открыли фотон с отрицательным продольным импульсом, что совершенно невероятно. Вот поэтому они, как и Эйнштейн при анализе фотоэффекта, не пожелали замечать якобы отрицательный импульс фотона. Мы же здесь должны сделать другой вывод.

 

 

ГрафикЛазенОхлажд

Рисунок 1. Фрагмент нобелевской лекции Филлипса. У.Д. [8]
Радиоволны переносят энергию в форме, преобразующейся атомом в поперечно поляризованный квант тока, с нулевым суммарным механическим импульсом.

Фотоны переносят энергию в форме, преобразующейся атомом в поляризованный квант тепла, с нулевым суммарным механическим импульсом. Поляризация теплового импульса требует дополнительного исследования.

Чтобы поглощать фотоны, поглощающая система должна быть способна воспринять от фотона энергию в формате двух противоположных импульсов, с суммой равной нулю. Если это условие не выполняется, то поглощение фотона состояться не может. Это и есть универсальный квантовый принцип, в бытовом изложении: или всё, или ничего,- если речь о единичном квантовом взаимодействии.

Отсутствие у фотона продольного импульса – это одно из основополагающих отличий фотона от частицы. Нет импульса – нет и релятивистской массы. Фотон – не частица, он только похож на неё некоторыми свойствами, и этих свойств со временем становится всё меньше и меньше. Практически осталась лишь неизменность локальной конфигурации фотона.

Повторим. Если рассматриваемая система при взаимодействии с фотоном не может одновременно реализовать два противоположно направленных импульса движения, то тепловое поглощение фотона этой системой исключается.

Данная характеристика вещественных систем могла бы быть весьма конструктивной при разработке соответствующих моделей, что позволило бы, наконец, приступить к теоретическому исследованию проблемы прозрачности вещества. Действительно, если атом не может поглотить данный фотон, и не реализует условия его отражения, то фотону ничего не остается, как продолжить свое движение сквозь вещество среды.

Продолжим. Исходя из наших теоретических изысканий, необходимо предположить, что электроны облака проводимости в процессе поглощения радиоволн могут участвовать только в паре с соседним ионом из состава решетки проводника.

И мы опять возвращаемся к механизму взаимодействия типа фотон-атом-электрон. Различие в данном случае состоит лишь в том, что электроны проводимости не требуют соблюдения резонансных условий, которые необходимы для поглощения или излучения фотона оптического.

Выявленный вариант взаимодействия радиоволны с электронами проводника, похож на реальность. Необходимо провести целевые эксперименты, чтобы окончательно отказаться от представления, что волновое электромагнитное поле, может служить точкой опоры и способно непосредственно совершать работу, сообщая точечному объекту не нулевой импульс.

Работу могут совершать только вещественные системы посредством силовых полей, носителями которых опять же являются вещественные частицы. Более наглядно это можно изложить следующим образом: точечный заряд в поле радиоизлучения не будет испытывать никакого воздействия.

Получается, что водородная плазма, если она не является сверхплотной, не должна быть ни светопоглощающей, ни радиопоглощающей. Именно это свойство обеспечивает прозрачность космоса, тем самым подтверждая наш вывод.

Данное предположение можно проверить, исследовав модуляцию электронного луча в вакуумной трубке под действием поперечного радиоизлучения.

Все проведенные ранее эксперименты, которые можно бы привлечь для проверки этого явления, как правило, проводились без контроля за границами ближнего, т.е. силового, поля антенн. В результате, в зоне облучения могут присутствовать как радиоволны, так и силовое осциллирующее поле, что не позволяет на основе проведенных экспериментов сделать однозначный вывод по поводу взаимодействия радиоволн со свободными электронами.

Отметим еще раз, что волновые поля обеспечивают односторонние воздействия, а силовые поля обеспечивают двусторонние взаимодействия.

Часть 2.9

В чем же сокровенный, природный умысел однонаправленного дальнодействия? Это философский вопрос, затрагивающий фундаментальные принципы космологии. И это одновременно тест для любой космологической модели, ибо каждая модель должна дать ответ на вопрос, что происходит с излученной энергией, ведь она не может пропадать бесследно.

Как же реализуется процесс перехода орбитального электрона с одного уровня на другой? К ответу на этот вопрос невозможно приступить, не построив дееспособную теорию неподвижного квантового пространства.

Однако авторы подавляющего большинства существующих квантовых теорий как бы не замечают этого естественного требования. И как следствие, уклоняются даже от обозначения тех проблем, которые невозможно решить без обращения к абсолютному пространству.

Найдя способ статистического описания квантового мира, служители этого способа пытаются уверить себя и общественность, что других возможностей не существует. Более того, своё недостаточное знание и умение, такие ученые объявляют фундаментальным свойством природы. В результате, часть теоретиков уверилась в том, что промежуточных состояний квантовых вещественных объектов вообще не существует. Существуют только волновые функции и конечный результат их действия.

Но давайте представим следующую ситуацию. Пусть исследователь создал теорию, позволяющую прогнозировать поведение квантового объекта при наличии сведений о начальном состоянии объекта, которые исследователь не может установить принципиально. Однако он может провести опыт и узнать конечное состояние объекта. Решив обратную задачу, экспериментатор может рассчитать как начальное, так и промежуточное состояние объекта, и тем самым установить скрытую от нас, сущность.

Это и есть один из методов метафизического познания мира.
По известному конечному результату процесса рассеяния пучка пробных частиц, исследователь судит о параметрах объекта, который рассеивает пучок.

Принцип метафизического познания мира был осознан еще философами древности, но ускользнул от перегруженных сложной и успешной математикой современных ученых.

Эйнштейн, свободный от математических перегрузок, интуитивно понимал значение скрытых параметров и верил в их существование, но даже он, с его авторитетом, не смог преодолеть снобизм современной математической школы.

Скрытый параметр – это не тот параметр, величину которого мы не знаем, зная о существовании параметра.
Скрытый параметр – это параметр, о существовании которого мы не знаем, но только подозреваем.
В нашем случае скрытым параметром до настоящего момента являлась импульсная, сканирующая природа силовых полей.

Часть 3.1

Энергия, по определению, это способность совершать работу. Произведенная работа приводит к уменьшению исходной энергии той формы, за счет которой произведена работа. А чтобы совершить работу, необходима точка приложения силы и точка опоры, т.е. нужна вещественная система, как минимум из двух тел, способная совершать работу. Последнее обстоятельство часто ускользает от внимания исследователей, особенно в мысленных экспериментах.

Стоит только осознать, что для совершения работы необходимы как минимум два вещественных объекта, как существующая интерпретация эквивалентности массы и энергии изменится коренным образом.

Замкнутую систему, характеризуемую заданным количеством волновой энергии и количеством вещества, несущим потенциальную энергию, превратить в нечто, состоящее из чистой энергии, принципиально невозможно. Замкнутая система не может реализовывать безусловные процессы
E → MC и   MC2 → E,
где M – масса вещества системы, а C – скорость света.

В свете наблюдаемых эффектов аннигиляции можно допустить, что возможно в природе реализуются некоторые вариации соотношения масса/энергия, в замкнутой системе. Но критерии для определения границ вариации пока не обнаружены. Не доказано и то, что при аннигиляции электронов рождаются гамма-кванты (фотоны), а не нейтральные, высокоскоростные частицы, которые могут быть неизвестными.

Вещество способно создать фотон, затратив при этом соответствующую энергию. Но масса вещества при этом не изменяется. Из этого следует, что, скорее всего, ни фотон, ни группа фотонов, не могут создавать вещество.

Во всех известных экспериментах по созданию электрон-позитронных пар участвует стороннее вещество. Каким образом это вещество участвует в создании пар, никто не знает. Сами волны, при встрече, не отражаются и не сталкиваются. Они не взаимодействуют.

Пространство заполнено электромагнитным излучением, но никто еще не наблюдал ни столкновения фотонов, ни их последствий.
***

При фотоэффекте, точкой опоры для электрона является атом, представляемый своим ядром, которое и получает равный, но противоположный электрону электро-механический импульс.

Почему электро-механический? Потому что электрон, как и ядро атома, реализует два типа инерции: механическую и электрическую.

Инерцию заряда во многих методиках измерений легко спутать с инерцией массы, что, к сожалению, и происходит. Это можно выявить и устранить, если об этом знать и понимать природу каждого вида инерции. Можно, например, по одной и той же методике произвести сравнительные измерения для электрона и протона, а затем в сравнительном анализе выявить составляющие силы.

Если исследовать ускорение протона в постоянном гравитационном поле, то исследователь обнаружит инерционное сопротивление массы протона, плюс магнитное сопротивление его заряда. Это значит, что протон в заданном гравитационном поле будет падать медленнее нейтрона! Зато нейтрон вообще не будет падать в электрическом поле.

Однако проще всего это сделать в современном кольцевом ускорителе.
Система горизонтального удержания заряженных частиц фактически производит магнитное, взвешивание частиц, т.е. определение их гравитационной массы. А система удержания луча на круговой траектории фактически, но косвенным образом, измеряет массу инерции. Система, ускоряющая частицы, преодолевает суммарную, электро-механическую инерцию. Однако при разгоне частиц современными мощными ускорителями, на последнем этапе, ускорение частиц практически равно нулю, и не влияет на результат измерения двух масс различной природы.

Эйнштейн постулировал эквивалентность массы инерции и массы гравитации, т.е. идентичное поведение массы инерции и массы гравитации во всех условиях, в том числе при изменении скорости вещества. И никто до сих пор не удосужился проверить это вольное утверждение. При этом огромные средства вложены в проверку этого же постулата при бытовых скоростях. Результат проверок при бытовых скоростях, всегда благоприятен для ТО.

Однако здравый смысл, логика и философское мировосприятие склоняют к мысли о том, что масса гравитации уменьшается при увеличении скорости тел, и даже приближается к нулю при приближении скорости тела к скорости света. Масса же инерции при всех скоростях остается неизменной, т.е. она инвариантна [1].

Часть 3.2

Несомненно, что атом является природной фабрикой по производству фотонов, которые атом создает в окружающем пространстве из материи пространства в основном за счет тепловой энергии. При этом не совсем ясно, какую роль в природе играет спектр излучаемых фотонов. Кроме того, не ясна окончательно и роль, и характер внутреннего излучения атомов твердых и жидких тел. Действующая модель этого излучения построена на концепции о продольном импульсе фотона, и значит, скорее всего, не верна. Однако вполне возможно, что выводы этой теории могут оказаться близкими к истине, как уже случалось с некоторыми ошибочными теориями.
.
Из принципа взаимности следует, что всякий природный излучатель может выступать в роли поглотителя, т.е. атомы, излучающие фотоны, способны и поглощать фотоны. При этом вторичное излучение фотона может происходить не только на частоте поглощения.

Атом является носителем множества слабо выраженных, но устойчивых асимметрий, лежащих в основе разнообразия молекулярного вещества. Эта асимметрия не хаотична, она лежит в основе гармонии Вселенной. Гармонию творит асимметрия.

Недавно возникшее, популярное направление в науке, которое изучает всевозможные симметрии, традиционно впало в эйфорию мнимого всемогущества. Теоретики этого направления ищут основополагающую, фундаментальную симметрию мира. А такой симметрии нет и быть не может. Природа реализует только те виды симметрии, нарушая которые она может обеспечивать гармонию Вселенной. Выбор исходных симметрий модели аналогичен выбору системы координат. Выбрали тип симметрии – и можно изучать природные законы отклонения от неё.

Взаимодействие атомов между собой сопровождается непрерывным взаимодействием каждого атома с пространством, что проявляется в непрерывной генерации спектра фотонов. Спектр фотонов является визитной карточкой каждой свободной атомарной конструкции. В связи с этим возникает некоторое недоумение по поводу теории излучения черного тела.

Теория излучения черного тела предписывает всем молекулам излучать одинаково, меняя параметры излучения только в зависимости от температуры тела.
Однако излучение газообразного вещества четко проявляет свою спектральную индивидуальность. При этом нигде, ни слова о корреляции двух типов излучения. Каждая из двух теорий входит в состав квантовой электродинамики (КЭД), которая объявлена самой успешной теорией. Однако механизм перехода от одного спектра излучения к другому не может быть скачкообразным, и похоже, этот переход никому не ясен. Почему запреты Бора и Паули действуют для газовых молекул, обеспечивая индивидуальный спектр, и не действуют для молекул твердого тела, обеспечивая стандартный непрерывный спектр.

Проследим поведение атома при так называемых механических взаимодействиях твердых тел.

В классической механике принято считать, что воздействие на испытуемое тело осуществляется либо непосредственно сторонним телом (контактным способом), либо полем стороннего тела. Поле наблюдаемого тела, как правило, не рассматривается. Считается, что о наблюдаемом теле достаточно знать массу, заряд и его форму.

Это еще один застарелый стереотип научной идеализации, порождающий при некоторых экстраординарных условиях, разные парадоксы. Кроме того, на практике эта идеализация проявляется как не учитываемая (или малая, или неощутимая) погрешность измерений.

При столкновении твердых тел, собственно атомы и элементарные частицы, их составляющие (протоны, нейтроны и электроны), в мнимой непосредственности контактного столкновения участия не принимают. Взаимодействуют только поля с частицами. Это все знают, но случается, в нужный момент, забывают вспомнить.

Таким образом, классическая механика, как и термодинамика, является порождением статистической идеализации, которая, правда, исторически смогла обойтись без аппарата статистического усреднения, а сразу развила свой специализированный математический аппарат, в основу которого положена классическая геометрия.

 

Часть 3.3

Обратим внимание на одно очень интересное обстоятельство, которое авторы и популяризаторы квантовой теории практически не комментируют. Линейный размер атомов слабо зависит от их атомного номера, т.е. с возрастанием массы атома его размер почти не увеличивается. Чтобы понять суть этого явления обратимся к планетарной модели атома.

Модель атома, предложенная Резерфордом и усовершенствованная Бором, называется планетарной по причине очевидного сходства двух конструкций. Завораживает и сходство формул, которые эти конструкции описывают. На первый взгляд — очень наглядно, особенно для атома водорода. Действительно, вокруг тяжелого протона (звезды) обращается легкий электрон (планета). И вот наглядный образ уже работает.

Но ведь в движении электронов и планет есть ещё и существенное отличие, о котором нужно всегда помнить, но которое никто из авторов модели, и их последователей, никогда не упоминают. Разница в том, что в атомах электроны (планеты) между собой не притягиваются как планеты, а отталкиваются, причем с огромной силой, соизмеримой с силой притяжения электрона к ядру атома (звезде).
Таким образом, ни на какое сходство, за исключением атома водорода, надежд быть и не должно.

Однако и с атомом водорода всё не так просто. В атоме, в отличие от реальной планетарной системы, действуют силы разной природы.
Силы электрические и силы гравитационные формируют центростремительную силу, а центробежную силу формируют только силы инерции. Центробежная сила определяется только инертной массой электрона, которая принимается эквивалентной массе гравитации.
Для системы протон-электрон силы Кулона превосходят силы гравитации по интенсивности приблизительно на 39 порядков.

Известно, что всякое возбуждение электрона, находящегося на орбите атома, вызывает увеличение его кинетической энергии и его потенциальной энергии в равных долях.

Если бы у электрона, как у планет, не было заряда, то удвоение его орбитальной скорости вызвало бы увеличение радиуса орбиты приблизительно в полтора раза.
Наличие кулоновского поля требует введения для потенциальной энергии другого масштаба, и масштаб этот в пересчете к силам гравитации равен 1039. Таким образом, при удвоении энергии орбитального электрона радиус его орбиты изменится незначительно, т.е. возбужденный электрон увеличит скорость, но практически не увеличит при этом радиус своей орбиты.

Однако в соответствии с известной формулой Бора радиус возбужденной орбиты электрона равен
r = an2/Z .
Здесь n – порядковый номер уровня возбуждения орбитального электрона; Z – атомный номер элемента, a — размерная константа.

Исходя из формулы Бора, радиус первого возбужденного уровеня электронной орбиты в любом атоме будет в 4 раза превосходить исходный стационарный размер атома, а радиус второго – в 9 раз, дальше — больше.

Преклоняясь перед авторитетом Бора, а главное, перед результатами спектральных измерений, основанных на формуле Бора, и подтверждающих её, можно было бы извиниться за проявленную инициативу с ещё одной проверкой планетарной модели – и забыть про неё. Но дело в том, что реальные электронные оболочки в реальных атомах ведут себя именно так, как показал наш анализ, т.е. радиус реальной электронной орбиты от n и Z практически не зависит.

А поведение возбужденного орбитального электрона чрезвычайно важно для понимания процессов поглощения и излучения фотонов. Так что необходимо выбрать вариант, соответствующий истине. И выбор не в пользу формулы Бора.

Бор не знал, что размер атомов не зависит от числа электронных оболочек, и его не удивила рыхлая структура оболочек атома, которую предписывает его формула. Но современные-то академики это знают.

Орбитальный электрон водорода притягивается к протону по закону Кулона, очень интенсивно, а центробежная сила формируется по закону Ньютона силой инерции. Коэффициент, обеспечивающий соответствующий пересчет масштабов электрических сил в гравитационные, для связки электрон – протон приблизительно равен 10^39. Соотношение сил инерции и сил Кулона до сих пор официально не определено.
Коварство создавшейся ситуации в том, что этот коэффициент не присутствует ни в одной формуле, т.к. он скрыт изначально эклектической системой единиц измерения, примененной в расчетах Бора.

Математика всеядна и не может выявить оплошность физика, совершенную при постановке задачи. Вот, поэтому математик и не может заменить физика. А разработчики квантовых теорий всё повышают и повышают статус математики в ущерб статусу физики.

Частный успех планетарной модели при описании атома водорода косвенно доказал, что модель локализованного электрона обращающегося вокруг ядра атома соответствует действительности. И в этом величайшая заслуга Бора и Резерфорда.

Таким образом, можно утверждать, что электрон всегда является локализованным элементом вещества, вне зависимости от того, измеряет наблюдатель что-нибудь или не измеряет. А волновая функция – это лишь математическая модель для промежуточных вычислений, описывающая статистическое распределение математического ожидания, т.е. распределение результатов множества измерений, и не более.

Волновая функция электрона является плоской и бесконечной в плоскости (y, z) не потому, что такова природа электрона, а потому, что её так определили. Если полет пули описывается только с помощью оси х, то волновая функция пули в принципе не будет отличаться от волновой функции электрона, тоже будет плоской и бесконечной.

Статистическое распределение это характеристика процесса, но не объекта. Также и волновая функция электрона описывает не объект, а только метрологический процесс метафизического свойства.

Хотелось бы понять — эта простая истина ускользает от внимания правящих сейчас теоретиков, или теоретики сознательно, для привлекательности своей продукции, насаждают искаженное представление о волновой функции, мистифицируя своих спонсоров.

Естественные неудачи, связанные с применением планетарной модели для тяжелых атомов, были вызваны ошибочным представлением о характере коллективного движения электронов в условиях действия двух сил разной природы, т.е. ошибочной постановкой задачи. Электроны так сильно отталкиваются друг от друга, что вопреки идее Бора не могут реализовать круговые стационарные орбиты. Об этом наглядно свидетельствуют имеющиеся решения уравнений Шрёдингера, которые допускают положение электронов даже в непосредственной близости от ядра атома. Таким образом, К-захват электронов вовсе не является спонтанным, в чем пытаются нас уверить.

Обычные тепловые «столкновения» атомов могут вызвать последовательность удачно складывающихся флуктуаций, в результате которых один из электронов оказывается в пределах ядра атома – и внедряется в ближайший протон, от которого уже не может увернуться под действием магнитного поля, как это происходит со свободным протоном в водородной плазме.

Благоприятное совпадение нескольких случайных событий нельзя называть резонансом, т.к. резонанс — это регулярное благоприятное совпадение периодических процессов. Поэтому К-захват можно условно назвать результатом случайного резонанса.

Несколько слов о свойствах решения уравнений Шрёдингера. Не секрет, что уже для двух объектов это решение, можно сказать, катастрофически усложняется, и обычно не может быть выражено аналитическими функциями. Но и будучи решенными современными цифровыми, приближенными методами, эти решения не являются гарантированной истиной. Дело в том, что степень адекватности решений любых уравнений зависит от корректности и полноты формулировки исходных условий.

Чтобы реально ощутить этот эффект, воспользуемся методом Станиславского, и представим себя в качестве специалиста по решению уравнений Шрёдингера. Задача не самая сложная. Необходимо рассчитать волновую функцию для единственного валентного электрона лития. Не беда, что мы не умеем решать уравнения Шрёдингера, нам нужно только сформулировать исходные условия для профессионала математика. Вот от того, как мы сформулируем, вокруг чего вращается наш электрон, такое решение и получит математик.
А теперь попросим сформулировать исходные условия для нашей задачи нескольких независимых физиков. Спрашивается, от кого больше будет зависеть решение уравнений Шрёдингера: от физиков, или от математиков?

В связи с вышеизложенным, вопрос к популяризаторам – почему во всех описаниях ссылка на решения уравнений Шрёдингера является последней инстанцией? Почему ни в одном источнике не указываются исходные идеализации (упрощения), примененные при решении конкретной задачи.

Итак, мы выяснили, почему радиусы квантовых орбит разных энергетических уровней в атомах очень мало отличаются друг от друга по сравнению с величиной самого радиуса.

Спрашивается, какие же физические законы, действующие внутри атома, заставляют электроны вести себя так, что реализуются формальные правила заполнения электронных оболочек.

Запреты Паули предполагают сверхестественную информированность электронов, а хотелось бы знать физические законы.

Опустим пространные логические построения, и сразу приведем одно предположение, дополняющее известные энергетические требования законов сохранения, которое причинным образом влияет на движение электронов.

Характер стационарного движения электронов вокруг ядра должен стремиться исключить образование пучностей электронного облака. А это условие исключает встречное движение электронов по параллельным траекториям, приводящее к неизбежному сближению электронов. При этом следует принимать во внимание, что при увеличении номера атомного элемента, каждый следующий добавленный электрон обращается не вокруг ядра, а вокруг иона. Сложность задачи неимоверная. Но ведь есть нулевое приближение запретов Паули.

Часть 3.4

По здравой логике, при обнаружении нового явления или эффекта, первооткрыватели-теоретики должны предложить соответствующие гипотезы.
По результатам дополнительных целевых исследований эти гипотезы должны либо отвергаться, либо корректироваться и превращаться в рабочую теорию.

Авторитарный подход искажает этот естественный процесс, из которого выпадает этап творческого осмысления, проверки и коррекции гипотез. Вопреки здравому смыслу и логике, авторитеты, с помощью угодников, творят сразу теории.

Случайные пробелы в знаниях нельзя исключить в отношении любого человека, в том числе и в отношении авторитета. Но возведение в догму ложного представления одного человека, недопустимо ни при каких обстоятельствах. И, если научная общественность не способна отстоять случайно попранную истину, то это свидетельствует о хроническом нездоровье общества.

Науке дорого обошелся авторитет Бора. Допущенная им оплошность при построении планетарной модели атома была скомпенсирована подгонкой вторичных математических моделей по формированию сперктров, и в результате мало повлияла на дальнейший прогресс науки. Но вот, о второй ошибке, допущенной Бором, этого уже сказать нельзя.

Развивая квантовые идеи при построении планетарной модели атома, Бор ввел два следующих постулата.

1. Атом может находиться только в особенных стационарных или квантовых состояниях, каждому из которых отвечает определённая энергия. В стационарном состоянии атом не излучает электромагнитных волн.

2. Излучение и поглощение энергии атомом происходит при скачкообразном переходе из одного стационарного состояния в другое, при этом имеют место два соотношения:
1) ε = En2- En1 где ε — излучённая (поглощённая) энергия, n1, n2 — номера квантовых состояний.
2) Правило квантования момента импульса: mvr = nħ, n = 1, 2, 3…
Современная квантовая теория весьма благосклонно относится к введению частных постулатов и их последующей, непринужденной коррекции. В приведенных, как оказалось ошибочных, постулатах Бора не было бы ничего особенного, если бы Бор не решил обосновать их, используя классическую аргументацию. Для этого он привел веский, как ему казалось, аргумент, утверждая, что орбитальные электроны, в классической интерпретации, должны постоянно излучать, и вследствие этого быстро падать на ядро атома. А так как уже было известно, что атомы излучают, а электроны, тем не менее, не падают, то при такой аргументации первый постулат выглядел очень внушительно, и просто напрашивался.

Ошибочный аргумент, приведенный, так сказать, для пущей важности, вызвал чудовищные последствия. Фундаментальное положение о не потреблении энергии при стационарных круговых движениях тяготеющих тел было попрано. Правда, не огульно, а избирательно, только для электродинамики. В механике планетам до сих пор позволено кружиться вокруг звезд без ограничения времени и без потери энергии.

Эффектный аргумент Бора о якобы постоянно излучающем классическом электроне, потребовавшийся ему для обоснования своей концепции, был явно ошибочным и вздорным. Но действует до сих пор, тормозя и искажая решение множества как практических, так и теоретических задач. Коварство создавшейся ситуации в том, что квантовая теория, в лице Бора, запретила излучение, которого нет – и, следовательно, не может быть опровергнута прямым экспериментом.

А какой же постулат действительно был нужен Бору?
Постулат о спонтанном, квантовом излучении атома, которого по классическим соображениям быть бы не должно.

В этом варианте потребовалось бы обоснование спонтанности, т.е. случайного излучения, происходящего за счет внутренних процессов. А каких процессов? Вот, при ответе на этот вопрос и возникла бы необходимость во взаимодействии атома с физическим пространством, в котором формируются излучаемые фотоны. Но не случилось.

Непонимание сути происходящего чревато ошибками при интерпретации некоторого явления.

Недопонимание сути приводит к ошибкам, специфическая особенность которых в том, что они очень похожи на истину. В этом случае недопонимание бывает более вредоносным, чем полное непонимание.

Заблуждение Бора никто не оспорил. И вот, наука несет крест.

Однако, если концепция Бора не верна, то какой же должна быть более правильная.

Приведем одну из возможностей.
При приближении атома к равновесному состоянию, каждый электрон стремится двигаться в зоне своей стационарной орбитали, и в этих состояниях электроны не изучают. Всё как у Бора. Только это не следствие квантового постулата, а прямое следствие уравнений Максвелла. Далее.

В результате тепловых столкновений, и прочих возмущений, электроны могут ударно переходить на любую другую траекторию, которая может не соответствовать требованиям стационарности. Из этих состояний электроны могут тут же возвратиться в исходное состояние, излучая при этом соответствующий фотон, реализуя тем самым непрерывный спектр излучения.

В случае газообразного состояния вещества всё происходит похожим образом, но несколько иначе. Электроны при столкновении атомов, которые уже не имеют опоры от атомной решетки, испытывают меньшие ускорения и имеют возможность демпфировать условия моментального излучения фотона. В результате, излучения может не произойти. Перемещаясь, таким образом, относительно свободно, сообразно внешним воздействиям, возбужденные электроны, попав на резонансную орбиту, излучают соответствующий квант, и оказываются на вполне определенном уровне.

Отметим существенное отличие. Энергия излученного фотона перестает быть случайной, и определяется разницей энергий двух существующих уровней атома, один из которых является резонансной ловушкой, что приводит к формированию линейчатого спектра. В результате формируются линейчатые спектры, индивидуальные для каждого атома соответствующего элемента.

По предложенной гипотезе получается, что реально в атоме действует инверсный второй постулат Бора. Такая интерпретация квантового излучения электронов позволяет адекватно отразить необъятное разнообразие природы. Если бы электроны в атоме идеально следовали квантовому формализму Бора – природа не создала бы ничего выдающегося.

Предположение о справедливости инверсированного толкования постулата Бора подтверждается найденными уже решениями уравнений Шрёдингера для электронов в тяжелых атомах. Облака вероятности нахождения электронов свидетельствуют о большой свободе их движений, несовместимой с принципом движения только по Боровским орбитам.

Решения уравнений Шрёдингера предъявляются как величайшее достижение квантовой теории, не обращая при этом внимания на их явную несовместимость с запретами и Бора, и Паули, чем плодится искусственный двойной стандарт.

Теория строения атома ничего не потеряет, а только выиграет, если жесткий «запрет» сменить на мягкое «стремление». Ведь оба запрета сформулированы для стационарных состояний атомов, а они в этих состояниях никогда не пребывают, но всё время стремятся к ним.

Часть 3.5

Установлено, что суммарный вес элементарных частиц, составляющих атом и взятых по отдельности, всегда больше веса самого атома. Это явление называется дефектом массы. Установлено также, что дефект массы связан с энергией, выделяемой при ядерном распаде атома, следующим соотношением
ΔE=ΔmС^2 (2),
где Δm — дефект массы, С — скорость света.

Не вызывает сомнения положение, что вес частиц, составляющих атом, естественным образом восстанавливается после того, как атом распадется. Это значит, что с частицами в составе атома количественного изменения вещества не происходит. Однако гравитационные свойства частиц явно изменяются.

Что происходит с инерционными свойствами частиц, из опытов прошлого заключить невозможно.

Эффект дефекта массы свидетельствует, что при увеличении запасенной энергии ядра атома, его гравитационная масса уменьшается.

Исходя из выше изложенного, можно предположить, что в природе действует не релятивистский принцип, а принцип более общего характера, который включает релятивизм как частный случай. Обобщающим принципом может быть только обще энергетический подход.

В этом случае, всякая система должна изменять свои гравитационные свойства (вес) в соответствии с изменением содержащейся в системе энергии. Было бы естественно и логично, если бы кинетическая энергия тела тоже вызывала уменьшение гравитационной массы. Однако в ТО постулируется обратное, т.е. бесконечное увеличение гравитационной массы, а вместе с ней и массы инерции, при приближении скорости тел к скорости света. Из этого противоестественного постулата следует, что увеличивая относительную скорость тел, мы непонятным образом, либо увеличиваем их реальную массу, либо соответственно изменяем физический закон притяжения, который становится способным реализовать бесконечный параметр.

Современная техника позволяет достоверно определить закон изменения масс для случая релятивистских скоростей, т.е. в зависимости от сообщаемой частице кинетической энергии. Это можно узнать, например, по результатам измерений параметров современных ускорителей при стабилизации пучка ионов свинца или водорода, т.е. пучка протонов. Можно. Но данных нет. Факт замалчивания этих сведений очень настораживает [9].

По этому поводу придется сделать небольшое отступление.

Проведем мысленный эксперимент, позволяющий сделать более определенный вывод о связи энергии с массой тела, с учетом сложившихся представлений о дефекте массы.

Рассмотрим систему из трех свободных и неподвижных тел: два шара и пружина с защелкой, каждое тело имеет массу m. Сообщим шарам скорость V, и направим их на пружину, подобрав все параметры так, чтобы в момент столкновения пружина сжалась и защелкнулась, а шары остановились.

Проследим, как изменяется масса нашей системы по ходу эксперимента, пользуясь представлениями ТО.

В начальный момент, когда система была неподвижна и разделена, её масса была 3m. Затем, когда шарам сообщили скорость V, её масса, по Эйнштейну, увеличилась на 2Δm. Когда же пружина сжалась, а шары остановились, система оказалась в напряженном, неподвижном состоянии. Масса системы при этом должна уменьшиться до величины начального состояния 3m и еще, возможно, на величину дефекта массы. Второе и третье состояние нашей системы, кроме того, характеризуется постоянством её энергии, которое возможно в данной ситуации только при равенстве релятивистского приращения массы величине дефекта массы, которая всегда отрицательна.

Обратим внимание на то, что природа напряженности пружины совпадает с природой напряженности атомного ядра. В обоих случаях напряженность формируется деформацией кулоновских полей.

Таким образом, либо релятивистское приращение массы и дефект массы должны быть отрицательными, либо дефект массы и релятивистское приращение массы должны быть положительными, но этого не может быть, т.к. отрицательность дефекта массы неоднократно подтверждена экспериментально. Релятивистское, положительное приращение массы экспериментального подтверждения не имеет. Значит, релятивистское приращение массы является отрицательным.

Косвенные подтверждения роста массы тел при увеличении скорости получены на циклотронных ускорителях при скоростях частиц не достигающих релятивистского диапазона, где инерция заряженных частиц складывается из двух составляющих: собственно массы инерции, которая не изменяется, и магнитной инерции заряда, которая в нерелятивистской области скоростей растет с ростом скорости.

Вот этот рост массы инерции, и послужил Эйнштейну основой для его формулы
Mv= M0 /√(1-V2/C2).

Чтобы преодолеть возникшее парадоксальное разногласие, необходимо признать, что изменение гравитационного притяжения масс при увеличении скорости вещества является отрицательным, и убедиться в этом экспериментально. Конкретный, математический закон уменьшения выявить на имеющихся мощных ускорителях, что в современных условиях достаточно просто.

Теоретически, используя уже имеющиеся косвенные данные, этот закон выводится в следующем виде:
Mv= M0 [1-V2/C2] (3)
M0 – масса гравитации тела при его нулевой скорости относительно физического пространства, равная массе инерции, являющейся в предлагаемом представлении инвариантом относительно скорости [1].

Данная модель устраняет сразу несколько парадоксов ТО, в том числе и знаменитый парадокс массы фотона.

Однако в эту гармоничную гипотезу закралось некоторое сомнение, связанное с бета-распадом.

Если использовать принцип дефекта массы, а нет оснований его не использовать, то получается, что при бета-распаде перед нами дефект массы с обратным знаком. Однако это обстоятельство вовсе не отрицает наметившейся закономерности в формировании дефекта массы, но требует учета дополнительных, интересных обстоятельств.

Действительно, в случае с отрицательным дефектом массы в атоме, электрическая напряженность конструкции ядра имеет внешнюю направленность. А в случае с положительным дефектом в нейтроне, напряженность имеет внутреннюю направленность. Но, не взирая на напряженность, направленную к центру, нейтрон все же распадается. И это обстоятельство заставляет целенаправленно искать причину такого поведения нейтрона. И эта находка, возможно, станет принципиально новым открытием.

Наличие магнитного момента у нейтрона свидетельствует в пользу гипотезы о нейтроне как составной частице с двумя противоположными зарядами, один из которых является не центральным.

Часть 3.6

Продолжим. Казалось бы, выявление эффекта, описываемого соотношением (2), ΔE=ΔmС2, в свое время должно было вызвать революционную перестройку в естественных науках и в философии.
Действительно, нарушается фундаментальный закон сохранения массы, закон Ломоносова.
Однако всё не совсем так, как кажется с первого взгляда.

Обнаружено вовсе не нарушение закона, а его несоблюдение в некотором частном случае. И, самое главное, при восстановлении исходных условий, эффект исчезает, т.е. вес системы самопроизвольно восстанавливается. Значит, количество вещества всё время оставалось неизменным, и масса, определяющая количество вещества, никуда не исчезает.

А что же тогда происходит?
Ни ТО, ни современная квантовая теория не приспособлены для ответа на этот вопрос. Обе теории могут только математически формализовать экспериментально установленный факт, т.е. предложить соотношение (2).

Все понимают и все согласны, что и электрон, и протон это абсолютно стабильные частицы. Это значит, что непременно существуют внутренние, инвариантные параметры, обеспечивающие стабильность частиц. В качестве одного из этих параметров Ломоносов предложил количество вещества, выражаемого массой.

Обратим внимание, в законе Ломоносова речь идет о количестве вещества! А дефект массы – это эффект, обнаруживаемый при взвешивании частиц. Таким образом, для опровержения закона Ломоносова оснований было недостаточно. Закон и не опровергли. Его просто забыли.
Если масса в разных условиях весит по-разному, то надо изучать эту зависимость в полном объеме, и только после этого делать основополагающие вывода. Однако случилось так, что озарение Марии Кюри по поводу замеченного ею частного соответствия, Эйнштейн превратил в фундаментальный принцип эквивалентности массы и энергии.

Никто не сомневается, что элементарные частицы, получаемые в результате распада атома, идентичны частицам, из которых атом был собран. При этом не заметно ни удивления, ни любопытства по поводу того, что же происходит с элементарными частицами в составе атома, от чего они теряют в весе.

Повторим. Всё свидетельствует, что количество вещества в атоме, собранном из соответствующих элементов, неизменно в обоих состояниях, однако меняется закон гравитационного взаимодействия.

А что за причина?
Но ведь известно, что ядро атома пребывает в напряженном состоянии, т.е. несет огромную потенциальную энергию. Если обобщить, получается, что наличие внутренней потенциальной энергии в любой системе должно вызывать ослабление гравитационного взаимодействия. Таким образом, дефект веса можно интерпретировать как ослабление гравитации. А это уже знание, позволяющее строить соответствующую модель, которую можно исследовать в плане прогнозирующих способностей, т.е. на степень адекватности реальному миру.

Развивая идею о влиянии внутренней энергии системы на интенсивность гравитационных взаимодействий, можно усмотреть любопытный факт. Гравитация сама создает внутреннее напряжение в системе, определяемой как массивное вещественное тело.

Получается, что всякое тело имеет некоторый (начиная с ничтожного) дефект веса, который тем больше, в процентном исчислении, чем больше масса тела. Это справедливо, если эффект носит релятивистский характер. В этом случае эффект изначально ничтожно мал, но затем начинает стремительно увеличиваться, отодвигая границы эффекта Черной дыры в небытие.

Это всего лишь концепция гипотезы. Гипотезы, которая устраняет Черные дыры, как из ядер всех галактик, так и из Вселенной, вообще. А то, что в центрах галактик Черных дыр нет – это уже давно очевидный факт, в буквальном смысле этого слова [10].

Экспериментально обнаруженный «дефект» массы не нарушил закона Ломоносова. Но его нарушил постулат Эйнштейна об эквивалентности масс. По Эйнштейну, потеря в весе связана с потерей массы инерции. Таким образом, масса частиц не может быть в этом случае гарантом стабильности частиц. Логика и здравый смысл подсказывают, что закона эквивалентности масс не существует.

А если гипотетический закон эквивалентности масс не существует, то замена Δm на m в соотношении (2) является не только необоснованной, но и не корректной.

Убедительная экспериментальная проверка физической реальности соотношения
E=mС2 (1)
до сих пор не проведена.
Считалось, что с полным преобразованием массы в энергию происходит аннигиляция электронов. Однако современная интерпретация, не отрицая предыдущую, утверждает, что при аннигиляции электронов рождается виртуальный фотон. Этот фотон сразу превращается или в пару мюонов, или в пару кварков [Википедия] , которые тут же обрастают глюонами и преобразуются в пару адронов.

Таким образом, если кому-то надо, тот может считать, что электрон и позитрон превращаются в фотонную энергию, а кто в этом сомневается, тот может сомневаться дальше.
Во всех остальных известных реакциях аннигиляции о полном преобразовании массы в энергию речи не идет.

Похоже, что аннигилируют только заряды. При аннигиляции протонов масса не исчезает, а лишь убывает, скорее всего в соответствии с соотношением (2), но проверить это на коротко живущих остатках протонов пока очень сложно.

Поскольку параметры виртуального фотона, никто знать не может, то необходимо признать, что полного преобразования массы в энергию, и обратно, практике не известно.

Энергия фотонов, возникающих при аннигиляции электронов, в соответствии с ТО, должна точно равняться энергетическому эквиваленту массы электронов, т.е. 0,511 МэВ, плюс кинетическая энергия этих электронов. Однако привлечение в этот процесс глюонов делает проверку принципиально невозможной.

Исходя из вышеизложенного, можно сформулировать определение дефекта массы, отличное от официального.

Всякое изменение внутренней энергии системы сопровождается изменением веса данной системы в соответствии с соотношением ΔE=-Δm С2 (4), масса инерции при этом остается неизменной.

В этой интерпретации выражение (1) является максимальной мерой энергии, которую можно сообщить вещественной системе.

Часть 3.7

Электрические поля принципиально отличаются от гравитационных тем, что своим перемещением в пространстве создают вторичные материальные сущности, а именно: магнитные поля и электромагнитные волны.

Электромагнитная волна не является собственным полем частицы, а является принадлежностью пространства. Из этого естественного положения следует, что фотон является именно виртуальным переносчиком энергии. Фотон формируется из физического вакуума силовым полем заряда, определенной пространственно-временной конфигурации. При этом фотон создается за счет работы, совершаемой зарядом-инициатором. Будучи поглощенным, фотон передает свою энергию приспособленному для этого вещественному носителю энергии, а сам бесследно исчезает, как виртуальное возмущение пространства.

Таким образом, фотонное действие не является обменным, оно одностороннее и избирательное. Его можно назвать адресно-передаточным, т.к. поглощение фотона происходит избирательно.

Официальная точка зрения, на этот же самый процесс, гораздо богаче и затейливее. По официальному представлению, в волновой структуре фотона создается (формируется) релятивистская масса, имеющая инерцию, т.е. имеющая продольный, конечный импульс, величина которого жестко связана с частотой фотона-волны.

Массивный фотон взаимодействует с внешним гравитационным полем. Обычное при этом пояснение популяризаторов, что масса неподвижного фотона равна нулю, является антинаучным. Неподвижных фотонов не бывает. Таким образом, вопрос должен ставиться следующим образом – есть у фотона масса или у него её нет. Утверждается, что есть. Далее следует двойной стандарт. Позволяется считать, что объект, генерирующий фотоны, тратит на это свою массу, и также позволяется считать, что не тратит.

Оказавшись в гравитационном поле параллельном движению фотона, фотон должен изменять свою энергию, а значит, и свою начальную массу, и свою начальную частоту, не меняя при этом своей скорости. Загадочный процесс может происходить плавно (по Эйнштейну) или скачками (т.е. квантовым образом) и должен наблюдаться как красное смещение характерных спектров молекул и атомов. Эффект тем больше, чем больше гравитационное поле. Это значит, что ядро Галактики должно иметь заметное красное смещение по сравнению с её периферией. Однако этого не наблюдается. Но все спокойны. Статьи и учебники издаются.

Эффект красного смещения спектра наблюдается, но интерпретируется официальной наукой как эффект Доплера.

По официальной точке зрения, масса фотона меняется не только в результате гравитационных взаимодействий, она меняется еще и по воле наблюдателя, который может выбирать ИСО с произвольной скоростью, и, в соответствии с эффектом Доплера, назначать вес фотонов и их импульс.

Итак, мы имеем две существенно отличающиеся точки зрения на одну природную сущность, называемую фотоном. А что же, все-таки, в этих точках зрения общего.

Общее то, что при поглощении, фотон не может поглощаться частично. Это чрезвычайно важное свойство, которое при создании модели накладывает на нее очень существенные требования.

Наличие или отсутствие массы у фотона доступно проверке, как в мысленном, так и в реальном эксперименте.

Рассмотрим систему из неподвижного зеркала и одного фотона, движущегося ортогонально в раскрыв зеркала. Считаем, что все начальные параметры системы (т.е. до момента отражения) известны.

Пусть фотон отразился от зеркала. Мы знаем, что при полном отражении передачи тепловой энергии неподвижному зеркалу не происходит, и частота отраженного фотона точно равна частоте падавшего фотона.

Если бы фотон имел продольный импульс Р, то после отражения импульс фотона должен стать отрицательным относительно ИСО наблюдателя, а его энергия должна остаться прежней. Закон сохранения импульса системы требует, чтобы импульс зеркала возрос на 2Р. Но это невозможно, т.к. при этом неизбежно должна возрасти как кинетическая, так и тепловая энергия зеркала, а она, как экспериментально установлено, остается без изменений. Разрешением этого парадокса, не существующего на самом деле, является признание отсутствия продольного импульса у фотона.

В случае поглощения фотона зеркалом, происходит возбуждение одного из электронов одного из атомов зеркала. А что же происходит дальше, если атом не излучит точно такой же фотон и не реализует фотоэффект. Известно, что температура плохого отражателя возрастет. Значит, наш атом получил возможность толкать соседние атомы. Таким образом, получается, что энергия поглощенного фотона превращается в хаотическое движение атомов зеркала. При этом суммарный прирост импульса поглотителя имеет возможность остаться равным нулю. Но утверждать это из данного эксперимента нельзя. Однако с учетом предыдущего эксперимента вывод однозначный: фотоны не имеют продольного импульса, а значит, не имеют ни массы покоя, ни релятивистской массы.

Таким образом, наблюдаемые при фотоэффекте встречные по отношению к направлению фотонов электроны могут быть либо следствием вторичного рассеяния первичных фотоэлектронов, либо следствием всенаправленного испускания фотоэлектронов.

Подтверждение всенаправленного испускания прояснило бы механизм поглощения фотонов.

Приведенное доказательство выглядит вполне убедительным в рассмотренной ситуации с неподвижным зеркалом. Однако в ситуации с подвижным зеркалом всё несколько усложняется.

Пусть лазер, излучающий фотоны с энергией νh, неподвижен относительно пространства, а зеркало, отражающее луч лазера, движется навстречу лучу со скоростью V. После отражения фотона, его энергия, как известно, увеличится, и это может произойти только за счет потери энергии зеркалом. Это значит, что зеркало либо теряет часть своего импульса, либо изменяет свою температуру. Практика технологии лазерного охлаждения свидетельствует, что вещество, движущееся навстречу лучу света, охлаждается [8].

За чрезвычайно сложное объяснение лазерного охлаждения, основанного на предположении о наличии продольного импульса у фотонов, авторам присуждена Нобелевская премия.

Часть 3.8

Рассмотрим некоторые, не афишируемые, особенности фотонов, которые условно можно назвать странными.

Рассмотрим вызов, который фотон бросает соотношению неопределенностей Гейзенберга. Действительно, скорость фотона заранее известна с известной погрешностью, которую теоретически можно повышать до планковского предела. Это повышение точности измерения не накладывает никаких ограничений на сопряженные измерения. Значит, любой сопряженный со скоростью параметр фотона тоже может быть измерен с высочайшей точностью. Это позволяет представлять фотон в некоторый конкретный момент времени как квантовое возмущение материи с известными координатами и скоростью.

Рассмотрим два фотона, один с энергией ħ, а другой с энергией 2ħ. Первый вопрос, который возникает, чем отличаются два фотона. А именно, сколько пространственных квантов материи задействовано в создании структуры каждого из фотонов, и какие элементы структуры фотона ответственны за количество переносимой энергии.
На эти простые вопросы с непростыми ответами должна отвечать любая модель фотона, любой квантовой теории.

Вопрос об энергии сразу требует конкретизации, а именно, какие формы энергии возможны в структуре фотона? Дело в том, что если фотон действительно движется с максимально допустимой скоростью, то элементы его структуры вообще лишены возможности перемещения относительно друг друга, т.к. это неизбежно вызвало бы превышение скорости света отдельными элементами фотона. Таким образом, с точки зрения ТО, внутренняя структура фотонов совершенно неподвижна.

Применение этого утверждения при интерпретации оптических экспериментов вызовет лавину парадоксов.

Таким образом, однозначно получаем, что фотон не содержит кинетической энергии.

Предположение, что каждый раз при удвоении энергии фотон удваивает количество составляющих его материальных элементов, весьма сомнительно.

Если же фотоны с разной энергией содержат равное количество материальных квантов, т.е. пространственного материала, то можно говорить об одном фотоне с разными внутренними конфигурациями его структуры.

Если же все фотоны отличаются и количественно и структурно, то перед нами целое семейство родственных образований — фотонов.

Необходимо определиться.

Квантовое движение с максимальной скоростью означает, что фотон, или любой другой объект, за один квант времени (в один квантовый цикл) смещается как целое на один пространственный квант. С большей скоростью перемещаться в любом квантовом пространстве принципиально невозможно. Если при этом ни один элемент фотона не меняет своего относительного положения, то это соответствует нашему представлению о принципе движения абсолютно неподвижного объекта.
Всё сказанное относится к скорости относительно пространства.

Здесь придется сделать маленькое отступление по поводу ТО Эйнштейна.
Уникальные свойства фотонов, положены в основу учения Эйнштейна. Скорость фотона объявлена фундаментальным инвариантом ТО. Но конфуз в том, что сами характеристики фотона не вмещаются в рамки ТО, которая не может измерять скорость между фотонами относительно стороннего наблюдателя. Каждому ясно, что для стороннего наблюдателя два фотона по одной прямой сближаются со скоростью 2С. Тогда как по учению Эйнштейна скорость сближения фотонов равна С.

Вот, и академики, которые дали добро на строительство коллайдеров, явно признают этот факт. Но те же академики не хотят посвящать общественность в проблему несовпадения параметров ускорителей и получаемых на них результатов, с прогнозами ТО. Ведь, если сопровождать один из протонов, то он станет привычно легким и неподвижным шариком, а навстречу ему со скоростью близкой к скорости света летит тяжеленный и сплюснутый другой протон, который даже неловко называть таким же.
Каков будет результат столкновения? Это совсем не ёрнический вопрос. Но у ТО нет на него ответа.

По правилам ТО наблюдатель не может непосредственно измерить относительную скорость между двумя сторонними объектами, но он может её рассчитать. По этим правилам получается, что первый фотон удаляется от наблюдателя со скоростью С, а второй фотон приближается со скоростью С. При этом скорость между фотонами тоже равна С. Это математический фокус, не имеющий физического смысла.
Таким образом, учение Эйнштейна принципиально исключает возможность адекватно описывать огромный класс практических ситуаций, и при этом не определяет производимого этой недоступностью эффекта.

Вот реальная ситуация. Один протон в БАК преодолевает 1м за долю секунды со скоростью 0,99999999С, но и второй протон, летящий навстречу, за ту же долю секунды преодолевает еще 1м с той же скоростью. Относительная скорость сближения протонов в коллайдере равна 1,99999998С. Оба протона «живут» в системах, темп времени в которых совпадает, но отличается от нашего времени. Но нас-то интересуют эффекты в нашем времени, а ТО не может ответить на наши вопросы. По ТО, если один протон весит 1 условную единицу, то второй весит 47000 условных единиц. Или наоборот. Где формулы по расчету результатов столкновения? Их нет.

Часть 3.8

Однако вернемся к взаимодействию фотонов с частицами, составляющими атом, а именно, к электрону.

Рассмотрим взаимодействие свободных электронов с фотонами. Пофантазируем на тему, как нейтральный фотон, перемещающийся со скоростью света, может быть поглощен или рассеян одиночным, электроном, и что при этом произойдет с электроном.

Нам известно, что свободный электрон не реализует возбужденные состояния, связанные с его внутренней структурой, т.е. с собственной осцилляцией или с внутренним напряжением. Считается, что такой структуры нет. В этом случае, получив порцию энергии от фотона, электрон имеет только одну возможность — изменить свою скорость.

Если импульс, передаваемый фотоном, равен нулю, то из выше изложенного следует, что одиночный, свободный электрон не может поглотить фотон. Но он не может и изменить энергию фотона, как всякое вещественное тело.

Однако о рассеянии фотонов на электроне ничего определенного сказать невозможно. Из общих соображений, интуитивно, можно предположить невозможность рассеяния фотонов на одиночном электроне. Это предположение основывается на соотношении размеров фотона и электрона. Кроме того, если в эффективный размер электрона включить его поле, то для фотона оно окажется осциллирующим, т.к. ни о каком усреднении говорить не приходится. Если даже рассеяние имеет место, то оно непременно будет случайным и частичным, т.е. часть фотонов из ансамбля рассеивается, а часть нет. Всё это гипотетически.

Однако запрет поглощения не распространяется на ансамбль электронов. В случае взаимодействия ансамбля электронов с фотонами, допустимо рассматривать электронные пары, когда электроны находятся на расстоянии, сопоставимом с размерами фотона, как виртуальный псевдо куперовский объект.

Таким образом, окончательно получаем, что одиночный электрон или ансамбль достаточно разрозненных электронов всегда прозрачен для фотонов.

При отсутствии квантовой теории неподвижного пространства трудно представить, как фотон конкретно взаимодействует с парой условно свободных электронов. Однако известен закон рассеяния фотонов на медленных электронах. Скорее всего, в подобных экспериментах электроны нельзя рассматривать как свободные по причине того, что они находятся в силовом поле установки.
Можно утверждать, что поглощение фотонов или их излучение электронами не наблюдалось.

Здесь можно ожидать возражения, ссылающегося на официальную интерпретацию излучения Черенкова.
Однако сам Черенков, который изучал явление более 10 лет, считал, что излучение вызывается потревоженными атомами из состава среды распространения. Нобелевские же лауреаты сочли излучение Черенкова излучением самих электронов, двигающихся с постоянной скоростью, превышающей скорость света в данной среде. Постоянство скорости электронов при излучении Черенкова никто не измерял. Поверили авторитетам, как поверили и в то, что электрон может производить энергию излучения, не изменяя своей скорости, т.е. без потери энергии [12].

Сейчас в Интернете можно найти анонимные статьи, которые очень аргументировано и профессионально опровергают официальную точку зрения, соглашаясь с первоначальным мнением Черенкова. Анонимность, в данной ситуации, это защита от административных санкций. Видимо, специалисты, публикующие эти статьи, еще не на пенсии.

Таким образом, нет оснований для предположений, что свободный электрон способен поглощать или излучать фотоны.

А что можно предположить в отношении радиоволн?
Казалось бы, что может быть проще. Радиоволны излучаются антеннами. А в антеннах колеблются электроны, которые и излучают радиоволны непосредственно. Всё сказанное – бесспорно, кроме характеристики — непосредственно. Непосредственно – это как?

Часть 3.9

Рассмотрим тормозное излучение.
Разгоним электрон до скорости, близкой к скорости света, и направим его на плоский объект, отрицательно заряженный.
На каких участках, и с какой частотой электрон будет излучать радиоволны, и в каком направлении? Прикинем, сколько всяких возможностей. А связать их не с чем. А ещё, как обеспечить осевую симметрию? А как быть с повторяемостью? Похоже, повторяться сможет только одна ситуация — электрон вообще не будет излучать.

Действительно, исходные данные производят впечатление вполне исчерпывающих, но при этом явно ощущается их парадоксальная недостаточность, а это значит, что в постановке задачи скрыта ошибка.

Ситуация вполне показательная для выявления способов преодоления искусственных парадоксов. Начинать необходимо с выявления использованных стереотипов. В нашем вопросе речь идет об электромагнитном излучении, неотъемлемым свойством которого является колебание. Периодичность электромагнитного излучения обычно задается частотой источника возбуждения. В данной задаче фактор периодичности отсутствует. Вследствие чего мы должны сделать логический вывод: заряд, движущийся с неизменно тормозным ускорением, излучать э.м. волны в линейной среде не может. Получается, что необходимым условием излучения должно являться возвратно-поступательное ускорение заряда. Именно ускорение, а не скорость. Хотя возвратно-поступательную скорость заряда невозможно реализовать без возвратно-поступательного ускорения, формулировка с возвратно-поступательной скоростью искажает суть и маскирует истинную причину излучения. Пространство не реагирует на скорость зарядов, но реагирует на их линейное ускорение. В случае движения со ступенчатой скоростью, как например, это происходит в атомах, при смене энергетических уровней электронов, всякая ступенька в скоростной характеристике движения заряда может рассматриваться как полуволна, но только с точки зрения возвратно-поступательного ускорения, реализующего эту ступеньку. И всё становится на свои места.

Таким образом, утверждение, что всякое ускоренное движение заряда сопровождается излучением – является весьма сомнительным, и скорее всего, ошибочным. Все примеры тормозного излучения, приведенные в справочниках фактически описывают ударное излучение электронов, т.е. излучение в момент ударного столкновения. А в этом случае ускорение является возвратно поступательным импульсом.

Заряд, равномерно движущийся по круговой орбите, возвратно-поступательной составляющей своего ускорения не имеет – и не излучает. Однако проекция кругового движения электрона может иметь возвратно-поступательную составляющую. Но проекция заряда не является физическим объектом, и не может совершать работу, связанную с излучением. Если бы Бор, или его последователи, попытались рассчитать, или хотя бы качественно прикинуть диаграмму направленности излучения заряда, движущегося по кругу, то они давно бы поняли свою роковую ошибку.

Приведенное обоснование естественного отсутствия излучения у стационарных орбитальных электронов не является единственным. Строгое и корректное решение уравнений Максвелла приводит к тому же выводу. Кроме того, из давно известного факта, что петля постоянного тока не излучает, легко, но несколько громоздко, от противного, доказывается, что не излучают и все элементы тока этой петли. Последнее обстоятельство подтверждено экспериментально в опытах с пучностью тока в замкнутом сверхпроводнике.

Возникает уверенность, что для генерации радиоволн необходимо обязательное возвратно-поступательное движение возбуждающего заряда (электрона). При этом механизм распространения радиоволн таков, что пространство реализует только синусоидальные волны. Если движение заряда не синусоидальное, то возбудится некоторый спектр радиоволн, видимо, соответствующий ряду Фурье.

Часть 3.10

Теперь попытаемся определиться с собственными магнитными полями протона, нейтрона и электрона, т.е. со спинами этих элементарных частиц. Экспериментально установлено, что величина спина является квантовым инвариантом. А направление? Интуиция подсказывает, что направление спина свободного нуклона или электрона может быть любым. Вот только измерить это направление технически невозможно, да и к интуиции в квантовом мире надо относиться с осторожностью.

Направление спина, как его ни измеряй, будет определяться совпадением или несовпадением измеряемого спина с ориентацией сенсора измерительного прибора. Это не значит, что реальное положение спина является неопределенным или выбираемым из двух возможных направлений, хотя именно так и трактуется некоторыми теоретиками квантовой электродинамики, плодя разные парадоксы, эпатирующие общественность.

Одни исследователи постулируют, что спин не имеет свойств гироскопа, т.е. спин не имеет инерции и всегда связан с направлением движения своего носителя. Другие исследуют прецессию спина, т.е. считают, что частицы обладают спином-гироскопом.
Но есть экспериментальные данные, которые можно интерпретировать как движение спина по ленте Мёбиуса.

В экспериментах, при взаимодействии электрона с сенсором измерительного прибора, спину приписывается только одно из двух значений, или 1/2, или -1/2. Но это не исходные состояния, которые спин имел до измерения, это результат преобразования, вызванного действием сенсора.

Если в некотором эксперименте спин не является случайной величиной, то серия стандартных измерений даст конкретное соотношение фиксируемых направлений спина. Это соотношение и будет описывать угол отклонения реального направления спина от опорного.

В реальных взаимодействиях, в которых спин оказывает существенное влияние, всё происходит в соответствии с имеющимися реалиями.

Если предположить, что реальный спин всегда параллелен движению и может принимать только два значения, то для полного описания электрона необходимо знать вероятность этих двух значений, а это в используемой квантовой модели равносильно знанию волновой функции.

Однако в этом представлении возникают некоторые принципиальные трудности при описании спина частицы. Если частица неподвижна, то куда направлен её спин. Или, если известен спин неподвижной частицы, то как он поведет себя вначале движения в заданном направлении.

Если же спин является гироскопом, то для релятивистских частиц с нулевой массой покоя и нулевым зарядом, спин физически становится равным нулю, но формально сохраняется равным 1/2. Этот антинаучный подход прививается в квантовую теорию, чтобы скрыть явный парадокс и связанное с ним ошибочное представление.

Открытие спина вскрыло ещё одну проблему квантовой теории, которая пока не решена, да и не поставлена в очередь для решения. Объявив постоянную Планка квантом действия, теоретикам, после открытия спина, пришлось ввести еще один, дополнительный, квант действия, а именно, приведенную постоянную Планка, или постоянную Дирака.

Обе постоянные определяют дискретность энергии фотонов, но при этом являются несоизмеримыми. Физический смысл этой несоизмеримости теоретиков ставит в тупик. Видимо, чтобы затушевать эту проблему, постоянная Дирака перестала упоминаться. Две же постоянные Планка вопросов не вызывают.

Часть 4.1

Освежив нашу информированность в отношении элементов, составляющих атом, попробуем сделать то же самое для атома в целом.

Для начала проведем мысленный эксперимент.
Поместим электрон на достаточно большом удалении от протона, и предоставим частицам полную свободу. Посмотрим, что же может произойти. Практически, такой эксперимент не осуществим. Но схожие ситуации в природе и в других экспериментах возникают.

В публикациях нет данных, свидетельствующих даже о подозрении, чтобы свободный электрон когда-нибудь упал на протон, сформировав при этом нейтрон или нечто иное. Но, если это так, значит, неизбежно в нашем мысленном эксперименте должен образоваться атом водорода.

Наш эксперимент позволяет утверждать, что идеальная плазма, состоящая из равного количества электронов и протонов, при естественном охлаждении в заданном объеме, непременно превратится в атомарный водород. При этом результат не будет зависеть от ориентации спина протонов и электронов; значит, можно быть уверенными, что при приближении к протону электрон закручивается по расширяющейся спирали, тормозит свое движение по направлению падения, и занимает позицию орбитального электрона. При этом, в общем случае, эта орбита изначально может быть не стационарной.

Процесс падения электрона на протон напоминает движение заряженных частиц в магнитном поле, когда легкие заряженные частицы начинают двигаться по спирали. Но наша ситуация богаче нюансами, локальное магнитное поле, связанное с легким зарядом, падает в электрическом и магнитном поле относительно тяжелого, условно неподвижного протона.

Что можно сказать о магнитных свойствах и параметрах образовавшегося атома водорода? Из общих энергетических соображений следует, что суммарный магнитный момент атома должен стремиться к ближайшему энергетическому минимуму, если минимумы есть, или к нулю, если локальных минимумов нет, что не соответствует практике. Для этого, единственный переменный момент, момент орбитального движения электрона, должен компенсировать и собственный спин электрона, и собственный спин протона. А это значит, что спины протона и электрона не должны компенсировать друг друга, по крайней мере, в атоме водорода. Получается, что диаметр орбиты электрона в атоме водорода определяется минимум суммарного магнитного момента атома, т.е. его равенством нулю. Из чего следует, что орбитальный момент атома водорода должен быть близок к единице.

Всевозможные, хаотичные вариации орбитального момента в этом случае будут вызывать только увеличение внутренней энергии атома относительно его стационарного состояния. Это значит, что тепловые и прочие возмущения, испытываемые орбитальным электроном, будут поддерживать его стационарную орбиту, не исключая при этом экстремальных ситуаций, сопровождаемых возможным падением электрона на ядро, например при К-захвате.

Атом явно, квантовым образом взаимодействует со смежным пространством в масштабе постоянной Планка. Но кроме этого внутренние и внешние процессы в каждом атоме происходят в иных, более малых, квантовых масштабах. То, что мы их пока не рассматриваем, не означает, что их нет. Привлечение фононов – недостаточное подспорье.

Часть 4.2

Учебники сообщают, что все атомы нейтральны. Эта прописная истина, примененная без уточняющих оговорок, формирует коварный стереотип, прививающий механистическое видение мира, собранного из нейтральных упругих шариков.

Рассмотрим атом водорода. Поместим пробный заряд (сторонний электрон) в плоскости орбитального спина, на расстоянии, равном двум радиусам атома. Какое поле зафиксирует пробный заряд? Совершенно очевидно, что не нулевое, и не постоянное. Поле будет не только переменным, оно будет знакопеременным. Нулевым оно станет только после усреднения по времени. Из этого очевидного положения следует огромное множество нюансов поведения отдельного атома в составе взаимодействующего ансамбля атомов.

Рассмотрим теперь два соприкасающихся атома, когда их орбитальные моменты параллельны.

В зависимости от положения электронов на орбите, т.е. от их фазовых соотношений, получим огромное множество возможных состояний, а значит и различных взаимодействий данных атомов. Квантовый подход предполагает очень большое, но счетное количество состояний. Классический подход предполагает бесконечное их количество. И то и другое заставляет исследователей обращаться исключительно к статистическим методам.
Попробуем преодолеть это естественное желание.

Итак, два случайно сомкнувшихся атома предоставляют своим электронам возможность сблизиться. Но электроны на разрешенных стационарных орбитах смежных атомов будут избегать взаимного сближения, т.е. они своевременно изменят свои траектории соответствующим образом. Постулаты Бора запрещают электронам маневрировать на своей орбите. Казалось бы, тем хуже для противоестественных постулатов. Но их можно еще спасти. Ведь они сформулированы для свободного атома, а мы уже рассматриваем твердое тело, или процесс соударения атомов.

Так или иначе, это изменение траекторий электронов приводит к тому, что в точке касания геометрических границ смежных атомов поле перестает быть нейтральным даже после усреднения по времени.
Это и есть поле, создающее силы Ван-дер-Ваальса, природа которых считается неизвестной. Таким образом, силы Ван-дер-Ваальса возникают непредсказуемо, и именно в соответствии с ситуацией.

Получается, что в вещественных телах между атомами возникают силы сцепления, вызываемые специфическими конфигурациями силовых полей. Полей, которых до данного сближения атомов не было, т.е. эти силы возникают, в требуемом месте в результате взаимодействия, определяемого характером сближения атомов.

Таким образом, интегральное действие быстропеременных полей нейтральных атомов могут создавать стойкий эффект «клейкой» поверхности.

Чтобы ничего не упустить из характеристик атома водорода, вернемся еще раз к свойствам его элементов. Как известно, в процессе радиоизлучения электроны проводимости движутся в антенне ускоренно, возвратно-поступательно. Частота излучения при этом никакого отношения к величине ускоряющего потенциала не имеет. Частота излучения определяется частотой смены направления ускорения электронов. Нас учат, что увеличивая частоту радиоизлучения, мы увеличиваем энергию единичного кванта, т.е. радиофотона.

Чтобы повысить энергию излучения осциллирующих в решетке проводника электронов надо увеличить производимую им работу, которая определяется соотношением A=S•F=S•m•a. Это означает, что при равной амплитуде колеблющихся электронов, надо увеличивать силу, т.е. увеличивать их ускорение, а это приводит к уменьшению времени единичной осцилляции, что можно интерпретировать как возрастание частоты.

Таким образом, частота в формулах, выражающих энергию излучения, является только косвенным признаком главного энергетического фактора – ускорения, т.е. крутизны фронта процесса.

Приведем аналогичный пример, скорость ветра можно измерять частотой вращения метеорологического вертушка, и ввести эту частоту во все формулы и в размерности единиц измерения. Этот прием не вызовет снижения адекватности модели, но создаст сложности субъективного толка, а также ухудшит наглядность модели, т.е. в конечном счете, все-таки при этом снижается степень адекватности модели, снижается комфорт модели.

Мы уже отмечали, что фотон не может быть осциллятором. Фотон, не имея массы, тем не менее, перемещается почти как частица, а именно, не изменяя пространственную конфигурацию своей структуры. Какой же параметр фотона может обеспечивать его реальную энергию, имитируя при этом его частотное представление. Таким параметром может быть крутизна фронта фотона.

Выбрав частоту мерилом энергии, Планк, уже вынужденно, получил эфемерную физическую единицу – квант действия. С позиций частотного критерия, электрон, колеблющийся с частотой 1 Гц, будет излучать кванты радиоволн, энергия которых равна кванту действия, деленному на продолжительность действия, равной 1 с. Однако продолжительность измерения является параметром метрологическим, назначаемым наблюдателем. А что случится, если электрон будет колебаться с меньшей частотой? Или просто мы выберем другой масштаб времени? Ведь это вполне допустимо. Ясно, что в этом случае изменится величина постоянной Планка. Но это значит, что в природе постоянная Планка, как природная сущность, не существует. Однако кванты энергии, переносимые фотонами, существуют реально. Размерность постоянной Планка можно выбрать любую, какая удобнее. Например, размерность энергии, умноженной на длину. В этом случае функция-коэффициент при константе была бы 1/L, где L или длина волны фотона, или глубина фронта фотона.

Энергия в природе переносится (передается) не только фотонами. Есть и другие носители с другими энергетическими квантами. Одним из таких давно известных квантов энергии и импульса является гравитон.

Еще один, известный носитель, не имеет пока даже названия. О нем не принято даже говорить – он изгой квантовой науки. Речь о кванте электрического поля.

Квант электрического поля осуществляет взаимообмен энергией и, кроме того, обмен импульсом движения, т.е. это не фотон. Какова энергоемкость этого кванта никто не знает. Известно только, что сила кулоновского отталкивания двух электронов в 10^42 раз превышает силу их гравитационного притяжения.

Теоретики квантового описания мира смеют претендовать на полноту квантовой теории, не определив ни одного параметра гравитона, и определив всего один параметр кванта силового электрического поля – скорость его распространения, равную С. При этом, как происходит взаимодействие электромагнитных квантов с электрическими квантами ни у кого нет ни малейшего представления.

Утверждается, если к одному концу длинного металлического проводника поднести заряд электронов, то фронт потенциала будет двигаться вдоль проводника произвольной формы со скоростью света.

Это значит, что электрический квант обладает свойствами, не свойственными ни гравитонам, ни фотонам. Гравитоны движутся сквозь вещество со скоростью много большей скорости света. И гравитоны не создают вторичных, эффективных полей, аналогичных магнитному полю. А магнитное поле — это самое сложное поле, которое нам известно.

Часть 4.3

Попытаемся уяснить роль пространства в формировании электрического и магнитного полей элементарного заряда.

Как бы ни трансформировалось поле движущегося заряда или поле заряда в составе твердого тела, его параметры для неподвижного состояния в свободном пространстве, точно воспроизводятся в любой точке пространства. Для сканирующих полей, периодически испускаемых и втягиваемых, это свойство совершенно естественно. Исходя из этого, можно утверждать, что все параметры электрона, описывающие его состояние, и скорость в том числе, содержатся в изменяющейся структуре ядра электрона. Логичное утверждение.

А теперь еще раз, об этом же, но иначе и подробнее.
Величина скорости электрона, и её направление, постоянно имеют информационное отображение во внутренней структуре электрона, которая изменяется в соответствии с параметрами его движения, и сохраняется неизменной в случае отсутствия внешних воздействий.

То же самое относится ко всем движущимся объектам Вселенной.
Оглянемся на Ньютона. По его определению, инерция – свойство тел сохранять свое состояние в отсутствие внешних воздействий.
Сохранять можно только то, что существует. Это что-то сохраняют тела. Значит, это что-то телам и принадлежит. Но где это что-то?

В атомной структуре тел ничего похожего обнаружить не удалось.

В устройстве атома – тоже ничего похожего.

Получается, что информация о состоянии тел зашифрована либо в элементарных частицах, либо в вещественных квантах.
Такое предположение, в качестве преодоления проблемной ситуации, мы можем сделать в настоящее время. А во времена Ньютона такой возможности не было. Вот и возникла мистическая инерция, и прижилась в форме фундаментального стереотипа.

Сейчас настало время вернуться к этому вопросу, потому что накоплено много новых знаний и возникли новые науки, такие как квантовая теория и информатика.

С точки зрения информатики, все природные взаимодействия являются движением информации, и процессом обмена информацией. Эта новая формулировка, соответствующая новому представлению, предоставляет новые возможности в познании окружающего мира. И первое, на что указывает новый подход это то, что первоэлемент, из которого созданы и вещество, и поле, не может быть примитивной сущностью, подобной максимально малой и абсолютно симметричной, аморфной точке. Более того, приходит понимание, что концентрированная сложность первичного элемента (материального кванта) соизмерима с распределенной сложностью Вселенной.

Так что же заставляет любое тело двигаться по инерции? Только сила инерции. Но у силы инерции в каждом теле необъятное поле реализаций. Каким образом происходит выбор и поддержание единственной, правильной силы? Ответ на этот вопрос один: структура всех материальных объектов постоянно содержит реальную информацию о параметрах своего движения. Набор этих сохраняемых параметров и есть инерция.

Законы сохранения констатируют факт недоступности параметров инерции для произвольной манипуляции ими. А это условие выполнимо только при недоступности внутренней структуры материальных объектов квантового уровня для вмешательства с верхних уровней.

Таким образом, универсальный материальный квант является объективным пределом чувственной делимости материи. У материи, организованной на основе универсальных, материальных квантов, нет средств для своего уничтожения или расщепления.

Таким образом, мы пришли к догадке (предположению), что квантовый мир реализует законы движения информации. Эта догадка не устраняет прежние наши достижения, она расширяет поле наших возможностей, оберегая нас от бесперспективных устремлений.

Законы движения информации включают в себя и математику, и геометрию, дополняя их операторным исчислением. И всё это должен знать квантовый физик.

Первопроходцы квантовой теории дошли до границ, определяемых математикой, и даже преодолели их, осознав необходимость операторного представления, но вынужденно приостановились, не владея знанием кибернетики, и не подозревая о её значимости.

С квантовых позиций совершенно очевидно, что движущийся заряд должен отличаться по своей внутренней структуре от неподвижного заряда. Движущийся заряд создает магнитное поле в первичном (неподвижном) пространстве. Это поле, как известно, невозможно измерить, двигаясь вместе с зарядом, т.к. при этом соответственно меняются характеристики чувствительных элементов (сенсоров) измерительных приборов. Этот эффект линейного принципа относительности был ошибочно абсолютизирован Галилеем.

Однако, если Галилей просто промолчал по поводу границ применимости принципа, то Эйнштейн, введя нелинейные преобразования координат Лоренца, акцентировал безграничную абсолютизацию принципа относительности, но уже для нелинейного мира.

Практически все явления природы, включающие в себя круговое движение, могут экспериментально подтвердить ошибочность абсолютизированной относительности. Однако при бытовых скоростях эффект отклонения действительных параметров от прогнозов ТО так мал, что его долгое время не могли обнаружить. В настоящее время уже можно обнаружить несоответствие природных явлений прогнозам учения ТО. Можно, но научная дискуссия уже давно перестала быть научной и перешла в сферу интриг власть имущих, где действуют совсем другие законы.

Часть 4.4

Однако продолжим. В момент столкновения атомов, при сближении орбитальных электронов произойдет изменение их орбит, в строгом соответствии с возникшей ситуацией. Эта коррекция орбит реализуется во времени малыми порциями, которые, возможно, много меньше по сравнению с постоянной Планка, т.к. фотонного излучения при малых интенсивностях столкновений, похоже, не происходит.

Исходя из того, что при свободном состоянии атома орбиты его электронов реализуют некоторую динамичную, но устойчивую конфигурацию, ответственную за химический стандарт, будем относиться к вынужденным изменениям орбит под действием сторонних сил, как к упругой деформации.

Это, казалось бы, естественное соглашение требует осмысления.
Уберем внешнюю помеху (пробный заряд или соседний атом), т.е. уберем внешние силы, вызывавшие деформацию, — и деформация исчезнет. И что дальше? Восстановит ли атом свое прежнее состояние? Если ожидать абсолютного восстановления, то вряд ли. Атом перейдет в новое, отличное от прежнего состояние, т.е. промежуточная деформация оставит свой информационный след. Возникает философский вопрос. Какова мера идентичности атомов с одинаковым составом нуклонов? Что поддерживает существующий в природе химический стандарт атомов, т.е. какие инвариантные параметры сохраняются в атоме для поддержания химических свойств?

Мы уже обращали внимание на то, что атом бережно несет свое ядро, оберегая его от экстремальных воздействий. Кроме того, мы знаем, что атомы одного элемента, с равным числом электронов в оболочке, но с разной конфигурацией ядра, изменяют свои химические свойства. Например, искусственно полученное золото имеет зеленый цвет.

Таким образом, логично предположить, что за химический стандарт атома несет ответственность конфигурация атомного ядра.

Попытаемся мысленно сконструировать атом гелия. Для этого возьмем готовое ядро, т.е. альфа-частицу, запустим вокруг неё по произвольным траекториям два электрона, и поместим наш атом в гелиевую среду. Начнется чехарда сближений и удалений электронов, сопровождаемая всевозможными их ускорениями, в том числе и продольными относительно линейной скорости электрона. Продольные, знакопеременные ускорения будут вызывать электромагнитное излучение, которое будет отнимать энергию электронов, и те будут соответственно изменять свои траектории. Нам известно конечное состояние электронов оболочки и известен закон их поведения в составе стационарного атома, а именно: электроны обращаются вокруг ядра, излучают порциями (квантами) при скачкообразном переходе из возбужденного состояния на низшую, стационарную орбиту, и при этом, всевозможные возмущения траекторий электронов не приводят к падению электронов на ядро.

Параметры стационарных траекторий электронов реализуют энергетический минимум атомной системы. Из этого закона-предположения следует, что в результате, казалось бы, хаотического начального излучения электроны займут такие орбиты, на которых они уже не излучают, т.е. двигаются по своим стационарным орбитам с постоянной линейной скоростью. Одно такое решение для атома гелия совершенно очевидно: оба электрона перемещаются по одной круговой орбите, находясь в её противоположных точках. То, что непозволительно для притягивающихся планет в планетарной модели, совершенно естественно для отталкивающихся электронов. Однако это естественное гипотетическое решение не вписывается в запрет Паули. Необходимо дополнительно произвести фазировку спинов для электронов, а именно, чтобы спины изменялись синхронно и в противофазе.

Предположим, что линейные скорости электронов в атоме гелия равны скорости электрона в атоме водорода. В этом случае, учитывая действие поля удвоенного заряда ядра атома, ослабленное полем противоположного, постоянно удаленного электрона, каждый электрон находится в поле эффективного заряда величиной 1,75е. Получается, что радиус атома гелия несколько меньше по сравнению с атомом водорода. Это подтверждается физическими свойствами гелия, например, именно гелий, а не водород, обладает максимальной проницаемостью.

Дополним ядро гелия ещё одним протоном и нейтроном. Получим ион лития, размер которого ещё несколько уменьшится по сравнению с атомом гелия, но это еще не размер атома, а только размер иона. А теперь предоставим иону лития возможность захватить недостающий электрон. На первой оболочке мы для него места не придумали, у природы это тоже не получилось. Значит, этот электрон начинает формировать вторую электронную оболочку.

Мы совершим ошибку, если будем рассматривать движение валентного электрона лития относительно его ядра, т.к. реально он движется вокруг иона, эффективный суммарный заряд которого всё время перемещается и меняется по величине. Так, какова же динамическая конфигурация атома лития?
Исследуя атом водорода, мы уже получили следующий результат. Если вторая оболочка будет сферической, то её радиус будет отличаться от радиуса первой оболочки несущественно. При этом электронам будет сложно реагировать на конфигурацию ядра атома. Получается, что траектория электронов второй оболочки должна сместиться относительно ядра атома. Эта траектория может напоминать эллипс, а может и не напоминать, тем более, что траектория будет объемная.

Здравый смысл подсказывает естественное предположение – полностью избежать излучающих траекторий невозможно. Поэтому атомы и излучают почти непрерывно, не давая накапливаться энергии, отнимаемой от теплового движения среды, а также от поглощенной, сторонней электромагнитной энергии.

Мы получили вторую электронную оболочку с одним электроном, отличную от первой, и на этом наши возможности качественных оценок пока исчерпаны. Однако экспериментальные данные свидетельствуют о второй оболочке с восемью электронами. Нам явно не хватает дополнительных предположений.

Из решений уравнения Шрёдингера следует, что траектории электронов в атоме принципиально не могут быть ни круговыми, ни сферическими. Обращаясь вокруг ядра атома, электроны то приближаются к ядру, то удаляются.

Обстоятельство, что валентные электроны могут глубоко и регулярно проникать вглубь оболочки атома, интенсивно взаимодействуя с неоднородностями поля протонного ядра, утверждают нас в мысли о зависимости химического стандарта атома от конфигурации ядра. Это дает основание для поиска корреляции между пространственной конфигурацией ядра и динамичной структурой электронной оболочки, а в конечном счете с нюансами химических свойств данного атома, включая молекулы.

Можно из оболочки атома удалить почти все валентные электроны, но атом с гарантией восстановится, если при удалении электронов не было повреждено его ядро. Это подтверждает, что носителем химических свойств атома является ядро. При этом реализация этих свойств происходит посредством взаимодействия орбитальных электронов смежных атомов.

Чтобы корреляция конфигураций ядра и оболочки была устойчивой, необходимо постоянное и интенсивное взаимодействие электронов с ближним полем протонов ядра. Ясно, что круговые траектории электронов данных условий обеспечить не могут.

Интуиция подсказывает, что в обеспечении разнообразия химических свойств вещества симметрия электрических полей плохая помощница. Напротив, для поддержания высокого стандарта химических свойств атомов требуется устойчивая, детерминированная асимметрия. Необходимую стабильность химических свойств атома может обеспечить только устойчивая и вполне определенная конфигурация ядра атома.

А зачем, спрашивается, природе понадобилось несимметричное магнитное поле.
Всем уже ясно, что основой конструкции атомных ядер является связка протон-нейтрон, отвергающая сферическую симметрию. Это она определяет пространственную конфигурацию любого ядра. Мелочь, конечно, но атом водорода – это изотоп дейтерия, а не наоборот. Но такие мелочи часто уводят в сторону от истины.

Исходя из структурной модели ядра, в основе которой лежит связка протон-нейтрон, становятся понятными некоторые уникальные свойства гелия. Принцип минимальности энергии равновесных состояний диктует для атома гелия нитевидную конфигурацию ядра с протонами на концах. Эта упругая, способная вибрировать, конструкция обеспечивает гелию и сверхтекучесть, и осмическую сверхпроницаемость.

Кроме того, видно, что при конструировании ядер тяжелых элементов из ядер дейтерия и ядер гелия, свобода в выборе конфигураций таких ядер весьма ограничена. А это и обеспечивает высокий стандарт для структур атомов каждого элемента. При современных исследованиях, и моделировании структур атомов выпадает из внимания фактор надежности и повторяемости природных атомных конфигураций.

Ажурная конструкция ядра предоставляет природе гораздо больше возможностей. Но если это так, то плотность атомных ядер должна быть заметно меньше нуклонной плотности, т.к. конфигурация атомного ядра должна быть достаточно просторной. Вот обширное поле деятельности экспериментаторам и теоретикам по выявлению пространственных структур ядер атомов.

Кроме того, ажурная конструкция ядер менее всего противится процессу холодного синтеза элементов, происходящего в биологических и других объектах. Холодный синтез, отрицая капельную модель ядра, встречает упорное сопротивление официальных структур, проявляемое в замалчивании явления.

Чем больше нуклонных пар в тяжелом ажурном ядре, тем менее жесткой становится объемная конструкция ядра. Естественная потеря прочности восполняется дополнительными связями — нейтронными вкраплениями. Это самое естественное предположение. Из этого предположения следует, что нуклоны должны быть способны множить свои магнитные полюсы, которые обеспечивают прочность межнуклонных связей. Это принципиально новая гипотетическая информация о свойствах нуклонов. Искусственное или случайное внедрение в структуру атомного ядра лишних нейтронов приводит к формированию случайных связей, которые искажают вибрационные характеристики ядер, вызывая преждевременный разрыв нуклонных нитей, что вызывает частичный распад ядра.

Теория строения ядра с учетом его естественной радиации уже давно нуждается в ажурном ядре, эта теория фактически предрекла рыхлое атомное ядро [14]. Но творческой смелости авторов хватило только на кристаллическую решетку модели ядра.

Собственные колебания ажурной конструкции, в соответствии с распределением Максвелла, должны реализовывать (хоть и редко, но неизбежно) критические амплитуды колебаний элементов конструкции, которые и вызывают ядерный распад. Таким образом, все химические элементы, кроме водорода, можно считать радиоактивными. При этом, для значительной части элементов период полураспада запредельно велик.

Стройное, логическое построение теории ажурного ядра разбивается о постулат Стандартной Модели, предписывающий существование внутриядерных сил. Этот постулат требует, чтобы ядро было максимально компактным, т.е. оно должно иметь нуклонную плотность (капельное ядро). А еще этот постулат требует, чтобы кроме внутриядерных сил притяжения, существовали некие контактные силы отталкивания, которые согласованно противодействуют внутриядерным силам притяжения. Об этих силах говорить не принято, т.к. мысли на эту тему заводят в непролазные мистические дебри.

Чтобы прервать неизбежную цепь из притягивающих и отталкивающих сил, авторы Стандартной Модели изобрели принцип конфайнмента. В рамках этого принципа возможно существование

Чтобы прервать неизбежную цепь из притягивающих и отталкивающих сил, авторы Стандартной Модели изобрели принцип конфайнмента. В рамках этого принципа возможно существование сил с произвольной зависимостью напряженности этих сил от расстояния. Таким образом, сильное взаимодействие обеспечивает и ядерные силы притяжения, на требуемом расстоянии, и ядерные силы отталкивания на меньшем расстоянии.
При сомкнутых нуклонах в ядре атома, ядерных сил нет. Однако стоит нуклонам раздвинуться, они появляются и растут с ростом расстояния, а затем круто исчезают. Очень необычное поведение силового поля, но иначе ничего не получается.

Предположим, что такие внутриядерные силы притяжения существуют. Тогда о них кое-что можно сказать, что и сделано в Стандартной Модели. Что же это за силы.

Это силы притяжения, которые действуют на расстоянии, т.е. это силы, создающие силовое поле.

Это поле является совершенно уникальным, т.к. его напряженность увеличивается при увеличении расстояния между нуклонами.

Эти силы не зависят от знака заряда, и в этом плане аналогичны гравитации.

Эти силы почему-то не действуют на электроны и позитроны. А это, учитывая выше изложенное, означает, что внутриядерные силы не зависят не только от знака заряда, но и от величины зарядов и величины массы, и значит, зависят от чего-то иного, о чем авторы нам не сообщают.

Предполагаемая конфайнментная зависимость интенсивности поля от расстояния не укладывается в логику обменных взаимодействий.

Закон сложения конфайнментных полей неизвестен и загадочен. Этот недостаток компенсируется универсальным квантовым принципом, принятым теоретиками на вооружение, а именно: всё происходит так, как происходит в природе, как установлено экспериментом и отображено в математической модели явления.

Часть 4.5

Анализ известных и предполагаемых свойств атома, а также их обобщенный анализ усложняется тем, что пока ещё не создана удовлетворительная физическая модель силового поля. Целью философского осмысления является, либо выбор из предложенных гипотез одной модели, которая наиболее близка к истине, либо самостоятельное построение такой модели на основе предложенных гипотез, но отличной ото всех.

В настоящее время наилучшей считается модель, предложенная разработчиками так называемой Стандартной Модели. Её создавали лучшие умы академической школы.

Для экономии сил и времени доверимся выбору академической школы, и согласимся, что Стандартная Модель является лучшей из всех к этому моменту предложенных.

Стандартная Модель после того, как был обнаружен бозон Хиггса, была объявлена полностью завершенной, хотя ряд проблем в ней решены с привлечением мистики.
В природе всё естественно, и в этом смысле – всё просто. Это сентенция Ломоносова. А естественность является производным понятием от причинности. Естественно – значит, в полном соответствии с причиной.

 

В Стандартной Модели обменное взаимодействие является не сканирующим, а прицельным, хотя авторы его так не называют. Взаимодействующие частицы без промаха испускают друг в друга переносчиков энергии и импульса, обеспечивая своей меткостью законы сохранения.

Эйнштейн, еще до создания Стандартной Модели, осознавая, что напрашивающееся прицельное притяжение – это нелепость, попытался найти решение с использованием кривизны пространства-времени, не нуждающейся в прицельных характеристиках. Но в этом ключе задача оказалась тоже неразрешимой, а надуманное решение Эйнштейна получилось еще более нелепым, чем прицельное взаимодействие.

Более-менее скрываемая абсурдность и Стандартной Модели и ТО тем не менее проявляется в абсурде, который уже невозможно скрыть: в одновременной применяемости этих, якобы фундаментальных, но несовместимых моделей.

Авторы Стандартной Модели, следуя принципу наименьшего зла, при выборе из двух абсурдов (кривизна и прицельный обмен), предпочли обменное взаимодействие – и хотя оказались в тупике, но все-таки ближе к цели.

В Стандартной Модели, на первый взгляд, всё очень неплохо, кроме двух положений.
Непонятно, как удаленные объекты взаимодействия прицеливаются друг в друга специализированными частицами, например, глюонами, носителями сильного взаимодействия, или гравитонами, носителями гравитационного взаимодействия.

Если допустить, что носители полей испускаются не прицельно, то куда деваются промахнувшиеся глюоны и гравитоны, и как восполняется их убыль в структуре частиц, участвующих во взаимодействии.

Вопрос этот в Стандартной Модели не замалчивается, но решается на уровне мистических, произвольных постулатов. Постулируется, что в составе частиц собственно глюонов нет, а они черпаются из окружающего пространства в неограниченном, потребном количестве. На этом утверждении обоснование заканчивается, как бы предлагая оппонентам додумать всё остальное самостоятельно. Действительно, с этого места в обосновании явно заметна аналогия глюонов с фотонами, а фотоны никаких вопросов не вызывают.

Атом тоже производит фотоны из пространства в неограниченном количестве. Но атом ведь не берет готовые фотоны, а производит их за счет сторонней энергии, участвующей в природном кругообороте. Глюоны же черпаются беззатратно.

Для устранения явных недостатков Стандартной Модели позволим себе предложить её небольшую коррекцию, приводящую Стандартную Модель в разряд сканирующих. Авторы Стандартной Модели почему-то избегают затрагивать информационный аспект любого обмена. Устраним и этот недостаток. Расширим возможности носителей поля. Пусть и гравитоны, и глюоны, и пр. переносят не только информацию о величине энергии и импульса, но и другую необходимую информацию.

Вдумаемся. Чтобы любая частица могла изменять свое состояние (в том числе и движение) сообразно окружающей обстановке, она должна каким-то образом «знать» эту обстановку. Обменное взаимодействие вроде бы решает эту проблему, но взамен ставит новую проблему – энергетическое восполнение. А чтобы снять и эту проблему, необходимо признать и ввести в научный обиход совершенно новый вид квантовых взаимодействий, а именно, таких, которые не требуют энергетических затрат.

Таким взаимодействием является предварительный, информационно-квантовый обмен, в котором всё происходит, как и в Стандартной Модели, только носители всегда испускаются во все стороны равномерно, и все носители обязательно возвращаются к исходной частице. Эта частица после информационного обмена не изменяет состав своей структуры, а только сообразно обстановке изменяет её конфигурацию, готовясь к реализации энергичного движения. Это фундаментальное свойство квантового, информационного обмена, при котором возможное количество испускаемых носителей является инвариантной характеристикой исходной частицы.

После завершения фазы интегрального информационного обмена, материальный объект реализует соответствующее движение, которое уже имеет энергетическое представление.

Повторим. Чтобы квантовые взаимодействия сложились в логически завершенный квантовый цикл, необходимо, чтобы переносчики информации не исчезали в бесконечности, а все возвращались к своей частице-носителю. После информационного, беззатратного обмена следует сбалансированное, т.е. соответствующее физическим законам, квантовое перемещение вещества и силовых полей.

Революционная новизна информационного квантового обмена состоит именно в том, что оно не требует энергетических затрат. Это обстоятельство непривычно, и теоретически недоказуемо. Это фундаментальный квантовый постулат, подтверждаемый практикой.

Ни масса частиц, ни их заряды не меняются во времени. А самое важное, что не меняются их силовые поля в их исходном представлении.

Силовые поля частиц не изнашиваются от интенсивного употребления. И с этим свойством материи на поприще практической науки мы встречаемся впервые. Ранее все обходились философским положением о вечности материи.
Сейчас возникает философский вопрос совсем другого плана: способна ли материя развиваться на квантовом уровне?
Вечна ли структура кванта, и постоянны ли её конфигурационные возможности?

Часть 4.6

Вне Стандартной Модели, другие авторы предложили другой выход из ситуации с энергетическим обеспечением обменных взаимодействий. Но им тоже не удалось избежать обращения к мистике. По мнению этих авторов, свободный электрон (а с ним и все элементарные частицы) как локализованный вещественный объект в природе не существует. В природе есть лишь волновая функция электрона, которая в момент взаимодействия рекомбинирует и коллапсирует в частицу. Данное представление в таком откровенном виде формулировать не принято, но суть его именно такова.

Виртуальная волновая функция любой элементарной частицы энергетических затрат не требует, и при этом в пространстве не ограничена. Таким образом, в мистической модели частиц, представленных волновой функцией, проблема с источником энергии решена.

Такая интерпретация волновой функции является ярким примером того, как ранее допущенная ошибка (возможно мелкая) вынуждает придумывать вычурные, ошибочные решения, которые затем внедряются в жизнь и становятся чудовищными, вредоносными стереотипами.
После устранения из Стандартной Модели одного внутреннего противоречия, связанного с судьбой испущенных носителей поля, остается не решенной еще одна проблема, касающаяся ядерных сил; а именно, модель не увязывает сбалансированный комплекс сил и полей, с обеспечением другой официальной модели — модели термоядерной реакции, якобы позволяющей добыть дешевую энергию в практически неограниченном количестве.

Оценим ситуацию. Речь идет о термоядерной реакции синтеза гелия из атомов водорода. Представим, что необходимый комплект нуклонов для создания атома гелия, за счет всяческих ухищрений, и с огромной затратой энергии, собран на границе поля конфайнмента, т.е. границе поля ядерных сил или поля сильного взаимодействия. Но откуда эта граница возьмется, ведь на месте будущего ядра еще ничего нет. Значит, нуклоны надо сближать до границы их собственного ядерного поля, т.е. гораздо ближе, чем хотелось бы термоядерным энергетикам.

Представим, что инженерам-энергетикам удалось-таки сблизить нуклоны. Что дальше? А дальше следует термоядерная фаза синтеза гелия. Нуклоны должны получить от силового поля внутриядерных сил импульс чудовищной величины, и с огромной скоростью устремиться навстречу друг другу. А путь-то у них крошечный, а энергию нужно накопить и затем непременно отдать не малую, да еще нужно корректно остановиться, чтобы обеспечить конечный результат термоядерного сжатия, а именно, ядро гелия.

С остановкой вроде бы есть надежды. При определенной дистанции между нуклонами внутриядерные силы в угоду авторам исчезают, а кулоновские силы продолжают действовать, и всё увеличиваются. Вот они-то и остановят протоны, которые сближаются с огромной скоростью. Именно на этом участке торможения должно происходить излучение гамма- квантов с гигантской энергией. В звездах, предположительно, эта энергия гамма-квантов постепенно понижается за счет многоступенчатого переизлучения. Как это осуществить в промышленном реакторе – никто не знает, и проблему не озвучивают. Это всё относительно протонов.

А что остановит нейтроны? Получается, что нейтроны должны вступить в истинное контактное взаимодействие, и судя по конечному результату, должны либо упруго отразится, либо мягко остановиться.

Итак, протоны будут остановлены тормозным излучением, и согласно сомнительной теории тормозного излучения, излучат несколько штук (скорее всего два) гигантских гамма-кванта, освоить которые надо еще суметь.

У нейтронов судьба ни чуть не легче. Они вынуждены колебаться с гигантской частотой в воронке поля конфайнмента. Излучать при этом они не могут. В этом случае их вибрация является носителем очень высокой парциальной тепловой энергии, которая будет постепенно передаваться окружающей среде, что является положительным фактором при её освоении.

Остановимся на этом — и одумаемся. Зачем природе вся эта избыточная внутриядерная чрезмерность? Ну, преодолели ядерные силы силу кулоновского отталкивания, а зачем дальше-то ускорять и сталкивать нуклоны, да ещё с такой силой. Только затем, чтобы на ничтожном участке торможения выделилась энергия, многократно превосходящая по величине огромную кулоновскую (ядерную) энергию атома.

В рамках конфайнмента сверх избыточных сил можно избежать. И тогда, вроде бы, всё станет хорошо. А как же в этом случае с термоядерной, дешевой энергией? Про неё авторы Стандартной Модели похоже забыли.

Авторы термоядерных циклов в эволюции звезд должны доводить свои теории (гипотезы) до логического конца, которым является кругооборот вещества и энергии в природе. Добыв энергию из разрозненного водорода методом соединения его в гелий, авторы должны указать путь возвращения водорода в природу, иначе кругооборот прервется.

Вот и получается, что очень вредная эта наука – философия. Конструктивной помощи, практически, ни какой, а запретов всяких, хоть отбавляй.

Может, и нет никакого сильного взаимодействия.

Тогда, что же удерживает протоны в ядре атома?
Подсказка содержится в структуре атомного ядра. Совершенно очевидно, что ядра атомов собраны из устойчивых и прочных модулей протон-нейтрон и альфа-частиц.

Проанализируем ситуацию в этом плане.
Никто не пытается придать электрическим полям уникальное свойство гравитации, а именно: невозможность её экранирования. Однако теорий с использованием экранируемых кулоновских полей тоже никто не развивает.

Как электрические поля экранируются, и какими эффектами сопровождается экранирование – никто в квантовой теории и в электродинамике, похоже, не озабочен. Но если принять, что электрическое поле протона, экранируемое нейтроном, представляет кардиоиду вращения, то сразу становится понятным природный принцип сборки атомного ядра из стандартных модулей протон-нейтрон. Действительно, если ядра собраны из модулей n+p, которые соответственно ориентированы и соответственно размещены в пространстве, то никаких специальных ядерных сил не потребуется, похоже, что вполне достаточно сил магнитного притяжения.

Ажурная конструкция ядра, собранная из протон-нейтронных пар, которые позволяют значительно уменьшить силы контактного отталкивания пар, практически не уменьшает общего потенциала кулоновского поля. Поля протонов в ядре атома аналогичны сжатым и защелкнутым пружинам, и несут огромную потенциальную энергию, готовую выделиться при подходящих условиях.

Такая конструкция, собранная из элементов с полем в форме кардиоиды, реализует принцип арбалета. Почти всё, что необходимо для создания напряженного ядра, уже известно. Вот мнение академика А.А. Тяпкина, по поводу забытой идеи нобелевского лауреата Ю.Швингера [15].

Цитата. «…Я могу сослаться лишь на гипотезу крупного теоретика, лауреата нобелевской премии за 1965 год Юлиана Швингера. Он в 1969 г. [16] высказал весьма неожиданное предположение о том, что магнитные заряды, которые безуспешно пытались обнаружить, на самом деле в виде дипольных моментов входят в основу любого вещества; они принимаются нами за особые коротко действующие ядерные силы, необычно большие по величине. Отметим, что эта удивительно красивая и смелая гипотеза прежде всего отвечает симметрии электрического и магнитного взаимодействия, заложенной в уравнениях Дж. Максвелла, а значительная величина магнитного заряда по сравнению с электрическим зарядом, как это было показано еще в 1931 году П. Дираком, непосредственно следует из законов квантования этих зарядов. Коротко действующими же эти магнитные силы оказываются в силу того, что в веществе они существуют только в виде сильно связанных магнитных диполей. Эта почти забытая физиками идея Ю. Швингера не только красивая, но и удивительно рациональная в своей основе, поскольку сводит ядерные силы к магнитным».
Конец цитаты.

Осталось только догадаться, как в природе реализуется сжатие нуклонов в дейтерий, а затем и во все тяжелые ядра. Однако и это уже не самый большой секрет.

Выдающиеся астрофизики современности: Амбарцумян, Арп и другие, — заочно пришли к согласию, что все галактики в наблюдаемых сейчас состояниях созданы из своих центральных ядер. Амбарцумян нигде не пишет, что нет ни каких Черных Дыр в центрах галактик. Не пишет потому, что он законопослушный ученый, а критика ТО директивно запрещена АН СССР в 1964 году. Но всё, что Амбарцумян пишет о ядрах галактик, свидетельствует (кричит), что Черных Дыр там нет.

Вот там, в ядрах галактик и должна быть кузница тяжелого вещества (тяжелее водорода), которое астрофизики почему-то объединяют под названием металлы, см. [17]. Это тяжелое вещество разносится звездами по космосу, и служит источником жизни и в качестве конструктивного материала, и в качестве источника энергии.

Таким образом, с точки зрения природной целесообразности и наблюдаемой в мире гармонии – сильное взаимодействие не выдерживает ни какой критики.

Заключение.

Подведем итог.
Философский подход склоняет к мысли, что электрическое поле единичного заряда (любого типа) является импульсным и, следовательно, периодическим и сканирующим.

Ядро заряда, перемещаясь в пространстве квантовым образом, в состоянии фазовой неподвижности, изотропно испускает (генерирует) в смежное пространство определенное (достаточно большое) количество носителей поля.

Максимально возможное количество испускаемых носителей является инвариантом элементарного заряда любой природы: или электрического, или гравитационного. Эти инварианты являются фундаментальными константами мироздания.

Носители поля, заполняя собою смежное пространство, сферически или шарообразно, взаимодействуют со всеми сторонними объектами. Затем, все обязательно возвращаются к своему носителю, передавая ему информацию с характеристиками текущей окружающей обстановки. Этой информации достаточно для реализации всех законов природы.

Принцип импульсно-периодического квантового взаимодействия описан в [1] на примере гравитационного взаимодействия, которое является простейшим вариантом полевых взаимодействий.

Однако когнитивное мышление приемлет только такие взаимодействия, в которых испущенный носитель поля непременно поглощается приемником, и становится его частью. Отсюда диктат терминологии: обмен носителями, обменные взаимодействия.

Первопроходцы-открыватели закономерно оставляют после себя научный продукт, не всегда доведенный до желаемой кондиции. Задачей последователей и продолжателей является доведение первичного научного материала до требуемых стандартов.
Однако это происходит не всегда.

А причина, видимо, в чрезмерном преклонении и угодничестве чинопочитателей от науки перед научными авторитетами первопроходцев.

Если случайные ляпы авторитетов не устраняются даже после их обнаружения, то это вина научного сообщества. Это означает, что сообщество больно.
Но болезнь не вечна.
ИСТОЧНИКИ
1. Леонович В.Н., Концепция физической модели квантовой гравитации. Интернет http://www.sciteclibrary.ru/rus/catalog/pages/10168.html.
2. Теория бета-распада Ферми, Интернет, Википедия.
3. Леонович В.Н., Соотношение неопределенности, и его профанация, Интернет.
4. Леонович В.Н., Природа сверхпроводимости, Интернет.
5. Леонович В.Н., Импульс фотона, фотонный двигатель и философия; Интернет .http://www.sciteclibrary.ru/rus/catalog/pages/13311.html.
6. Леонович В.Н., Загадка космических аппаратов «Пионер», Интернет.
7. Багров В.Г., Открытие неклассической логики поведения квантовых объектов — одно из удивительных достижений современной физики; Интернет.
8. Филипс У.Д., Лазерное охлаждение и пленение нейтральных атомов. УФН, том 169, №3, март 1999 г.
9. Леонович В.Н., БАК и решающая проверка ТО; Интернет http://www.sciteclibrary.ru/rus/catalog/pages/13174.html.
10. Амбарцумян В.А., Нестационарные явления в мире звезд и галактик. Интернет.
11. Арп Хальтон, «Слабые квазары дают неопровержимые доказательства не скоростной природы красного смещения». Интернет.
12. Леонович В.Н., Интрига излучения Черенкова. Интернет.
13. Трубин Виталий, Модель ядра атома – кристалл с ромбической сингонией. Интернет.
14. Трубин Виталий, Генезис и структура ядер атомов. Интернет.
15. Тяпкин А.А., Обнаружение аномальных свойств при исследовании Черенковского излучения. ОИЯИ, Дубна.
16. Швингер Ю. Магнитная модель материи, //УФН, 1971, Т. 103, С.355.
17. Леонович В.Н., Происхождение солнечной системы на основе квантовой парадигмы. Интернет http://www.sciteclibrary.ru/eng/catalog/pages/11553.html
18. Форд К., Мир элементарных частиц, М., 1965.
19. Физический энциклопедический словарь. М. Советская энциклопедия, 1983.
Нижний Новгород, февраль 2016 г.

 

 

КОНЦЕПЦИЯ ФИЗИЧЕСКОЙ МОДЕЛИ КВАНТОВОЙ ГРАВИТАЦИИ

Леонович Владимир

Материал статьи в обработке

КОНЦЕПЦИЯ ФИЗИЧЕСКОЙ МОДЕЛИ КВАНТОВОЙ ГРАВИТАЦИИ

(Принципиально квантовая модель мира)

Четвертая редакция

Ключевые слова: гравитон, гравитация, принцип относительности, квантовая теория, теория относительности, прецессия, коллайдер.

В работе представлена концепция физической модели квантового гравитационного взаимодействия, реализуемого в физическом, принципиально квантовом пространстве.
Предлагаемая концепция является продуктом синтеза комплекса выверенных знаний и современных представлений о материи. Синтез произведен на основе принципиально квантового подхода и философского представления о гармонии мира.
Полученные в результате выводы, как правило, только расширяют традиционные представления об устройстве мира, но иногда все же противоречат общепринятым положениям, однако это обстоятельство не является разрушающим, т.к. предлагаемые новые положения полностью заменяют отрицаемые теории и концепции.
Предложенная модель не является законченным продуктом, и ждет коллективной доработки. Однако и в данном состоянии уже может применяться при решении многих научных и практических задач, а также при решении проблем философии.
Например, концепция вскрывает механизм замедления времени в движущихся объектах и логически обосновывает природу этого явления; объясняет мгновенное распространение гравитации; вскрывает физический смысл гравитационной постоянной;  предоставляет принципиальную возможность практического измерения скорости произвольной инерциальной системы (изолированной лаборатории) относительно неподвижного пространства.

1. ВВЕДЕНИЕ

Научный прогресс привел научное сообщество к общему признанию квантовых представлений, но еще не убедил научное сообщество во всеобъемлющем характере квантовых принципов устройства мира. Причина в том, что принципиально квантовое устройство мира теоретически доказать невозможно, а практических знаний для этого еще недостаточно. Оптимальность выбора философской позиции, представленной на уровне свода исходных постулатов, не может быть доказана только с помощью логических построений. Критерием истины мировоззренческой позиции является практика.
В сложившейся ситуации необходимо сделать следующий шаг к окончательному философскому выбору.
Или мир является принципиально квантовым, и в нем нет места бесконечному делению материи на подобные части.
Или квантовые явления существуют наравне с бесконечным делением материи.
Авторы квантовых теорий не делают соответствующих заявлений, но большинство из них, по содержанию изложения, явно склоняется в сторону компилятивного устройства мира. Как следствие, основательного теоретического анализа принципиально квантового устройства Вселенной — не существует.
Предлагаемая концепция призвана положить начало в ликвидации этого белого пятна в системе знаний о квантовом, предполагаемом устройстве мира.

2. ОБЩИЕ ПОЛОЖЕНИЯ И КВАНТОВАЯ ГЕОМЕТРИЯ

2.1 Общие положения
Итак, ниже рассматривается модель материального квантового мира, состоящего исключительно из материальных квантов.
В рамках предлагаемой концепции квант материи  понимается в соответствии с философским представлением, воплощающим идею о всеобъемлющей дискретной структуре всего сущего. Все вещество, все физические поля, все свободное пространство вселенной состоит из взаимодействующих между собой материальных квантов.
Определение кванта.
Материальный квант – минимальный, структурный элемент конкретной материальной сущности, обладающий всеми фундаментальными свойствами данной сущности.
Поясним, что понимается под минимальностью. Минимальность понимается как предел делимости в рамках данной сущности. Например, молекула воды является квантом сущности вода. Этот квант можно расщепить на атомы, но нельзя разделить на молекулы воды. Будучи расщепленным на атомы, квант воды перестает существовать как данная сущность, превращаясь в кванты атомарного водорода и кислорода.
Между квантами материи ничего нет, и быть не может. Это положение равнозначно отрицанию абсолютной пустоты. В самом обобщенном смысле, данная точка зрения интерпретируется как принцип неразрывности материи.
Квантовый принцип распространяется и на более высокие уровни организации материи: элементарные частицы, атомы, молекулы, фотоны. Но только на первом, низшем уровне действует принцип неразрывности, не оставляющий места компилятивному подходу.
Концепция предполагает наличие внутренней, динамичной структуры квантов на каждом из квантовых уровней.
Например, каждый атом вещества, являющийся вещественным квантом, тоже нельзя разделить на атомы данного вещества, но можно расщепить, превратив в нуклоны или в иные сущности, например, в другие атомы.
Таким образом, постулируя структурную динамическую природу материального кванта, предлагаемая концепция не отрицает беспредельную делимость материи, а лишь вводит естественные уровни делимости, позволяющие вести исследование материи на доступном уровне, не испытывая помех от искусственных парадоксов.

Объектом исследования предлагаемой концепции является пространственный квант.
Положения концепции не конфликтуют с существующими квантовыми теориями, т.к. пространственные кванты в этих теориях просто не рассматриваются.  За основу квантовой структуры материи в этих теориях выбрана постоянная Планка «h». Постоянная «h» не является физическим квантом, т.е. минимальным элементом сущности, т.к. ни какую сущность не представляет. Кроме того, квантовые теории, использующие «h», оперируют физическими величинами, выражаемыми дробными значениями «h», что несовместимо с понятием кванта.
Постоянная Планка – это универсальный квантовый масштаб широкого, но не всеобъемлющего, класса явлений.

Существующий мир, как развивающаяся система, состоящая из квантованной материи, не мог бы называться принципиально квантовым, если бы время тоже не было квантованным. Однако определять квант времени пока преждевременно, ограничимся только утверждением о его существовании.

Квантовые структуры, как основа мироздания, с давних времен привлекали внимание мыслителей, которые достигли известных успехов в понимании квантовой организации. Не будем тратить время на изобретение велосипеда, и воспользуемся существующими достижениями в этой области.
Общепризнанно, что квантовое пространство неразрывно, а пространственный квант не может быть деформируемым, и имеет конечный размер.
Эти три безобидных на первый взгляд положения, взятые вместе, приводят к удивительным следствиям.
Во-первых, и это наиважнейший логический вывод, который никто не хочет замечать: квантовое пространство является механически неподвижным (нешевелимым), и значит, условно представляет квантовый монолит.
Из этого, достаточно неожиданного для многих положения, следует следующий логический вывод.

Если относительное перемещение квантов невозможно, то всякое движение возможно только посредством обмена информацией.
Вывод такой емкий, что на этом месте стоит приостановиться и подумать, как это может быть и как это можно соотнести с тем, что мы видим и ощущаем повседневно.

Представим пространство, составленное из одинаковых кубиков Рубика,в форме ромбического додекаэдра, находящихся в начальном (нулевом) состоянии. Переведем один кубик в ненулевое состояние. Если кубики устроены так, что один кубик может перевести смежный кубик в свое состояние, и после этого самому перейти в нулевое состояние, то этот акт передачи информации внешне (в эффективном представлении) будет неотличим от механического перемещения помеченного кубика.

Почему этот принцип движения практически не обсуждается?
Причина видимо в том, что никто не хочет иметь дело с нешевелимостью элементов квантового пространства. Эта, ранее, давно отвергнутая идея, требует ревизии всех гипотез динамичных пространств, и отрицает установившееся механистическое мировоззрение. В этой ситуации, дабы сохранить мир и покой в научных представлениях о движении, непременно связанного с перемещением элементов пространства, квантовое пространство исподволь подменили понятием эфир, одарив его некоторыми квантовыми признаками, которые делают его похожим на идеальную жидкость.

В создавшейся ситуации самым привлекательным качеством идеальной жидкости является то, что она не оказывает механического сопротивления движению тел. Здесь не обошлось без лукавства. Дело в том, что идеальная жидкость обеспечивает желаемую идеальную текучесть только в конечном объеме и обязательно без жестких границ, да еще непременным условием является малая скорость движения тела. Действительно, если мысленно поместить идеальную жидкость в абсолютно жесткий замкнутый сосуд, и мысленно промоделировать процесс перемещения несжимаемых элементов этой жидкости относительно сосуда и относительно друг друга, то каждый сразу поймет, что такое перемещение невозможно при любой форме квантов этой жидкости. Идеальная жидкость в жестком объеме становится абсолютно твердым телом. Этот простой и убедительный эффект для многих окажется неожиданным. Но он неизбежен. Кроме того, этот эффект реализуется и в открытом, но бесконечном пространстве, т.к. перемещение одного любого элемента требует перемещения бесконечного количества других элементов, а учитывая конечность времени единичного действия, любое перемещение становится невозможным.

Ни в одном учебном пособии, использующем понятие идеальной жидкости, автор не встречал описания этого простого и естественного эффекта (свойства).

Ещё одним  логическим выводом, следующим из свойства нешевелимости, является то, что в природе не может быть специализированных квантов различных сущностей. Это, при условии механической неподвижности квантов, совершенно очевидно. А это значит, каждый пространственный квант должен поочередно представлять любую материальную сущность, а из этого следует, что все кванты устроены одинаково, т.е. квант из состава любого вещества устроен одинаково с квантом поля, а  также с квантом свободного пространства (хорошая аналогия с кубиком Рубика). Эти кванты различны, пока содержат конкретную информацию, и неразличимы при отсутствии информации или при наличии идентичной информации.
Совершенно естественно, что квант с минимумом информации представляет свободное пространство, т.е. физический вакуум.

Автор просит читателя обратить внимание на количество новых, вызывающих протест положений, изложенных выше на одной странице, при почти полном отсутствии принципиально новых предположений. Всё изложенное является результатом вскрытия замалчиваемых фактов, и их логического осмысления.
Мысль об абсолютной универсальности материального кванта не раз посещала великих мыслителей, но всякий раз, упомянув эту идею и не найдя механизма её воплощения, они вынужденно откладывали её в долгий ящик.

Схожую идею А. Эйнштейн высказал в 1920 г.: «…общая теория относительности наделяет пространство физическими свойствами; таким образом, в этом смысле эфир существует… Однако этот эфир нельзя представить себе состоящим из прослеживаемых во времени частей; таким свойством обладает только весомая материя; точно так же к нему нельзя применять понятие движения» ([1], т. 1, с.682).
Смутно. Но видимо, яснее выразить свою мысль он не мог, как не смог развить и применить её в рамках своей теории.

Читателю, знакомому с устройством компьютера, непременно придет ужасающая мысль о виртуальности всего происходящего в квантовом мире, который предлагается данной концепцией. Не спешите с выводами, переход количества в качество иногда дает потрясающие эффекты. Тем более, что перед нами не просто виртуальное действо, а эмуляция наших представлений о реальности, а это приводит к извечной проблеме: что первично?

Так или иначе, выводы, приведенные здесь, основаны на интуиции выдающихся мыслителей, подкреплены накопленными человечеством знаниями, логичны, и оспорить их невозможно, с ними можно только упрямо не соглашаться.

Перемещение информации в квантовом пространстве происходит по аналогии с передачей эстафеты. Хотя в таком представлении передвижения квантов в бытовом, механистическом смысле не происходит, но и отличить кванты друг от друга после завершения процесса невозможно. Это позволяет условно представить этот процесс как механическое перемещение квантов. В этом случае привычное представление о движении сохраняется. Необходимо только отказаться от сопутствующего представления о раздвижении среды при движении тела.
Примем это соглашение, чтобы не затруднять описание и сохранить привычное восприятие движения.
Здесь необходимо ввести некоторые естественные ограничения, соответствующие действующим законам сохранения. Квант передает (транслирует) свою информацию только одному из смежных квантов, а после передачи — полностью её теряет (забывает). Это положение, если его дополнить требованием полноты передачи информации, можно трактовать как самый общий закон сохранения — закон сохранения информации, из которого следуют все остальные законы сохранения.

Приняв закон о сохранении информации, можно начать изучение принципов её перемещения в квантовом пространстве. И здесь нас ждет много неожиданного, хотя и вовсе не нового.
Определенный выше принцип перемещения является прямым воплощением идеи Декарта о всепроникающем пространственном эфире. В его время идея не могла быть воспринята на конструктивном уровне, и четыре века повторялась  без критического анализа и без попытки её физической реализации в модели пространства.

В начале ХХ века человечество, вплотную подойдя к решению проблемы, так и не сделало решающего шага. Этому помешала авантюрная и лукаво ложная гипотеза Эйнштейна.

Вот что писал о физическом вакууме истинный гений, Г.А. Лоренц.

Цитата.

«Действительно, одно из важнейших наших основных предположений будет заключаться в том, что эфир не только занимает всё пространство между молекулами, атомами и электронами, но что он и проникает все эти частички. Мы добавим гипотезу, что, хотя бы частички и находились в движении, эфир всегда остаётся в покое.

Мы можем примириться с этим, на первый взгляд поразительным, представлением, если будем мыслить частички материи как некоторые местные изменения в состоянии эфира. Эти изменения могут, конечно, очень хорошо продвигаться вперёд, в то время как элементы объёма среды, в котором они наблюдаются, остаются в покое».

[Стр.32, Г. А. Лоренц. Теория электронов. М.: ГИТТЛ, 1953].

Это высказывание Лоренца можно использовать как краткое изложение сути данной статьи.

Будучи неосознанным, но тем не менее реально действующим и наблюдаемым, принцип все проницаемости физического вакуума порождает некоторые свойства вещественных объектов, которые постоянно ставят исследователей в безвыходный тупик, понуждая их выдумывать близкие к реальности, но ошибочные интерпретации. Этот прием постепенно заводит науку в безоглядный тупик, выход из которого есть, но его всё труднее найти.

В конце ХХI века проблема квантового перемещения в квантовом пространстве была решена практически. Но, по иронии судьбы, решение было найдено в обособленной среде промышленных программистов, что привело к длительному неведению научного сообщества о случившемся факте.
Ноу-хау программистов приобрело известность только после воплощения этого принципа в теории клеточных автоматов, появившейся совсем недавно.

2.2 Квантовая геометрия
Квантовое пространство, которое, как уже выяснили, является нешевелимой структурой, естественно является анизотропным.
Это пространство необходимо отображать в рамках специализированной квантовой геометрии.
Квантовая геометрия – это геометрия, в которой в качестве точки используется квант, как базовый элемент с заданными конечными параметрами. Примером может служить квантовая геометрия паркета. Законы квантовой геометрии будут зависеть от параметров базовых элементов и от количества типов базовых элементов, которых, как было показано, у материи всего один.

При попытке рассмотрения реального пространства, как квантового образования, привлекает внимание очевидное противоречие, а именно, наблюдаемая изотропия реального евклидового пространства, и явная анизотропия предполагаемой квантовой геометрии этого же реального пространства. Это противоречие кажется неразрешимым, если следовать стереотипу мышления, согласно которому в природе реализована только одна геометрия.  Логика фактов приводит к другому выводу: реальный квантовый мир должен отображаться двумя геометриями, одна из которых сформирована и вложена в другую.
Переход от квантовой геометрии к евклидовой происходит в результате статистических усреднений, происходящих на уровне больших квантовых ансамблей, образующих фотоны и первичные элементы вещества – элементарные частицы.
Статистическое преобразование геометрий будет более эффективным и нормированным, если одним из фундаментальных свойств элементарных частиц будет непреложное нормированное движение, а именно: нормированное обязательное вращение, т.е. спин.
Таким образом, практическая евклидова геометрия, и её  математический аппарат, являются принципиально статистическими, т.е. описывающими статистические параметры мира. А это значит, что в евклидовой геометрии ни одна математическая модель никогда не будет абсолютно точно описывать реальный квантовый объект.
Нам не дано измерить что-либо абсолютно точно, т.е. с нулевой квантовой погрешностью. Непонимание этого обстоятельства приводит к катастрофическим последствиям при интерпретации соотношения неопределенностей Гейзенберга, когда сплошь и рядом одно из сопряженных измерений полагают точным, а само соотношение неопределенностей из неравенства превращают в равенство.
Попыток структурировать Евклидову геометрию на основе базовой квантовой геометрией пока не предпринималось. Возможно, это и является причиной отсутствия продуктивных идей, способных объяснить механизмы реализации квантовых парадоксов.

Сформулируем несколько достаточно очевидных аксиом и определений квантовой геометрии, которые потребуются ниже при описании квантовой модели гравитации.
По аналогии с геометрией Евклида все положения квантовой геометрии будем формулировать для условно гладкой плоскости.
Фрагмент плоского слоя сотового квантового пространства изображен на рис. 1.
К обоснованию выбора сотовой структуры обратимся чуть ниже.

Рис.1. Пример прямых линий в квантовом пространстве.

1) Точка — наименьший из всех возможных и неделимых объектов квантовой геометрии, т.е. минимальный базовый квант материи.
Выводы.
В квантовом пространстве не существует объектов с размерами меньше базового кванта, и тем более, не существует объектов с нулевыми размерами.
Размер базового кванта является первичным эталоном протяженности и в квантовой системе единиц равен единице.
2) Линией называется неразрывная последовательность точек.
3) На заданном отрезке линии количество точек является счетным, и определяет длину линии в квантовом масштабе.
4) Прямолинейный отрезок – отрезок линии, соединяющий две произвольные точки, и имеющий наименьшую длину.
Примечание – Прямую линию в квантовой геометрии естественнее называть кратчайшей.
5) Через две заданные точки можно провести, либо несколько кратчайших линий, количество которых конечно, либо всего одну. Если кратчайшая линия одна, то она в этом случае называется гладкой.
6) Линия, образованная последовательным переносом заданного прямолинейного отрезка, называется прямой периодической линией, а переносимый заданный отрезок – ее условным (задаваемым) периодом.
7) Кратчайшая линия называется лучом, если она является периодической и её период есть наименьший из всех возможных.

Из всех возможных квантовых структур, и соответствующих им геометрий, в данной модели рассматривается только условно сотовая, с одним базовым элементом, являющимся ромбическим додекаэдром, что в дальнейшем будет обосновано. Однако читатель может выбрать любой другой базовый элемент, например, куб и вести параллельное исследование альтернативной структуры. Ничего хорошего не получится.

Кванты на рисунке условно изображены круглыми, хотя по условиям непрерывности должны быть либо двенадцатигранными (в плоскости – шестигранными), либо шарообразными, но тогда — взаимопроникающими.
Правильных двенадцатигранников в природе не существует, таким образом, наш двенадцатигранник будет соответственно искривленным, что не имеет никакого значения для геометрических свойств квантовой структуры.
На рис.1 изображены три типа отрезков: 1-2 – кратчайший, гладкий отрезок или иначе луч с периодом «1»; 1-3 (черный и серый) – два равных кратчайших отрезка с длиной 16, черный отрезок это луч с периодом «3».
В данном примере через точки 1 и 3 можно провести три параллельных луча, смещенных на 1 по направлению 2;1, кратчайших отрезков можно провести больше.
Квантовый луч, кроме направления может иметь дополнительные квантовые характеристики: плоскость поляризации, период и пространственную фазу. Эти характеристики для официальной квантовой теории определяют как раз те самые скрытые параметры, о которых говорил Эйнштейн.
В приведенном примере поляризация луча совпадает с плоскостью рисунка.
Произведенный краткий анализ особенностей квантовой геометрии уже позволяет выявить важнейший параметр перемещения любого квантового объекта в пространстве. Из естественного предположения, что за один квант времени объект может переместиться только на один материальный квант, следует вывод о наличии максимально возможной скорости перемещения информации в квантовом пространстве. И эта скорость равна фундаментальной константе Vф=dX/dT=1, где  dX – пространственная протяженность кванта, равная единице, а dT – протяженность временного кванта, также равная единице. Таким образом, наличие максимально возможной скорости перемещения является естественной и специфической характеристикой любой принципиально квантовой структуры. Vф заведомо больше скорости света, но совсем незначительно.
Из анализа соотношения вложенных геометрий совершенно ясно, что скорость света C не может быть равной фундаментальной константе Vф, а должна быть несколько меньше, т.к. скорость света изотропна относительно направления, и значит, является результатом статистического усреднения, учитывающего спиновое вращение.
Максимальная скорость распространения в квантовом пространстве может быть реализована только объектами, не имеющими спина, или имеющими единичный размер, например, гравитонами.
Существование предельной скорости перемещения информации, в квантовом представлении является азбучной истиной. Вне квантовых представлений, это явление приходится постулировать и придумывать для этого экзотические механизмы реализации.

Принимая во внимание полученные выше теоретические выводы, можно сделать очень важный практический вывод: факт существования предельной скорости распространения в реальном пространстве свидетельствует о возможном квантовом устройстве мира. Это является дополнительным аргументом в пользу истинности концепции квантового мировоззрения.

Субъективно неощутимый переход от квантовой геометрии к классической возможен только при наблюдении достаточно крупных квантовых образований. Чем меньше квантов в элементарной частице или в ее осколках, тем явственнее должны проявляться переходные и остаточные свойства, присущие квантовой геометрии. Именно на легких частицах наиболее отчетливо обнаруживаются «странные» явления, которые не укладываются в привычные представления классической физики и классической геометрии. К таким явлениям относится интерференция электронов, реализующаяся в одиночной последовательности когерентных частиц.
Поскольку природа связей и сил, обеспечивающих образование элементарных частиц из квантов, пока неизвестна, то нельзя исключать возможность колебательных процессов в  самих частицах. Это следует из того, что любая абсолютно жесткая пространственная конструкция из квантов (т.е. элементарная частица)  в нешевелимом квантовом пространстве распространяться не сможет, не варьируя свою квантовую конфигурацию. При перемещении заданной пространственной конфигурации, она неизбежно должна испытывать эффект принудительных вариаций конфигурации квантов, как бы вибрацию формы и всей структуры элементарной частицы, вызываемую сотовой анизотропией пространства.

Скорее всего, наблюдаемые, якобы волновые, свойства электронов, являются следствием собственных колебаний электронов и их полей, которые взаимодействуют с явно колеблющейся границей (за счет теплового движения) используемых отверстий-диафрагм. Эти границы сформированы электронами оболочек поверхностных атомов. Однако во многих интерпретациях опытов с интерференцией, диафрагмы описываются и анализируются как идеальные геометрические отверстия.
Наверное, здесь уместно упомянуть об особой квантовой форме движения элементарных частиц – о спине. Поскольку спин необходим природе для реализации вложения двух геометрий, то спин должен быть неотъемлемым свойством элементарных частиц. А это значит, что спин не должен участвовать в обменных взаимодействиях частиц, что и обнаруживается в экспериментах.
Необычное поведение спина частиц при экспериментальных измерениях, наталкивает на мысль, что спин свободных частиц не имеет фиксированного направления. А это означает, что спин, возможно, является кувыркающимся, т.е. частицы вращаются последовательно вокруг всех возможных осей вращения.

3. КВАНТОВЫЕ ВЗАИМОДЕЙСТВИЯ

Получив некоторые начальные представления о квантовой геометрии, можно приступить к исследованию особенностей квантовых взаимодействий.
Общее состояние кванта описывается оператором, содержащим аналитические  функциями только в качестве отдельных аргументов. Состояние кванта изменяется в соответствии с присущими ему алгоритмами.

Состояние кванта может изменяться в результате внешних воздействий и в результате внутренних квантовых процессов.
Всякое квантовое взаимодействие для рассматриваемого кванта реализуется только с одним из 12-и соседних квантов.
Дальнодействие реализуется методом эстафеты.

Дальнейшее изложение материала требует введения дополнительного признака классификации явлений. Признака, разделяющего их на реальные физические и реальные метафизические явления.
Понятие метафизический имеет множество смысловых значений. Чтобы не плутать в терминологии, будем ориентироваться на свое определение, взяв за основу определение Аристотеля.
Метафизика — это недоступная для нашего восприятия и вмешательства реальность. Реальность, которая не может не быть, т.к. известны следствия, вызываемые её причинным воздействием.
Метафизическое явление, принципиально не допуская активного вмешательства исследователя, безусловно реализует принцип причинности.
Понятие «метафизический» охватывается понятием «черного ящика», но таковым не является.
Предполагаемая далее, динамичная структура кванта является абсолютно и принципиально недоступной для нашего вмешательства и наблюдения, и таким образом относится к метафизическим объектам.
Все последующие описания структуры универсального кванта являются функциональными и предположительными.
Истинность произведенного выбора определяется адекватностью поведения модели по отношению к реальным процессам.

Введем несколько определений.
Единичное квантовое событие — квантовое взаимодействие, вызывающее согласованное изменение состояний двух контактирующих квантов.
Квантовое действие — квантовое взаимодействие, приводящее  к изменению внутренней, информационной структуры квантов, но не вызывающих согласованного изменения состояний двух контактирующих, взаимодействующих квантов.
Событие всегда вызывается действием, но не всякое действие вызывает событие.
Теперь, на основе сформулированных определений, можно определить и квант времени.
Квант времени – это минимально возможный интервал ожидания между двумя последовательными событиями, относящимися к одному материальному кванту.
Обратим внимание, дав строгое определение кванта времени, мы не опирались на официальное определение времени.
Официальное определение времени сформировано на интуитивном представлении авторитетов, не владевших основами квантовой теории.
Кроме того, данное нами определение, несмотря на его формальную строгость, недостаточно конкретно в смысле практического применения. Но в рамках модели, приведенной в действие, оно приобретет конкретный и естественный смысл, который поможет нам понять и множественную суть пользовательского времени.

События являются одновременными, если относятся к одному кванту времени, т.е. произошли в один и тот же квантовый интервал. Это, формально простое определение, имеет очень глубокий физический смысл, который выяснится в процессе анализа гравитационного взаимодействия.
Из приведенных выше определений следует, что в модели нет места бесконечно малым величинам. Ноль в квантовом представлении означает отсутствие, и не более. Деление на ноль недопустимо – и, значит, не влечет появление бесконечности.
Попробуйте разделить три яблока на присутствующих, если их число меняется от трех до нуля. Каким образом здесь можно получить бесконечность?
Манипуляции с инвертируемыми бесконечностями – это удел фальсификаторов.

Природные, первичные эталоны в физическом представлении недоступны непосредственному субъективному восприятию, но косвенно могут быть количественно оценены благодаря вторичным природным эталонам и фундаментальным измеряемым константам. Таким образом, некоторые количественные параметры кванта могут быть количественно определены в заданной системе макро единиц, с соответствующим масштабом и доступной погрешностью. Так, например, экспериментально установлено, что dT;10^-46 с.
Субъективное восприятие формируется суммарным квантовым воздействием, воспринимаемым через посредство цепи физических сенсоров, заканчивающейся нашими органами чувств, а это означает, что субъективное восприятие является результатом усредненного коллективного квантового воздействия. Таким образом, квантовая структура и квантовое устройство мира — это объективные реалии, а наше статистическое восприятие в формате классической геометрии – это субъективно воспринимаемый, реальный, но только эффективный мир, который допускает неадекватное (искаженное или ошибочное) субъективное восприятие.
Осознать смысл эффективности воспринимаемого нами мира, можно хотя бы на примере цветных фотонов, которых не существует в природе при нашем отсутствии.

Эволюция на выживание формирует в человеке приемы мышления, определяемые как «принцип экономии мышления», следствием которого являются стереотипы мышления. Кардинальное изменение представлений об устройстве мира, связанное с осознанием квантовой структуры материи, требует сознательной, кропотливой ревизии сложившихся стереотипов. Без этой ревизии легко попасть в ловушку самообмана.
Одним из устойчивых стереотипов  является представление о пространстве как невесомой и несжимаемой идеальной жидкости. Если при описании пространства пользоваться аналогиями, такими как эфир или идеальная жидкость, то отдаленной (и не желательной) аналогией свободного квантового пространства может быть бесконечный монокристалл.
Квантовая природа свободного пространства осознается не каждым и не сразу, но и согласившись с этим положением, не все до конца понимают, к чему это приводит. Если материальное, свободное пространство состоит из квантов (образовано квантами, по определению), то может ли быть что-нибудь между квантами, кроме других квантов? Если – да, то перед нами комплексное пространство, состоящее из материальных квантов и из промежуточного нечто, обычно понимаемого как геометрическое, абсолютно пустое пространство или пространство, заполненное аморфной неструктурированной материей. Выбор позиции – это философский выбор.

Учитывая обстоятельство, что мир был квантовым всегда, и незнание этого факта не мешало адекватному (в основном) восприятию окружающей действительности, можно понять, почему с приходом квантовых представлений сложился еще один, псевдонаучный стереотип. Этот стереотип состоит в уверенности, что квантовые эффекты проявляются только в микромире, и несущественны для макромира. Однако, это не всегда так.
Дело в том, что следствием признания квантовой природы мира, должно быть признание факта отсутствия в природе бесконечно малых физических величин и бесконечно малых силовых полей. Это в свою очередь приводит к выводу об отсутствии радиальных полей бесконечной протяженности. Осмысление этих обстоятельств, должно приводить к формированию новых представлений о макромире,  выявляющих совершенно новые проблемы. Например, возникает вопрос, который ранее просто не мог возникнуть перед исследователем.
Есть ли принципиальное различие для гравитационного взаимодействия большого и малого тела в следующих ситуациях:
— каждое из двух тел находится в силовом поле другого тела;
— малое тело находится в поле большого тела, а поле малого тела не достигает границы большого тела;
— ни одно из тел не попадает в поле другого тела, но поля имеют общую область;
— силовые поля тел не имеют общих областей.

Ситуация, при которой тела находятся на расстоянии, при котором их силовые гравитационные поля не пересекаются, имеет самый простой и очевидный ответ: взаимодействие полностью отсутствует. Но ведь так не было никогда. Этот простейший вывод служит причиной возникновения серьезной проблемы. При полном отсутствии взаимодействия, идеи теории относительности из разряда спорных переходят в разряд мистических, т.к. непонятно: как «узнают» тела о своей относительной скорости при отсутствии всякого взаимодействия.

4. ГРАВИТАЦИОННЫЕ ВЗАИМОДЕЙСТВИЯ

При построении модели гравитации использовались следующие исходные положения, рассматриваемые как непреложные истины, т.е. постулаты:
1. Мир материален и познаваем. Свободное пространство материально.
2. Материя имеет квантовую структуру и неразрывна. Физическая сущность кванта материи неизменна во времени и в пространстве.
3. Движение — неотъемлемое свойство материи, и является мерой ее изменчивости.
4. Время – обобщенная универсальная характеристика изменчивости материи, устанавливающая причинно-следственную связь, как невозможность реализации следствия одновременно с причиной. Время необратимо.
5. Взаимодействия материальных объектов реализуются только посредством контактирующих квантов.
6. Материя, обладающая характеристикой массы (вещество), испытывает взаимное гравитационное притяжение, которое невозможно экранировать.
7. Основой существования бесконечных процессов являются циклы.
8. Вселенная представляет устойчивую информационную систему, в которой во всем пространстве обеспечивается абсолютная реализация законов сохранения информации (в том числе импульса и энергии), реализация законов диалектической логики,   а также реализация всех других фундаментальных физических законов.

Последний постулат может показаться неожиданным и спорным по отношению к приоритету информации.
Однако выводы, следующие из  данного постулата, наблюдаются во все времена, в форме конкретных законов. Речь идет об известных законах сохранения, и ещё законе всемирного тяготения, которые выполняются в любой точке вселенной с нулевой погрешностью. Но это и означает, что любое событие можно и нужно рассматривать как акт взаимного обмена информацией, осуществляемого в рамках законов сохранения информации.
Вне законов квантовой информатики невозможно сформулировать корректное определение одновременности, а также невозможно описать или реализовать ни какой процесс, в котором обеспечивается абсолютно точное исполнение законов сохранения.

Абсолютная прозрачность свободного пространства и абсолютное отсутствие сопротивления любому инерционному движению диктуют единственный способ реализации перемещения в монолитном квантовом пространстве — это принцип эстафеты, где в качестве эстафетной палочки от кванта к кванту передается только информация.
Если принять, что квант времени dT не изменяется при переходе от одного материального кванта к другому, и не изменяется при переходе из одной области пространства в другую, то из экспериментального факта постоянства скорости света относительно пространства следует, что квант dT является инвариантом  и общесистемным параметром Вселенной.
При этом нам известно, что все объекты Вселенной, независимо от вещества, из которого они состоят, имеют одну и ту же предельную скорость перемещения, а именно:
dX1 /dT =…=dXn /dT=C.
Учитывая оба этих обстоятельства, приходим к строгому и очень важному выводу, являющимся первым экспериментальным подтверждением нашего теоретического предположения о квантовой структуре мира.
Все возможные типы вещественных и полевых квантов, в качестве эталонов протяженности являются идентичными, т.е. все имеют одинаковый размер.

Для реализации перемещения по принципу эстафеты материальные кванты должны иметь не просто одинаковое устройство и одинаковый размер, но также должны иметь способность изменять состояние своей внутренней структуры в полном соответствии с реализуемым материальным объектом (полем, частицей или свободным пространством). При этом сохраняются общие качества, присущие всем квантам в плане последующих структурно-функциональных реализаций.
Таким образом, повторим еще раз, любой материальный квант, перестраивая свою внутреннюю структуру, может представлять все возможные формы существования материи.
Признание этого, может быть неожиданного, но совершенно логичного вывода приводит к следующему, чрезвычайно важному обобщению.
Все пространство вселенной равномерно и неразрывно заполнено квантами идентичными по устройству, способными трансформировать свою внутреннюю структуру в зависимости от реализуемого в данный момент объекта. Текущее различие или идентичность, рассматриваемых квантов определяется только их информационным наполнением. Таким образом, все кванты идентичны по возможности своих трансформерных реализаций.

Квант-трансформер представляется объектом поразительно сложным. Универсальность единой конструкции кванта диктует необходимость философского переосмысления установившегося представления об отношении информации и материи.
Традиционно, любая информация об объекте воспринимается как характеристика, которая может быть условно отчужденна от данного объекта. Иначе говоря: вещество и поле – материальны и первичны, а информация о них – не материальна и вторична.
В формате рассматриваемой концепции, информация, передаваемая от кванта к кванту, предстает в качестве взаимодействующего объекта, а первичная материя, не участвуя ни в каких перемещениях, только изменяя свое внутреннее состояние в допустимых пределах, сохраняя при этом свои базовые свойства, является универсальной средой.
Эта среда обеспечивает процесс (технологический алгоритм) информационных взаимодействий.
Здесь уместно привести еще одну цитату из речи Эйнштейна в Ноттингеме в 1930 году: «Мы приходим к странному выводу: сейчас нам начинает казаться, что первичную роль играет пространство; материя же должна быть получена из пространства, так сказать, на следующем этапе. Пространство поглощает материю. Мы всегда рассматривали материю первичной, а пространство вторичным. Пространство, образно говоря, берёт сейчас реванш и «съедает» материю. Однако всё это остаётся пока лишь сокровенной мечтой» ([1], т. 2, с.243). Конец цитаты.
Ясно, что здесь под материей Эйнштейн понимал вещество.

Конверсия материального механистического взаимодействия в информационную реализацию снимает ряд физико-философских проблем.
В информационном представлении практически исчезает проблема прочности и износоустойчивости вещества, т.к. при любом взаимодействии, даже при взрыве ядерной бомбы, собственно квант никаких нагрузок, кроме информационно-нормированных, не испытывает.
Все физические процессы предстают всего лишь объективной интерпретацией (эффективным представлением) информационных взаимодействий с их результатами. Это означает, что каждому физическому закону, сформулированному в макро представлении, можно сопоставить соответствующий информационно-квантовый закон.
Таким образом, в дальнейшем под информационными взаимодействиями будем подразумевать любые взаимодействия, рассматриваемые в формате предлагаемой квантовой модели.

Очевидно, что произвольно взятый квант, находящийся в состоянии с наибольшей симметрией, т.е. с наименьшей информативностью, должен представлять свободное пространство. Назовем это состояние кванта – нулевым, а квант в этом состоянии – пространственным, подразумевая только его состояние, формирующее свободное пространство.
Таким образом, логически приходим к тому, что наш материальный мир является гармоничной информационной системой, реализующей все взаимодействия и процессы по законам, присущим этой системе.
Обозначенные контуры модели квантового пространства в сочетании с уже известными характеристиками, которые оно должно реализовать, сами начинают диктовать дополнительные свойства, которыми должен обладать материальный универсальный квант.
Так, для реализации движения в формате передачи эстафеты, квант должен обладать свойствами копирующей матрицы, создающей свою копию в смежной области пространства, т.е. в смежном кванте.
Создав копию в смежном кванте, информационная структура транслирующего кванта должна перейти в нулевое состояние. Способность создания копий в смежной области пространства, влечет еще одно обязательное свойство универсального кванта – это взаимное проникновение смежных квантов. В противном случае информация об объемной структуре кванта должна передаваться через поверхностный контакт, что не рационально.
Кроме того, для реализации инерционного движения вещественный квант должен непременно иметь в своей структуре информационные признаки величины скорости и направления перемещения, а также должен иметь структуры, обеспечивающие реализацию гравитационных, и всех других типов взаимодействий.
Несколько шокирующим обстоятельством предлагаемой концепции является то, что обилие функций, реализуемых универсальным квантом, делают его похожим на компьютерный модуль. Это действительно так. Мы не можем знать, каким образом реализован природный квант материи, но он реализует именно такие функции и такие свойства, а формат описания адекватной модели черного ящика не имеет значения и может быть уже произвольным. В предлагаемой концепции — это умозрительный модуль с компьютерными свойствами.
В противном случае, мы должны верить, что мир создан из аморфной материи, типа глины.

Законы гравитационного взаимодействия достаточно хорошо изучены. Они весьма не тривиальны и даже загадочны, но неизбежно должны иметь конкретный и доступный нашему пониманию квантовый механизм реализации, не требующий вмешательства сверхестественных сил или наблюдателя. Таким образом, поиск механизма гравитации сводится к решению задачи, которая гарантированно  имеет решение (а это очень важное условие).
Решение представлено в следующей главе.

4.1 Описание механизма гравитационного взаимодействия

Для обеспечения строго дозированного гравитационного взаимодействия все кванты массивного вещества, составляющие взаимодействующие объекты, должны постоянно обмениваться информацией о своей массе и местоположении. Не нужно только путать используемый природный формат информации с привычной, адаптированной информацией, в координатах и расстояниях.
Для реализации этих необходимых функций можно было бы рассмотреть несколько принципиальных возможностей, но они уже апробированы в существующих гипотезах других авторов, которые нет смысла повторять. Следует только отметить, что интуиция подсказывает: вне квантовых представлений, трудности, связанные с реализацией абсолютно точного исполнения законов сохранения, вряд ли преодолимы.
Отметим также, что камнем преткновения всех теорий притяжения, является скорость распространения гравитации, которая по экспериментальным оценкам многократно превосходит скорость света.
Кроме того, все расчеты траекторий космических объектов производятся, исходя из предположения о бесконечной скорости гравитации, и эти расчеты дают самые удовлетворительные результаты.
Второй, неразрешимой проблемой гравитации, является неизвестный природный метод реализации именно притяжения, т.е. фактическая передача (обмен) отрицательного импульса, да еще при обстоятельствах невозможности экранирования сил притяжения.

Ключом к предлагаемому решению послужила идея  Фейнмана, сформулированная им для электрического поля и состоящая в том, что электрическое поле неподвижного заряда является результатом излучения, обладающего замечательной особенностью, а именно, излученная энергия, не принявшая участия во взаимодействии, непременно возвращается к первоисточнику [6].
Это интуитивное предположение естественным образом следует из законов сохранения и законов гармонии, но не имеет  способов реализации в условиях аморфного представления о структуре вещества.
Фейнман также не выдвинул никаких идей по возможной физической реализации. Дело в том, что официальная геометрия Евклида привила всем безразмерно-точечное представление о веществе. Это произошло потому, что официальная геометрия по своей сути не является Евклидовой. Судите сами, сравнив два определения геометрической точки.
Определение по Евклиду: точка – объект, не имеющий частей.
Официальное определение ссылается на две трактовки: точка – абстрактный объект, не имеющий размеров; и точка – объект, не имеющий определения, свойства которого описываются его аксиоматическими свойствами в составе геометрических фигур.
Вторая, официальная трактовка настолько смутная, что все пользуются исключительно первой, антифизической формулировкой.
Определение Евклида кроме общепринятой точки зрения допускает и квантовые варианты геометрии, возможности которых остаются для исследователей неизвестными.
Предлагаемая концепция призывает преодолеть эту, искусственно созданную, тупиковую ситуацию.

На основании ранее произведенного вывода о конечности всех силовых полей, можно сделать следующий логический вывод.
Все виды полевых, стационарных взаимодействий являются принципиально локальными и локационными, общим свойством которых является возвращение всех испущенных носителей поля к источнику.
Таким образом,  за пределы системы взаимодействия (т.е. в бесконечность) ничто не излучается.
Только так можно обеспечить законы сохранения.

Логично предположить, что безостановочное движение, как основное свойство материи, реализуется в циклической смене фазовых состояний  кванта, при этом каждая фаза обеспечивает свой тип взаимодействия. Смена фаз происходит вне зависимости от того, есть внешний объект для взаимодействия, или его нет.
В первой фазе (порядок условный) происходят гравитационные взаимодействия. В следующих фазах –  электрические и фотонные взаимодействия. В последней фазе реализуются пространственные перемещения квантов, происходящие в соответствии с информацией, полученной в предшествующих фазах.
Возможно существование и других фаз, связанных с реализацией взаимодействий, которые нам ещё не известны.

Внутренние фазовые процессы реализуются в квантовом формате и происходят с некоторой квантовой ритмичностью dt, причем dT =∑ dti . Смысл этой ритмичности будет раскрыт далее. Продолжительность каждого фазового цикла является виртуальной неопределенностью, не влияющей на результат макро взаимодействия. Полный квантовый цикл, включающий в себя все временные фазовые составляющие, формирует интервал-период dT, который является квантом системного времени Вселенной.

Если этот интервал dT является общим для всех объектов Вселенной, то в этом случае dT суть квант единого времени Вселенной.
За этим простым формализмом стоит физический и философский принцип огромной значимости. Этот принцип утверждает реальность нашего интуитивного чувства одновременности, которое мы распространяем на всю Вселенную и которое, оказывается, полностью соответствует действительности.
Субъективное восприятие эффективной продолжительности dT  не зависит от реальной продолжительности метафизических, внутри фазовых процессов, недоступных нашим ощущениям. Эффективная продолжительность dT  является для нас первичным эталоном времени. Первичный эталон, по своей сути, ничему не равен, он – единица измерения. Это несколько необычно для некоторых только потому, что мы привыкли иметь дело с вторичными эталонами, т.е. искусственными масштабами.
На этом месте автор вновь рекомендует приостановить чтение статьи, и вдуматься в суть временных отношений происходящих процессов, и собственно двух квантов времени: dT и dt, где dT – реальный физический квант времени, а dt – реальный метафизический квант времени, который необходимо рассматривать как виртуальный.
Истинно философский подход не позволяет определять ни границу познания, ни предел сложности материи. В исходных постулатах оговорены внутренние структуры всех видов квантов.
Квант dt является функциональным элементом внутренней, функциональной структуры кванта dT.
Структура кванта dt пока ещё за границей наших предполагающих возможностей.

Таким образом, мы пришли к выводу, что гравитационные взаимодействия являются систему образующими и время образующими взаимодействиями. Доступный нашим ощущениям и восприятию мир начинается с кванта dT и с универсального материального кванта размером dX. Всё, что реально происходит в рамках внутренних структур этих квантов, является для нас метафизической сущностью. Область метафизики неподвластна нашему вмешательству, но косвенно наблюдаема и частично познаваема.
По Аристотелю, название Метафизика указывает на изучение того, что лежит за пределами физических явлений, и лежит в основании их. Этот смысл термина, который использован здесь, сохранился в глубине и основании общего сознания, хотя за 2.5 тыс. лет претерпел множество вариаций, которые интересны только узким специалистам по этимологии.

Как, всего лишь одного факта существования единой для всех, максимально возможной скорости движения всех тел Вселенной, нам было достаточно для того, чтобы осознать моноквантовую структуру мира, так и факта моментального распространения сил гравитации достаточно для того, чтобы установить взаимосвязь гравитационных взаимодействий с самыми общими временными процессами Вселенной.
Авторитеты решили, (а мы все уверовали), что мгновенное распространение информации невозможно. Но, как ни странно, всё происходит сообразно мгновенному распространению полей. Чтобы это было возможно, в квантах dT должны происходить только множественные полевые взаимодействия и одно результирующее. Тогда между каждым квантом dT будут происходить миллиарды и миллиарды лет безразличного для нас времени (метафизического), которое мы не замечаем, т.к. происходит фаза гравитационного взаимодействия, когда всё, кроме гравитонов и их счетчиков, находится в полной временной неподвижности.
Таким образом, физическая невозможность моментальность, для живой материи преодолевается особенностью эффективного восприятия мира живой материей.

Квант времени, введенный нами, являет пример диалектического единства и борьбы противоположностей. Действительно, в макромире продолжительность этого кванта соответствует  понятию моментальности, тогда как в микромире эта продолжительность соответствует огромному циклу, вмещающему в себя продолжительность всех единичных (и не более) событий квантов Вселенной. Если бы наш наблюдатель смог участвовать в движении гравитонов, то для него наш миг длился бы столько, сколько понадобилось бы времени гравитонам, чтобы от центра Вселенной достичь её границ и вернуться обратно, т.е. по современным представлениям более 30 млрд. лет. И всё это — об одном и том же кванте.

Вдумаемся в грандиозность процесса всемирного притяжения.
Для реализации гравитационного взаимодействия каждый вещественный квант должен действовать точно в соответствии с информацией о массе и нахождении каждого другого кванта Вселенной.

Как все это организовать в рамках вихрей и волн полевой квантовой теории, обеспечивая законы сохранения? Авторы соответствующих теорий даже не пытаются искать соответствующие механизмы гравитации.

В предлагаемой квантовой модели такая сверх задача имеет достаточно простое решение. То, что это решение так долго не находили, является следствием непомерной гордыни и чванства чиновников от науки, абсолютизирующих свою точку зрения.
Не будем аргументировать этот тезис, и перейдем к описанию решения.

Опосредованную информацию о массе вещественного кванта и направлении на него несет ансамбль идентичных Nи гравитонов, испускаемых каждым квантом при гравитационных взаимодействиях.

Гравитон — это виртуальный (промежуточный, существующий лишь во внутри фазовых процессах) квантовый объект, сформированный средствами универсального кванта.
Информация, переносимая квантом-гравитоном, при попадании в вещественный квант, воспринимается квантом, и как признак соответствующей массы dm = Mкв/ Nгр, и как признак единичного импульса dmC, с направлением, которое совпадает с одним из двенадцати опорных направлений. Информация о скорости в данном представлении не требуется, т.к. в квантовом представлении реализуется всего две скорости:  Vкв=0 и Vкв=1. Последняя скорость воспринимается нами в условиях макромира как скорость света.
Далее будет представлен алгоритм, реализующий весь спектр реальных (эффективных) скоростей для вещественного кванта.
Безразмерный параметр Nгр характеризует массу кванта в масштабе dm, и является фундаментальным параметром, определяющем совместно с объемом кванта, постоянную гравитации.
Количество гравитонов, испускаемых квантом очень велико и, как будет показано, его максимум является инвариантом. Но квант не обязан быть складом гравитонов, как атом не является складом излучаемых фотонов. В структуре кванта может присутствовать только образ-матрица, штампующая гравитоны, и соответствующий набор счетчиков, которые обязательны.
Вещественный, неподвижный квант с инвариантной массой Nгрdm , или просто Nгр, в квантовом масштабе,  в фазе гравитационного взаимодействия последовательно испускает гравитоны, заполняя ими смежное пространство равномерно по всем направлениям. Заполнение реализуется как генерация в окружающее пространство Nгр гравитонов, по 12 штук за dt.  Количество 12 определяется свойствами сотовой геометрии. При этом каждый испущенный гравитон использует (занимает) область одного пространственного кванта. Суммарный импульс «излученных» таким образом гравитонов равен нулю.
У конкретного гравитона нет информации о точном направлении движения, но есть признак телесного угла, в котором он распространяется.
Гравитоны распространяются по алгоритму, обеспечивающему их распространение неразрывным, однородным сферическим слоем. Нам нет нужды угадывать этот реальный алгоритм, достаточно продемонстрировать, что такой алгоритм возможен.
Вот один из возможных вариантов.
Гравитоны распространяются по закону-алгоритму, выполняющему три условия:
1. Разрешено только удаление от источника излучения по одному из 3-х, уже заданных, направлений, при условии, что по одному из этих направлений имеется квант, не занятый гравитоном.
2. Гравитон остается на том же месте, если впереди свободных вакансий нет.
3. Удаление происходит только при наличии соседнего гравитона. Удаление  сразу прекращается при отсутствии напарников. При этом направление распространения гравитонов изменяется на противоположное.  Этим самым реализуется эффект отражения без наличия внешней преграды.

Эффект отражения без преграды, вне квантового представления, реализовать невозможно.
Таким образом, при гравитационном взаимодействии, ни один информационно возбужденный квант, а фактически – информация, не может покинуть пределы Вселенной.
Видимо, и при других взаимодействиях реализуется аналогичное положение.
В результате, коллективное распространение гравитонов от тела произвольной формы, происходит сферообразным слоем, максимальный радиус которого всегда имеет конечный размер.
Излучение гравитонов в гармоничной Вселенной произвольно начаться не может, и происходит только при наличии некоего условия, формируемого механизмом единого времени Вселенной, о котором несколько позже.
После завершения генерации Nгр гравитонов, их радиальное распространение продолжается без увеличения их количества, а инициируется только наличием признака №3, который можно назвать признаком «напарника». Таким образом, радиальное расширение продолжается до тех пор, пока квант-гравитон не окажется в одиночестве, т.е. один в окружении свободного пространства.
В процессе распространения гравитоны воспринимают пространство, «занятое» любой другой формой материи, как свободное пространство – этим самым реализуется условие невозможности экранирования гравитационного взаимодействия.
Как только гравитоны образуют разреженный слой одиночных гравитонов, дальнейшее расширение прекращается, признак направленности инвертируется, и гравитоны начинают обратное движение.
Таким образом, реализуется полное отражение гравитонов от условной, не обозначенной границы гравитационного поля. Этот гипотетический эффект является ключевым при построении как механизма гравитации, так и механизма электрических взаимодействий.
Эффект, совершенно естественный в рамках физической квантовой модели, практически недоступен, даже для интуиции, в рамках абстрактного математического моделирования, чем видимо и вызвано длительное отсутствие решения этой проблемы, хотя законы сохранения чуть ли не кричат, что излученные носители поля обязаны возвращаться к своим источникам.
Конкретная реализация механизма отражения носителей поля не имеет значения, она может быть любой, и даже навсегда может оставаться для нас неизвестной.

Предлагаемое решение с отражением и возвращением носителей поля влечет неизбежный вывод о конечности Вселенной, что, однако, не требует изменения философских концепций, касающихся бесконечности мирового пространства. В предлагаемой модели материальное пространство не кончается на границе Вселенной, материальный мир остается беспредельным. Конечность нашей Вселенной влечет лишь вывод о бесконечном количестве иных вселенных.
В процессе возвратного перемещения гравитоны уже не воспринимают барионное вещество как свободное пространство, а взаимодействуют с ним,  сообщая его квантам  так необходимый для закона всемирного тяготения отрицательный импульс.

Предложенный принцип распространения и взаимодействия гравитонов не требует дополнительной информационной нагрузки на структуру кванта для обеспечения необходимой адресации излучения, но тем не менее, как далее станет ясно, обеспечивает абсолютное соблюдение закона сохранения количества движения.
Из закона всемирного тяготения и законов сохранения известно, что после полного завершения цикла гравитационного взаимодействия, каждый вещественный квант должен сохранить информацию о своей массе и получить новую информацию о соответствующем изменении своего импульса движения. При этом суммарный импульс изолированной системы должен остаться неизменным.
В процессе обратного перемещения, каждый гравитон, встретив на пути вещественный квант, взаимодействует с ним по жестко определенному алгоритму гравитационного взаимодействия, и в этом алгоритме каждый гравитон является единицей (битом) обрабатываемой информации.

В этом месте описания квантового мира, уже можно сообщить читателю, что  одним из главнейших отличий этого мира от нашего эффективного мира состоит в том, что в квантовом мире нет энергии, и, следовательно, нет энтропии, — они там не нужны.

Квантовым миром движет спаренный тандем: причина неизбежно порождает следствие, а следствие неизбежно превращается в причину.
Это диалектическое положение в формате рабочего инструментария приобретает вид закона сохранения бита информации. Этот закон сохранения бита, в свою очередь, в условиях макромира трансформируется в пакет законов сохранения.
Единичное квантовое событие не имеет погрешности, но имеет возможность «выбора» из предоставляемых ему вариантов преобразования.
С точки зрения макромира квантовый мир является вечно движущимся устройством. Не путать с вечным двигателем.
Квантовый мир новых, спонтанно возникающих, битов информации не производит.

Опустим логику построения внутренней структуры кванта, она может быть различной, и приведем лишь её необходимый функциональный результат.
Чтобы реализовать законы гравитации и законы сохранения, в структуре кванта должно быть не менее 3-х специализированных наборов регистров-определителей, т.е. 3-х счетчиков.
Счетчик №1 отслеживает количество гравитонов, излученных и затем принятых в данном квантовом цикле. Квант не может принять большее количество гравитонов, чем испустил. При этом механизм испускания обеспечивает условие, по которому суммарный импульс излученных гравитонов строго равняется нулю. Суммарный импульс принятых гравитонов уже может быть не равным нулю. А образовавшееся приращение соответствует реализованному импульсному воздействию по данному направлению.
Так как количество испущенных гравитонов Nи влияет на интенсивность данного взаимодействия, то, предполагая изменение этой интенсивности в зависимости от скорости движения, испущенное количество Nи гравитонов может только уменьшаться с возрастанием скорости, и его в этом случае можно назвать «динамической (переменной) гравитационной массой» кванта с исходным (начальным) значением, равным Nгр.
Неограниченное увеличение количества гравитонов, чем бы оно ни было вызвано, является противоестественным и невозможным.
Логика этого утверждения не является исключительным достоинством квантового представления, но она в этом представлении наиболее наглядна. В природе не может быть локальных объектов и процессов с бесконечными параметрами.
Это аксиома материализма.
Счетчик №2 суммирует и хранит сведения, в формате суммы гравитонов, о накопленном приращении импульса кванта по 12-и опорным направлениям, или по 6-и, если использовать признак минуса. Результирующее значение всех 12-ти регистров счетчика №2 определяет направление и скорость перемещения кванта. Назовем этот счетчик «показателем импульса».
Логика суммирования импульса по 12-ти направлениям приводит к тому, что в любой момент значащими будут только три смежных направления, полностью описывающих перемещение кванта. Остальные 9-ть будут равны нулю.
От того, каким образом в кванте используется информация счетчика №2, возможна реализация трех принципов взаимодействия, из которых только один использован природой.
Если Nи является константой, равной Nгр, не зависящей от значения счетчика №2, то реализуется классический вариант инвариантной массы гравитации.
Если Nи увеличивается с ростом показаний счетчика №2, и равна Nгр•&, где & – релятивистский фактор, который всегда >1, то реализуется мистический принцип Эйнштейна.
Если Nи уменьшается с ростом показаний счетчика №2, то реализуется принцип здравого релятивизма, и точка зрения автора предлагаемой концепции.

Отметим, что опорные направления (6-ть координатных осей) жестко связаны с квантовой структурой пространства. При окончательном суммировании импульса перемещения, действует векторный закон сложения сотовой геометрии, на основании которого импульс по одному из координатных направлений можно представить как сумму двух равновеликих импульсов по смежным направлениям, лежащим в одной плоскости. Благодаря этому правилу, любой импульс в окончательном представлении описывается тремя (и менее) значениями смежных регистров скорости.
Все регистры имеют признак  наполнения, равный значению Nгр.
Счетчик №3 является накопителем инерционного импульса, инициирующего перемещение кванта по всем 12-и направлениям раздельно. В рамках принятых определений, регистры этого счетчика являются накопителями направленного «действия». Назовем этот счетчик «накопителем-инициатором», по функции, которую он выполняет.
Чтобы разобраться в действии алгоритма перемещения вещественного объекта, нужно рассмотреть наглядный пример.
Пусть твердое тело покоится в пространстве и ни с чем не взаимодействует. В этом случае тело в каждый квант времени (квантовый цикл) излучает максимально возможное количество гравитонов, которые все возвращаются, и не изменяют импульс тела, которое остается покоящимся.
Изменим ситуацию. Сообщим телу некоторый импульс, и, как и ранее, прекратим воздействовать на тело.
В счетчике №2 отобразится наш импульс, и одновременно соответственно уменьшится значение Nи, которое станет равным (Nгр — значение счетчика №2). Таким образом, следующее гравитационное взаимодействие нашего тела потенциально ослабнет (уменьшится) пропорционально. Но взаимодействие отсутствует, и приращение импульса равно нулю.
Когда квантовый цикл, соответствующий кванту времени dt, закончится, накопитель №3 увеличит свое значение на величину импульса, отображенного в счетчике №2.
При этом квант, сохраняя признак перемещения, останется на месте.
Так будет продолжаться до тех пор, пока в накопителе №3 не сформируется значение, равное или большее Nгр. Как только это случится, наш квант скопируется (переместится на один корпус) в соседний квант по направлению переполнившегося счетчика. При этом значение переполнившегося накопителя №3 уменьшится ровно на Nгр, а все остальные параметры останутся неизменными.

Локальная, единичная подвижка единичного кванта в пространстве и во времени соответствует скорости света. А усредненная подвижка, учитывающая время ожидания наполнения счетчика №3, соответствует реальной макроскопической скорости.
Эффективный макромир, в котором мы живем, реализует огромный диапазон скоростей, который распадается на два поддиапазона. Первый, от 0 до С, а второй, от С до Vм-макс=D/dT, где  D – это диаметр Вселенной, а dT – эффективный квант времени.
Vм=S/dT, где S есть расстояние меду взаимодействующими объектами, это так называемая моментальная скорость, которая всегда имеет конкретное значение, но оно так велико, что ему обычно присваивают бесконечное значение, без существенного вреда для результатов вычислений.
Все известные поля, а достоверно их всего три: гравитационное, электрическое положительное и электрическое отрицательное,- распространяются с моментальной скоростью. Магнитное поле, будучи в определенном смысле производной от электрических полей, тоже перемещается моментально.

Каким же образом изменяется масса гравитации при изменении скорости тела? Ответить на этот вопрос только на основе созданной модели нельзя, т.к. модель сознательно строится, опираясь на фактические данные. Однако создаваемая модель допускает апробацию любых вариантов реализации. Требуемый ответ можно получить методом вариации, исследовав все допустимые варианты, и сравнив выводы, полученные для каждого варианта теоретически, с имеющимися данными, полученными опытным путем. Для уже сформированной к этому моменту конструкции модели допустимыми являются два вида гравитационного взаимодействия.
Первый вариант предполагает излучение гравитонов в неизменном количестве, всегда равном полной емкости счетчика №3, т.е. массе инерции, вне зависимости от скорости тела. Этот вариант реализует принцип инвариантности массы, принцип эквивалентности масс инерции и гравитации, а также законы классической механики со всеми известными последствиями и недостатками, главные из которых – отсутствие ограничения на скорость перемещения тел и несоблюдение Лоренц-инвариантности.
Второй вариант предполагает излучение гравитонов в количестве равном остатку начального значения счетчика №1, после того как из него отнимутся гравитоны, идущие на формирование приобретенного импульса. Этот остаток условно можно рассматривать как  гравитационную массу. Этот вариант реализует взаимодействие, в котором масса гравитации (гравитационного взаимодействия) уменьшается при увеличении скорости тела, при сохранении неизменной  массы инерции.
Вариант не соответствует принципу эквивалентности и, значит, отвергается и не рассматривается официальной наукой.
В этом случае масса гравитации асимптотически уменьшается до нуля при приближении скорости тела к скорости света. Физически правильнее рассматривать это явление как уменьшение интенсивности гравитационного взаимодействия.
Так как публикации об исследованиях взаимодействий в рамках второго варианта отсутствуют, то анализ этого варианта модели является необходимым — и представлен далее.
Третий вариант, реализующий концепцию Эйнштейна, требует беспричинного возникновения неограниченного количества гравитонов – и здесь не рассматривается.

Ниже приводится достаточно подробное описание алгоритма квантового механизма гравитации, осуществляемого по второму варианту.
Восприятие алгоритма предполагает некоторую осведомленность в области компьютерной логики.
Однако знакомство с описанием алгоритма может быть опущено без большого вреда для дальнейшего ознакомления с концепцией. Важно лишь понять функции, которые реализуются алгоритмами, а они раскрываются при дальнейшем описании.
При этом конкретное описание алгоритма необходимо, т.к. является доказательством того, что закон всемирного тяготения данным алгоритмом реализуется.

4.2 Алгоритм квантового гравитационного взаимодействия

Покоящийся квант, как уже определили, понятие условное, означающее неподвижность информационного образа материального кванта относительно окружающего  пространства. Признаком пространственного покоя кванта является только его нулевая скорость, определяемая по значению счетчика №2. Кратковременная неподвижность кванта при наличии не нулевой скорости кванта, не является признаком истинной неподвижности (покоя) кванта.
Значение регистров инициатора покоящегося кванта могут быть любыми, они зависят от предыстории кванта.
При описании алгоритма, начальное значение инициатора удобно принять равным нулю, без ущерба для сути алгоритма.
Для удобства изложения алгоритм представлен фрагментами.

Фрагмент 1. Получив признак начала фазы гравитационного взаимодействия, а это может быть любой внешний гравитон, вещественный квант сначала ретранслирует (пропускает через себя) все сторонние гравитоны, уже излученные другими квантами, а затем начинает излучать в окружающее пространство, собственные гравитоны по 12 шт за dt. Счетчик №1 при этом соответственно уменьшает свое динамическое значение, и когда  оно станет равным нулю, испускание гравитонов квантом прекращается.

Фрагмент 2. После окончания фазы испускания,  гравитоны, взаимодействуя только между собой, продолжают распространение в пространстве, пока общий слой не сформирует  условную границу распространения, и сменят знак направления перемещения гравитонов  на противоположный, изменив признак «излученный» на признак «возвращенный».
При отсутствии взаимодействия все гравитоны, вернуться к своим квантам и поглотятся ими, регистрируясь счетчиками №1 и №2, результирующие значения которых совпадут с исходными значениями. При этом признака свой/чужой ни у гравитонов, ни у квантов нет.

Фрагмент 3. В общем случае, т.е. при наличии стороннего взаимодействия, каждый возвращающийся гравитон, встретившись с чужим вещественным квантом, поглощается им. При этом значение соответствующего регистра счетчика скорости чужого кванта изменяется на единицу. Если одновременно, или с задержкой во времени, поглощается гравитон противоположного направления, то показания двух регистров скорости взаимно компенсируются на единицу, а значение  счетчика №1 (гравитационной массы) при этом увеличивается на две единицы. Так продолжается до тех пор, пока суммарное количество гравитонов, заполняющих  счетчик массы и счетчик скорости, не достигнут значения Nгр.  С этого момента алгоритм процесса несколько изменяется.
Обращаем внимание на то обстоятельство, что суммарное значение счетчиков №1 и №2 не может превышать значения Nгр.

Фрагмент 4. После того как сумма значений счетчиков №1 и №2 стороннего кванта станет равной Nгр, при поглощении следующего (избыточного) гравитона, счетчик №2 (его соответствующий регистр)  увеличивается на единицу, а от счетчика массы отчуждается одна пара гравитонов, которым присваивается взаимно противоположные направления, т.е. с нулевым суммарным импульсом. Один гравитон с направленностью, совпадающей с последним поглощенным гравитоном, пополняет соответствующий регистр признака импульса. А второй, с противоположной направленностью излучается в смежное пространство по направлению движения поглощенного гравитона. В конечном результате счетчик массы уменьшится, а счетчик скорости увеличится на две единицы. Сумма значений счетчиков №1 и №2 после каждого  поглощения избыточных  гравитонов не изменяется, оставаясь  равной Nгр.
Если же при поглощении избыточного гравитона счетчик №2 уменьшает свое значение, то счетчик №1 увеличивает свое значение на одну пару и излучает один избыточный инвертированный гравитон. Функционально, алгоритм сохраняется, и сумма значений счетчиков №1 и №2 остается неизменной.
Процесс может продолжаться до полного истощения счетчика гравитационной массы, после чего сторонние гравитоны уже не поглощаются квантом, а ретранслируются. Сам квант становится нейтрино подобным, т.е. имеющим массу инерции и не имеющим массу гравитации, перемещающимся со скоростью света, и не принимающим участия в гравитационных взаимодействиях. Но это только при условии, что наш квант изначально был свободным радикалом, что, видимо, невозможно, т.к. вещественный квант всегда входит в состав некоторой связной системной структуры.
Ситуация с полным истощением массы гравитации, видимо, практического смысла не имеет.

Фрагмент 5. Регистры счетчика №3 в конце каждого цикла, завершая фазу гравитационного взаимодействия, прибавляют к своему предыдущему значению полное действующее значение счетчика скорости по данному направлению. Если после этого ни один из регистров не превысит значения Nгр, то в фазе квантовых  перемещений этого цикла dT квант остается в том же пространственном положении. Как только один из регистров счетчика-инициатора по одному из 12 направлений станет больше/равно Nгр, то инициируется перемещение кванта в смежную область по данному направлению, т.е. на один квант. При этом значение переполнившегося регистра   уменьшается на Nгр. Это не означает, что счетчик этого направления обнуляется, т.к. он может иметь остаток. Определить значение этого остатка, исходя из условий проводимого эксперимента, нет возможности, т.к. он зависит от всей предыстории этого вещественного кванта.
Кажущаяся сложность описания алгоритмов гравитационного взаимодействия вызвана намеренной скрупулезностью описания, с целью продемонстрировать, что все алгоритмы могут выполняться без интеллектуального вмешательства.

Рассмотрим ситуацию при взаимодействии двух тел (большого и малого), когда поле малого тела не достигает границы большого тела.
Фрагмент 6. В результате взаимодействия с малым телом, по алгоритму фрагментов 1- 3,  к большому телу взамен собственных гравитонов излучаются дважды инвертированные гравитоны, количество которых будет точно равно количеству поглощенных малым телом сторонних избыточных гравитонов большого тела. Таким образом, второму взаимодействующему телу (большому) будут возвращены сторонние для него инвертированные гравитоны, которые при поглощении большим телом образуют со своими бывшими антиподами однонаправленные пары и отложатся в счетчике скорости большого тела. В результате представленного взаимодействия оба тела, и большое, и малое, сохранят общее  количество гравитонов; получат равное, но противоположное по знаку, приращение импульса, хотя поле малого тела может не достигать квантов (т.е. границы) вещества большого тела.
Если в процессе этого взаимодействия массу малого тела плавно увеличивать, то в некоторый момент времени поле малого тела достигнет до квантов большого тела, и к рассмотренному взаимодействию добавится еще одно, точно такое же, но с другими константами. Таким образом, любое гравитационное взаимодействие двух тел необходимо рассматривать как сумму двух взаимодействий: первого тела со вторым и второго тела с первым. Несколько далее рассмотрим этот нюанс более подробно.
Совершенно ясно, что возможны ситуации, когда гравитоны, обеспечивающие взаимодействие тел, и инвертированные малым телом, не смогут распределиться по квантам большого тела равномерно.
В этом случае внутри тела возникают упругие напряжения, которые распределяют добавочный импульс по всему большому телу равномерно. А если гравитонов добавочного импульса не хватит на все кванты большого тела, то импульс становится блуждающим.
Конец описания алгоритма гравитационного взаимодействия.

Идея и соответствующая методика измерений поля пробным телом (пренебрежимо малым) скрывает влияние малого тела на интенсивность взаимодействия.
В случае взаимодействия соизмеримых тел, находящихся полностью в силовых полях друг друга, взаимодействие, реализованное по методике пробного тела, должно быть отнесено к обоим телам, и затем суммировано. В результате, в формулу приращения импульса должен быть введен коэффициент 2.
Если этот фактор не учитывается, то удвоение импульса естественным образом входит в гравитационную константу, определяемую экспериментально, мало влияя при этом на практические расчеты. Однако, для определения истинного значения постоянной гравитации, используемого в других фундаментальных законах, учет удвоения принципиален.
Алгоритм представленного взаимодействия гарантирует сохранение количества движения любой изолированной системы, причем, сохранение с нулевой погрешностью.
Проследив полностью алгоритмы взаимодействия большого и малого тела, при всевозможных вариантах взаимного положения, можно убедиться, что ситуацию, при которой поля имеют общую область, но не достигают ни одного из двух тел, необходимо рассматривать как отсутствие взаимодействия. В остальных ситуациях, при которых сами излучающие тела находятся в области эффективных гравитационных полей, происходят взаимодействия, реализующие требования законов сохранения импульса и энергии.
Предложенный алгоритм взаимодействия обеспечивает закон сохранения энергии только в случае, если значение счетчика №1 уменьшается при увеличении значения счетчика №2 соответствующим образом. Другими словами, масса гравитации должна уменьшаться с ростом скорости тела.
Таким образом, представленная модель реализует закон сохранения импульса и массы при характеристиках гравитационного взаимодействия полностью совпадающих с реальными. Динамика процесса очень наглядна для компактных тел, например, для ядер атомов.  В режиме гравитационного взаимодействия вещество ядра испускает в пространство строго определенное количество гравитонов. Эти гравитоны формируют однородный сферический слой, объем которого, а точнее, количество гравитонов в нем, остается все время неизменным. Сферический слой,  расширяясь, достигает  своего максимального радиуса при минимальной толщине слоя, соразмерной с dx.
При возвращении гравитонов происходит взаимодействие с другими атомами. Это взаимодействие формирует поле эффективной напряженности. Статистическое, усредненное значение эффективной напряженности пропорционально толщине слоя dr, которая легко рассчитывается из условий постоянства объема слоя.  Эти условия записываются как:
{(r+dr)3 – r3}4π/3 = Nгр dv, где  dv – объем кванта.

Из данного выражения получаем значение толщины слоя dr в зависимости от радиуса сферы слоя, т.е. и от расстояния между взаимодействующими телами:
dr =[{3Mкв Nгр (dv) / 4π + r3}1/3 — r],                    (4.1-1),
где Mкв – количество квантов в теле. Эта, относительно более точная, формула неудобна ни для практического применения, ни для качественного анализа. Еще труднее выявить ее на основании экспериментальных измерений. Однако, для относительно больших расстояний между телами, когда выполняется условие  r>> d, где d – диаметр шара с объемом, равным объему сферического слоя, может быть представлен приблизительной зависимостью, а именно: произведением площади сферы 4πr2 на толщину слоя dr, откуда с некоторой известной погрешностью получаем:
dr= Mкв Nгр (dv) / 4πr2 .
Эта зависимость является приблизительной, но именно она выявляется в результате экспериментальных исследований, т.к. выявить реальную зависимость (4.1-1) практически невозможно. Если теперь истинную зависимость разделить на приблизительную, то получим безразмерный функцию-коэффициент, при умножении на который из приблизительной зависимости будет получаться истинное значение. Таким образом, традиционная формула закона всемирного притяжения дополняется безразмерным коэффициентом k с очень сложной функциональной зависимостью.
k=[{3Mкв Nгр (dv) / 4π + r3}1/3 — r] / [Mкв Nгр (dv) / 4πr2]       (4.1-2 )
При этом точное выражение закона всемирного тяготения, в обычном формате, запишется как:
F= kGMm/r2.
Очевидно, что пропорциональность 1/r2 и  k/r2  должна ощутимо нарушаться при расстояниях, когда слой dr вырождается в сферу с диаметром  d, и меньше.
Так как все лабораторные измерения сил притяжения на Земле производятся явно не в условиях дальней зоны, то для них значение k должно, хоть и мало, но все-таки ощутимо для прецизионных датчиков, отличаться от единицы. Этот эффект и обнаруживается в экспериментах по точному измерению гравитационной постоянной, т.к. при обработке результатов измерений, влияние функции k не учитывается, и по незнанию принимается за единицу.
Таким образом, представленная модель не только обосновывает закон сохранения импульса и массы при гравитационном взаимодействии, но и определяет более точно сам закон всемирного тяготения.

Невозможность экранирования гравитационного поля, реализуемого моделью, требует пояснений. Если в фазе распространения гравитоны воспринимают пространство, занятое веществом, как свободное, то после отражения гравитоны уже взаимодействуют с веществом, и эффект частичного экранирования, но особого рода, может быть обнаружен. Например, если на границе поля слой гравитонов очень тонкий, а масса пробного тела недостаточно мала, то возможна ситуация, при которой для части квантов пробного тела не хватит гравитонов для обеспечения их согласованного движения. И математическое представление закона притяжения для ситуаций, при которых недостаточно гравитонов, изменится. Предсказать величину k в этой ситуации  очень сложно, т.к. функция k зависит от конкретного соотношения всех геометрических параметров, можно лишь сказать, что k в этих условиях всегда меньше единицы.
Наглядно, влияние k можно представить на следующем примере.
Рассмотрим малое тело в форме пылевого облачка на границе поля большого тела. Гравитонов основного слоя для всех квантов облака уже не хватает. В этой ситуации самые дальние пылинки гарантированно реализуют взаимодействие, а более близкие — лишь с некоторой вероятностью. В результате, дальние пылинки получат импульс к центральному телу, и со временем перестанут быть дальними, и в следующих циклах гравитоны «достанутся» уже другим пылинкам. В этом эффекте проясняется более точная суть эффекта, определяемого как невозможность экранирования гравитации: нельзя спрятать одно тело позади другого, но заднее тело может экранировать тело перед собой.
Объекты, которым не хватило гравитонов в данном цикле, неизбежно испытают силу притяжения через некоторое время (или после пассивного перемещения на периферию, в пылевом облаке, или через посредство давления, в твердом теле). При недостатке гравитонов в слое, первыми во взаимодействие неизбежно вступают самые периферийные элементы системы. Эти элементы, смещаясь к центру, уступят место следующим слоям облака. Таким образом, абсолютное экранирование гравитации принципиально невозможно.
Квантовый процесс гравитационного притяжения неизбежно начинается с периферии общей области притяжения, и с периферии области каждого участника гравитационного взаимодействия.

На основании модели можно объяснить все наблюдаемые на сегодня аномальные явления гравитации.
Модель позволяет на качественном уровне оценить характер изменения веса пробного тела вблизи тела с неограниченно возрастающей массой.
Для этого добавим  на поверхность твердого тела один вещественный квант. Он неподвижен, и еще не давит на тело. Квант испустит  в первом цикле Nгр  гравитонов. После окончания первого цикла счетчик импульса получит первое приращение d1, а счетчик динамической гравитационной массы соответственно уменьшится. При этом счетчик-инициатор также получит первое приращение d1.  Однако при этом квант еще не пытается переместиться. Давление кванта на поверхность тела пока равно нулю. В следующем цикле квант излучит гравитонов на d1 меньше, т.е. общее гравитационное поле тела уменьшится, хотя и на ничтожную величину. Следующее приращение счетчика скорости d2 также чуть уменьшится, но этим уменьшением можно пренебречь, т.к. оно второго порядка. В результате, показание счетчика импульса станет равным 2d1, счетчика-инициатора 3d1. Алгоритм будет продолжаться до тех пор, пока при n-ном повторении значение счетчика №3 не превысит значение Nгр. После этого произойдет акт попытки смещения нашего кванта к центру тела, что невозможно — и вызовет ответную реакцию. В результате реализуется сила весового давления кванта на тело. За время этого фрагментарного взаимодействия наш квант в среднем будет испускать по Nгр – nd1/2 гравитонов в цикле. Таким образом, пробное тело на поверхности большого твердого тела уменьшает свою гравитационную массу по отношению к массе инерции. Но в состоянии пробного тела находятся все элементы рассматриваемого твердого тела.
Из этого следует, что при увеличении массы тел (путем их сложении), общая гравитационная масса растет не пропорционально с ростом инертной массы, а  с некоторым отставанием, тем большим, чем больше общая масса.
Кроме того, напряженность поля гравитации большого тела определяется потоком гравитонов, испускаемых этим телом. Этот поток может возрастать до очень большой величины. Однако сила притяжения малого тела неограниченно возрастать не может, т.к. ограничена емкостью своих счетчиков, реализующих фактическое, одностороннее насыщение гравитационного воздействия большого и малого тел.
Поток гравитонов напряженности поля большого тела может увеличиваться сколько угодно, однако сила притяжения малого тела, являющегося частью большого тела, после достижения максимума, увеличиваться уже не будет. Произойдет насыщение внутреннего гравитационного взаимодействия.
Внешнее, достаточно удаленное взаимодействие, при этом останется нормальным.
Этот эффект насыщения не учитывается ни в классической теории, ни в теории Эйнштейна, т.к. в этих теориях нет механизма, обеспечивающего эффект насыщения.
Все расчеты параметров черных дыр, произведены без учета эффекта насыщения и эффекта непропорционального роста гравитационной массы тела в зависимости от роста количества инертной массы, и являются ошибочными.
Модель формально допускает коллапс барионного вещества только до состояния аморфного нуклонного тела, без атомной структуры. Это так называемые нейтронные звезды.
Эффект насыщения гравитационного взаимодействия объясняет особенности движения звезд вблизи ядра Галактики, где звезды движутся как будто они скреплены в жесткую конструкцию, или, как принято говорить, движутся как твердое тело.
При полном насыщении, сила притяжения, действующая на конкретное тело в зоне насыщения, не зависит от его расстояния до центра ядра. А в промежуточной области закон притяжения плавно изменяется от классической, обратно квадратичной зависимости, до полной независимости. На некотором участке этой промежуточной области реализуется зависимость, наблюдаемая астрономами в центральной области Галактики.

Анализ механизма гравитационного взаимодействия показывает, что для случая двух соизмеримых тел математическую модель закона всемирного тяготения необходимо рассматривать как сумму двух составляющих.
F= k1Gm(M/r^2) + k2GM(m/r^2) = (k1+ k2)GMm/r^2,
где k1 и k2 в средней зоне равновеликих тел практически равны единице.

Для бытовых ситуаций на поверхности Земли, k2 , относящаяся к малым телам, практически всегда близка к нулю, рис. 2.

 

Рис. 2.  Качественная зависимость k1 (верхняя кривая) и k2  (нижняя кривая) от расстояния для разновеликих тел. Шкала r – не линейная.
Эта  ситуация реализуется почти всегда в бытовой деятельности человечества, но постоянная ошибка не имеет практического значения из-за малого вклада и повсеместного присутствия.
Рассмотрим более подробно эту бытовую ситуацию, а именно, малое тело (но не пробное, а бытовых размеров) в области Земли, рис.2.
Ситуация с эффектом насыщения в данном случае не реализуется.
В этом случае функция k2 изменяется от некоторого значения, меньшего единицы, до нуля по мере удаления тел и роста соотношения M/m. На рис. 2 приведен качественный характер изменения функций-коэффициентов k. Видно, что в ближней зоне, когда масса малого тела недостаточно мала, изменения k1 и k2  в зависимости от r частично компенсируют друг друга, чем затрудняют экспериментальное обнаружение эффекта в ближней зоне, создавая видимость неизменности закона всемирного тяготения.
Для малых тел, которые можно рассматривать как пробные, функция k2 всегда близка к нулю. Даже вплотную к большому телу поле пробного тела при взаимодействии с большим телом реализует ситуацию истощенного слоя. Однако, если масса малого тела становится существенной, то пренебрегать k2   уже нельзя, при этом в ближней зоне большого тела, k2  будет сложно зависеть как от r, так и от m и M.

Экспериментально, зависимость силы притяжения от k1 и k2  обнаружить сложно, и особенно сложно отделить одно от другого. Но, тем не менее, влияние этих коэффициентов обнаруживается на практике при проведении особо точных измерений по определению гравитационной постоянной.
Например. Определение массы космических аппаратов «Пионер» производилось в ближнем поле Земли, т.е. их масса измерена при значении k2 , не равном нулю. Когда теоретически не учтенный, но действующий, коэффициент k2, относящийся к КА, на орбите Урана стал равным нулю, это привело к аномально малой (отличной от расчетной) величине торможения аппаратов, при дальнейшем удалении от Солнца. Конкретнее: с некоторого момента гравитоны КА перестали участвовать в процессе притяжения, что было воспринято как эффект дополнительного ускорения.
Принятое на данный момент объяснение аномального поведения «Пионеров» опирается на фотонную тягу теплового излучения. Это еще одно наследие (подарок) от Эйнштейна. Дело в том, что фотоны не имеют продольного импульса, см. [7].

Фундаментальный статус гравитационной постоянной не вызывает сомнений, но результаты измерений дают устойчивый разброс значений, выходящий за пределы погрешности измерений. Введение уточняющих коэффициентов k обогащает теорию гравитации тонкими эффектами, и освобождает гравитационную постоянную от влияния сторонней погрешности измерений, приписываемой ей по незнанию.
Зависимость притяжения от k2  может быть установлена на спутниках с очень малой массой. Если на круговой орбите, около тяжелого спутника оставить очень маленький спутник, то он будет двигаться вместе с большим спутником, точно так же как и малые тела внутри спутника. Это происходит потому, что гравитоны большого и малого тела объединяются в общем для них сферическом слое.
Если же спутники развести на достаточно большое расстояние, то каждый из них формирует свой сферический слой, со своим k2 , взаимодействующий с одинаковым для них полем Земли. И если значения k2  для каждого из спутников будут различными, а нужно постараться, чтобы так и было, то малый спутник при тех же скоростных параметрах не сможет остаться на круговой орбите большого спутника, и перейдет на эллиптическую, что достаточно легко обнаружить.
Этот эффект, возможно, уже замечен организаторами полетов спутников, при выводе на орбиту сразу нескольких маломерных аппаратов. Но даже если они это заметили, то причина эффекта исследователям непонятна, и они этот эффект могут замалчивать.
Эксперимент со спутниками является отдаленным аналогом опыта Галилея на Пизанской башне. Отличие в том, что в ситуации со спутником время условного падения равно полупериоду обращения, а массы могут отличаться в тысячи раз, что повышает чувствительность измерений.
Опыт Галилея был принципиально обречен на известный результат своей методикой, а именно тем, что тяжелое и легкое тело сбрасывались вместе. Чтобы обнаружить наш тонкий эффект различия, их надо было бросать отдельно. Но в этом случае возникли бы трудности с измерением времени падения. Решая одну метрологическую проблему, Галилей попал в сети другой природной ловушки.
Вот почему очень важно знать физическую суть процесса, а не только его математическую модель.
Этот же эффект вызывает известные трудности у теоретиков, которые пытаются определить зоны притяжения космических тел образующих системы, например, Луны и Земли. Уже утвердилось молчаливое согласие о существовании странного эффекта, которому до сих пор не находят  объяснения. Космические тела, став спутником другого тела, как бы перестают независимо осуществлять гравитационные взаимодействия со сторонними телами. Например, Луна как бы не чувствует существования Солнца, вернее чувствует, но не так, как предписывает закон всемирного тяготения. Понимание законов формирования функций k1 и k2  очень бы облегчило эту задачу и теоретикам, и практикам.
Приведем еще один пример, раскрывающий загадку парадокса троянских образований, и тем самым доказывающий правоту выведенного здесь закона всемирного тяготения.
Интегральное действие третьего закона Кеплера на пояс астероидов при формировании планет аналогичен космическому «неводу» или «метле», обеспечивая почти полный сбор астероидного материала формирующейся планетой. Эффект обеспечивается различием угловых скоростей для объектов, находящихся на орбитах с разными радиусами. В результате каждый астероид неизбежно пролетает вблизи формирующейся планеты и захватывается ею. Но это происходит, если радиусы их орбит не совпадают. Если же орбита общая, захвата космических объектов при равных k не происходит. Казалось бы, все планеты должны иметь своих троянцев, но они существуют только у дальних планет, и отсутствуют у ближних. Отсутствие троянцев у ближних планет может быть объяснено тем, что они формировались в ближней зоне Солнца. Планета, формирующаяся в ближней зоне, по мере увеличения своей массы, претерпевает изменение k2, тогда как  k2 астероида-троянца остается неизменным. В результате, планета меняет параметры своей орбиты, при этом зона стабильности троянцев смещается в область захвата астероидов. Таким образом, в ближней зоне Солнца объекты типа троянцев маловероятны. Из этого следует, что ближняя зона гравитации Солнца распространяется за орбиту Марса, но не достигает орбиты Юпитера.

5. ИНЕРЦИОННОЕ ПЕРЕМЕЩЕНИЕ

Для более полного понимания инерции и гравитационного взаимодействия рассмотрим алгоритм нулевого взаимодействия, т.е. чисто инерционного перемещения тел в произвольном направлении с произвольной скоростью.

Фрагмент 7. Рассмотрим одиночный неподвижный вещественный квант. Его состояние описывается следующими значениями счетчиков. Счетчик №1 использован полностью и его значение равно Nгр. Значения всех регистров счетчика №2 равны нулю. Значение счетчика №3 также равно нулю, хотя в принципе может быть любым, от 0 до Nгр-1.
Чтобы привести наше тело в движение, пусть в произвольной точке пространства на одно мгновение возникнет вещественный объект (флуктуация), и сразу исчезнет. По этому направлению, между нашим телом и флуктуацией, произойдет гравитационное взаимодействие, и в трех смежных регистрах (условно 1-м, 2-м, 3-м) счетчика №2, образующих телесный угол, включающий направление на флуктуацию, зафиксируется набор значений, соответствующий приобретенной скорости нашего тела. Сумма этих значений определяет скорость нашего тела, а соотношение определяет направление. Пусть их значения будут равны 0,6р, 0,4р и 0. Счетчик №1 при этом перейдет в состояние
Nгр-(0,6р+0,4р+0) = Nгр- р.
В следующем внутреннем квантовом цикле dt, наш квант, никуда не смещаясь, излучит уже не Nгр гравитонов, а (Nгр- р). Все гравитоны вернутся без дополнительной информации, и все регистры №2 сохранят свое значение. То же самое будет со счетчиком №1. А вот регистры 1, 2 и 3 счетчика №3 изменят свое значение, увеличив его на 0,6р, 0,4р и 0 соответственно, т.е. к прежнему значению вновь прибавят значения, соответствующие действующему показанию счетчика №2, т.е. приобретенному ранее импульсу.
Ситуация будет повторяться пока значение первого регистра счетчика №3 не достигнет  значения Nгр. Как только это произойдет, наш квант транслирует свое состояние в смежный квант по 1-ому направлению, полностью «обнулив» свое состояние, т.е. перейдя в состояние вакуума.
Смежный квант, приняв информацию нашего кванта, сразу изменит состояние одного из регистров счетчика №3 , относящегося к 1-ому направлению, вычтя из него значение Nгр, т.е. станет равным  n(0,6р) — Nгр, и продолжит циклическое излучение гравитонов с нового места.
После еще нескольких циклов заполнится регистр, относящийся ко 2-ому направлению, и вся информация из активного вещественного кванта переместится в смежный квант по 2-ому направлению, полностью повторив алгоритм предыдущего перехода.
В результате неограниченного повторения циклов нулевого взаимодействия вещественный квант будет перемещаться точно в направлении первичной флуктуации по траектории луча, в том смысле, что фотон, излученный телом в точку флуктуации, следовал бы по тем же пространственным квантам.
Если в какой-то момент, сзади перемещающегося кванта возникнет точно такая же флуктуация, то она остановит вещественный квант. Счетчик №2 обнулится, а счетчик №1 примет значение Nгр. Однако регистры счетчика №3 сохранят свое случайное значение на момент флуктуации.
В дальнейшем, такой вещественный квант может один раз в начале следующего взаимодействия прореагировать на оказанное воздействие не соответствующим образом. Практическое значение это вряд ли может иметь, но абсолютный детерминизм этим фактором исключается.
Таким образом, инерционное перемещение вещественного кванта, в общем случае, происходит по кратчайшей периодической линии, являющейся по нашему определению лучом.
В частице, которая движется по инерции, значения счетчиков №1, №2 и №3 в общем случае соответственно равны: m0 — mp, mpu, m(t) — где  m0 – масса частицы в гравитонах, mp – дефицит массы, mpu – действующий импульс, m(t) — пилообразная, ступенчатая функция.
Из выше изложенного следует.
В эффективном представлении невозможно осуществить локальный эксперимент, гарантирующий абсолютное выполнение закона сохранения импульса, но возникшая погрешность неизбежно будет скомпенсирована в будущих взаимодействиях, обеспечивая, таким образом, отсроченное абсолютное выполнение закона сохранения импульса, как в квантовом представлении, так и в эффективном.
Это положение определяет еще одну составляющую квантовой неопределенности, отрицающую механический детерминизм.

В приведенном выше описании гравитационного взаимодействия остался пробел — не определены условия старта каждого следующего всеобщего цикла Вселенной, определяющего  dT. Ясно, что любой предложенный механизм, может быть «построен» только на основе произвольных допущений, и никогда не может быть проверен экспериментально. Для человечества — это объект метафизики. Но если предложить хотя бы один вариант такого механизма, то этим будет доказана принципиальная возможность существования такого типа процессов.
Можно предположить, что гравитонов во Вселенной на несколько штук (на 12) больше, чем емкость всех вещественных квантов Вселенной. В этом случае 12 гравитонов всегда будут избыточными в последнем гравитационном взаимодействии цикла d;, и вынуждены будут отражаться от последнего (по времени) в цикле кванта (всегда центрального), давая тем самым начало новому циклу. Что и требовалось.

Подведем промежуточный итог, для чего представим общую картину событий от лица нашего наблюдателя, делегированного в недоступную нам фазу метафизических гравитационных взаимодействий, и чувствительного ко всему там происходящему.
Смена внутренних состояний во время реализации каждого внутрифазового взаимодействия происходит для наблюдателя с интервалом dt.
Итак. Сферический слой гравитонов (протяженный импульс), начавшись от центрального кванта Вселенной, должен достичь её границы в форме максимально тонкого слоя, и вернуться обратно. Это значит, что  интеграл внутренних квантовых интервалов, формирующий один суммарный d;, соразмерен с величиной dt•D/dx, где D –диаметр Вселенной.  За время d; все вложенные взаимодействия данного цикла для всей Вселенной реализуются в полном объеме, но не более одного события, т.е. на одну ступень (шаг). Это закон формирования единого системного времени (по определению), который гарантированно обеспечивается природным алгоритмом взаимодействия.
Суммарная продолжительность интервалов dt и количество их в цикле dТ для нашего субъективного восприятия недоступны, и не имеют значения, т.к. происходят в режиме стоп-кадра, когда все объекты Вселенной неизменны, и только фронт носителей поля распространяется от центра Вселенной и обратно. Сколько бы это распространение ни длилось, субъективно это воспринимается как мгновение, т.е. в эффективном макромире воспринимается как реальный калиброванный квант времени.
Все последовательности событий и все взаимодействия, происходящие в рамках d;, относятся к области метафизики. Метафизика – область знаний и соответствующих явлений, недоступных нашим ощущениям. d; – эталон реального и эффективного представления времени, который, сколько бы он ни длился в квантовом метафизическом представлении, в эффективном восприятии всегда будет равен эталонной единице. Такой субъективный эффект обеспечивается полным сохранением информации о начальном состоянии всех квантов Вселенной, пока идет процесс гравитационного / электрического внутрифазового взаимодействия. Пространственное распределение, и вещества, и электрических полей во время реализации гравитационных и электрических взаимодействий, остается абсолютно неизменным.
Таким образом, процессы, происходящие в рамках внутренних фаз цикла dT, не находят отражения в эффективном восприятии мира субъектом, и распространение гравитации в эффективном представлении воспринимается как мгновенное, и не нарушающее законов физики перемещение. Вследствие этого эффективная продолжительность кванта времени воспринимается как dТ=dX/C, где dX – эффективный размер кванта, а C – скорость света.
Мгновенное распространение это не синоним бесконечной скорости, бесконечным параметрам нет места, ни в природе, ни в предлагаемой модели. Мгновенно – означает, что интервал времени, разделяющий причину от следствия, равен d;  вне зависимости от расстояния. Максимум эффективной скорости распространения гравитационных взаимодействий, соответствующий понятию мгновенно, равняется Vmax=2R/dT =2RC/dx, где R – радиус Вселенной. Значение Vmax так велико, что распространение гравитации допустимо описывать как бесконечно большую скорость, называя её мгновенной.
К аналогичным выводам интуитивно и на основании расчета движения планет приходили мыслители разных времен (Лаплас, Ньютон), но они не могли найти этому объяснение в рамках доступных им физических знаний.
Естествоиспытатели всех времен с недоверием относились к изысканиям философов в области метафизики, фактически отвергая её. В результате, как горб на спине, возник неразрешимый парадокс бытия – беспредельная скорость гравитации.

Физические инварианты служат несущей конструкцией в устройстве мира. В предлагаемой модели естественным инвариантом является общее ограничение всех счетчиков материального кванта значением, равным Nгр, которое естественным образом конвертируется в массу кванта m0. Эта величина определена как масса кванта в состоянии покоя, но физическим смыслом этой константы также является инерция, что следует из алгоритмической функции, определяющей закон дискретного перемещения кванта. Счетчик №3 формирует условие перемещения кванта в пространстве вне зависимости от наличия внешних сил и состояния кванта, то есть по инерции, а значит, определяет массу m0 как меру инерции. В этом случае, изменяемое количество излучаемых гравитонов, естественно определить как динамическую меру (массу) веса. В состоянии покоя обе массы равны.

6. ИНЕРЦИЯ — ИНВАРИАНТ МАССЫ

Проведем анализ гравитационного взаимодействия, реализуемого моделью по второму варианту взаимодействия, когда излучение гравитонов происходит в количестве, равном текущему значению счетчика №1, определяющего динамическую массу веса (гравитации) вещественного кванта.
Для простоты рассмотрим частицу, образованную одним квантом. При этом в пространство излучаются гравитоны в количестве соответствующем разности m0 — mp, где m0 – масса кванта, излучающего полное количество гравитонов Nгр, а mp – масса эквивалентная количеству гравитонов, отвлеченных на формирование действующего импульса движения тела или потенциального (сдерживаемого) импульса, т.е. дефицит (дефект) массы.
Итак, исходим из того, что перемещающееся вещество сохраняет массу инерции и соответственно изменяет массу гравитации. Чтобы проверить это явление на практике, необходимо знать конкретную зависимость массы от скорости. Для получения этой зависимости можно воспользоваться формулой периода колебаний физического маятника
T= 2π(I/mgL)0,5,  (6.1)
где I – момент инерции маятника, m — гравитационная масса, L — расстояние от точки подвеса до центра тяжести.
Нам экспериментально известен релятивистский закон, по которому период колебаний любых осцилляторов увеличивается с увеличением линейной скорости осциллятора как
= Т0 /(1-V2/C2)0.5. (6.2)
Из этих двух зависимостей при условии неизменности L  и I следует
М=М0 (1-V2/C2).                           (6.3)

Вызывает интерес формальное совпадение (6.3) с зависимостью ослабления электрического взаимодействия для движущихся зарядов, полученного методом запаздывающих потенциалов [8], хотя физическая природа процессов совершенно иная.
Q= Q0 (1-V2/C2).                     (6.4)
К такой же зависимости приходит и Г.Ивченков [9], но уже на основании баланса сил Кулона и сил Лоренца, действующих на движущиеся заряды. Эти соотношения можно и нужно интерпретировать, как ослабление взаимодействия движущихся инвариантных зарядов.
Напомним, что ОТО постулирует инвариантность электрического заряда, которая неявно распространяется и на поля, создаваемые этими зарядами.

Исходя из выше изложенного, можно сформулировать следующее релятивистское положение.
В движущихся ИСО происходит согласованное замедление всех физических процессов по сравнению с этими же процессами в неподвижной относительно физического вакуума системе, что находит свое выражение во всеобщем замедлении внутрисистемного (местного) времени в зависимости от скорости движения ИСО, как
= Т0 /(1-V2/C2)0,5 .
Эта релятивистская зависимость ритма времени для движущихся тел претендует на статус фундаментальной.
Полученная функция замедления времени, имеет в рамках квантовой модели вполне конкретный и ясный физический смысл, позволяющий понять природу замедления времени в движущихся системах.
Поняв природу замедления темпа времени, можно утверждать, что данный  закон справедлив для любого типа движения относительно вакуума: и инерционного, и ускоренного, и криволинейного.
Тот факт, что замедление времени в равной мере распространяется на все формы движения материи, дает основание для предположения о том, что все формы энергии (кроме потенциальных) сводятся к перемещению частиц, зарядов и их полей. А это значит, что интенсивность взаимодействия электрически заряженных частиц, определяющая частоту колебательных контуров, должна зависеть от относительной скорости так, чтобы выполнялось соотношение (6.4), т.е.
Q= Q0 (1-V2/C2).
Именно эту зависимость дает теория запаздывающих потенциалов.
Предложенная модель позволяет по-новому взглянуть на соотношение, выражающее эквивалент массы и энергии  Е =M0 C2. Физический смысл энергетического эквивалента состоит в том, что  M0 C2— это не энергия тела, а максимум меры энергии, которую можно сообщить этому телу (системе).
Из этого следует, что от любой системы можно взять столько энергии, сколько этой энергии в неё было вложено ранее. Таким образом
Еполн = dМ С2 + 0,5 М0V2 + Епот ≤ М0 C2,
где dМ – дефект массы, равный М0 — Мгр.

Наивная вера в то, что мы, живя в безмерном море энергии, научимся потреблять её без меры и оглядки, так и останется  наивной верой. И аннигиляция здесь не поможет. Во-первых, аннигилирует не вещество, а заряды, хотя этот факт умалчивается. Во-вторых, энергия аннигиляции всегда будет меньше, чем энергия, затраченная на производство античастиц.

Необходимо отметить, что соотношение (6.3) противоречит одному из основных положений теории относительности, а именно:
M=Mo/(1-V2/C2)0,5                    (6.5).
Не смотря на то, что скорости V в соотношениях (6.3) и (6.5) определены по-разному (в квантовом представлении это скорость относительно пространства, а в ТО это скорость тела относительно наблюдателя), совершенно ясно, что хотя бы одно из этих соотношений ложно. Однако оба выражения обеспечивают недостижимость скорости света для вещественных тел.

7. ПРОГНОЗИРУЕМЫЕ ЭФФЕКТЫ

Проиллюстрируем полученные результаты практическими эффектами, которые можно прогнозировать для движущихся систем на основании рассматриваемой гипотезы.

1) При измерении массы заряженной частицы методом отклонения движущейся частицы в поле плоского конденсатора, без учета эффекта Q= Q0 (1-V2/C2), будет возникать ложный эффект, проявляющийся в кажущемся увеличении массы движущейся частицы при увеличении ее скорости. Этот эффект и послужил главным подтверждением выводов теории относительности, и явился причиной первичного заблуждения.
2) Вес гироскопа будет уменьшаться с увеличением скорости вращения.
Пример. Для получения эффекта уменьшения веса на 10 мг, характерные параметры полого цилиндрического гироскопа должны быть следующими: радиус – 1м, частота вращения – 50 об/сек, вес – 4 тонны. Расчет проведен для линейной скорости гироскопа относительно пространства, принятой 250 км/сек, т.е. близкой к скорости Земли по орбите вокруг центра Галактики.
Количественный расчет приведен для того, чтобы продемонстрировать уровень сложности измерений, необходимых для подтверждения различия инертной и гравитационной массы.
3) Вес атома водорода должен быть меньше суммарного веса протона и электрона, составляющих атом, что и наблюдается. По теории относительности, напротив, вес атома водорода должен быть больше веса составляющих частиц, но это противоречие не обсуждается.
На практике важна только разность масс для двух состояний, которая определяет так называемый дефект массы. Знак этой разности выбирается безошибочно, по практическому результату и с учетом цели эксперимента.
4) Все вращающиеся тела, при поступательном движении во внешнем силовом поле, в общем случае характеризуются релятивистским смещением центра приложения сил относительно центра массы инерции. Эффект смещения вызывается градиентом полных линейных скоростей элементов вращающегося тела, движущегося поступательно. Внешнее силовое поле в таких ситуациях вызывает три типа изменения характеристик движения:
-обычное ускорение;
-релятивистское угловое ускорение относительно оси вращения тела;
— релятивистское прецессионное движение оси вращения тела.
Похожие эффекты уже зарегистрированы. Речь об эффекте Лензе-Тирринга. Однако наблюдаемые эффекты ошибочно трактуются как результат торсионных взаимодействий гироскопа с вращающимся гравитационным полем Земли.
5) Вес тела будет уменьшаться с увеличением его температуры.
6) Легкая элементарная частица (или ее осколок), перемещающаяся с субсветовой скоростью, становится похожей на фотон, т.к. масса гравитации и величина заряда такой частицы становятся близкими к нулю, и она перемещается практически прямолинейно, не  взаимодействуя ни с какими полями. При прямых столкновениях такие частицы могут проявлять себя как гамма-кванты.
7) Реальные  релятивистские зависимости  Q= Q0 (1-V2/C2)   и  Мграв= М0 (1-V2/C2) не позволяют приложить к телу силу, способную разогнать его до скорости света. Ограничение действует посредством уменьшения эффективности  любого воздействия, т.е. формально — через к.п.д. воздействия, стремящегося (о к.п.д.) к нулю.
8) На поверхности большого тела масса гравитации пробного тела (а это масса приращения для большого тела) уменьшается при возрастании массы большого тела, что сопровождается соответствующим замедлением ритма времени.
9) Любое замедление ритма времени, связанное с большой скоростью или большим гравитационным полем, должно вызывать смещение характерного спектра излучения в красную сторону. Смещение происходит уже в момент излучения фотона. Фотоны с гравитационным полем не взаимодействуют и гравитационным полем не отклоняются.
10) Масса Земли, вычисленная по траектории Луны, будет существенно превышать массу, вычисленную по траекториям геостационарных спутников
11) Наконец, самый легко проверяемый прогноз, который может без всяких затрат опровергнуть предлагаемую концепцию.
В современных ускорителях типа БАК, пучки заряженных частиц удерживаются на требуемых траекториях управляемыми магнитными линзами. Управление осуществляется изменением силы тока магнитов. Любая частица, не зависимо от массы, за одну секунду разгона без магнитного удержания, просядет в горизонтальной плоскости на пять метров. А толщина пучка порядка пяти миллиметров. Ток компенсации, при этом, зависит от массы частиц. Для ионов свинца он гораздо больше, чем для электронов.
В процессе разгона масса протона, по официальной версии, увеличивается в сотни раз, а его заряд остается неизменным. Токи компенсации тяжести должны увеличиваться соответственно.
По предлагаемой концепции масса гравитации протона должна уменьшатся, и соответственно должен уменьшаться его эффективный заряд. В результате настройка компенсации горизонтального смещения пучка не будет зависеть от скорости протонов, оставаясь неизменной на всем протяжении опытов с данными частицами.

Не заметить этот эффект, в любом его проявлении, можно только при большом и сознательном нежелании. Подтверждение официальной версии или её опровержение сэкономило бы огромные средства, затрачиваемые на дорогие эксперименты, подтверждающие Теорию относительности, и прекратило бы её нескончаемую критику.
Большинство из приведенных ожидаемых эффектов описаны здесь только на качественном уровне, но ничто не мешает произвести количественный расчет.
Эффект красного смещения зарегистрирован для Солнца, для галактик и для квазаров. Чем моложе, а значит и горячее, квазар или галактика, тем больше смещение.
Молодые галактики более компактны и характеризуются большей напряженностью гравитационного поля, что вызывает дополнительное красное смещение. Кроме того, необходимо принять во внимание то обстоятельство, что чем больше расстояние до наблюдаемых галактик, тем больше малых галактик становится ненаблюдаемыми. Тем самым производится селективный отбор, искажающий истинную картину общего космического состояния.

Замедление времени хорошо заметно на времени жизни неустойчивых частиц, и этот эффект хорошо известен. Время жизни характеризуется периодом полураспада. Этот параметр оказался самым чувствительным параметром, в зависимости от скорости абсолютного движения. Уже опубликованы результаты исследований тонкой зависимости характеров радиационных распадов от скорости относительно пространства. Исследования проведены академиком Симоном Шнолем [10].

Из прогнозируемых эффектов следует обратить внимание на четвертый, т.к. на его основе можно построить навигационный прибор, измеряющий скорость движения изолированного прибора относительно свободного пространства.
Таким прибором может быть гироскоп, размещенный на общей раме с телом большой массы. Ось гироскопа должна быть направлена с небольшим наклоном в сторону большого тела. В неподвижной инерциальной системе смещение центров инерции и гравитации равно нулю — и гироскоп не реагирует на присутствие большого тела. При поступательном движении системы со скоростью V , перпендикулярной оси гироскопа, возникнет градиент скоростей различных точек гироскопа (по модулю относительно контура гироскопа). Градиент будет перпендикулярен направлению прямолинейного движения системы, и вызовет соответствующий градиент массы гравитации, что приведет к смещению центра приложения сил гравитации, вызываемой массивным телом, относительно центра