Архив рубрики: Статьи

Энтропия и гармония

На сайте «Новости Науки и Техники» 3 марта 2011 года опубликована статья профессора В.Эткина «Многоликая энтропия». В небольшой по объему статье профессионально и кратко, при этом очень доходчиво, рассмотрено понятие энтропия, как в математическом представлении, так и в формате физического смысла. Каждому, кто испытывает некоторую неуверенность при анализе явлений с обращением к энтропии, следует прочесть эту статью.

Однако статья вовсе не просветительская, хотя заявлена автором именно таковой. Она посвящена насущным проблемам термодинамики, связанным с внутренними противоречиями в понимании физической и философской сути энтропии. Характер противоречий достаточно точно отражается бытовым термином – неразбериха. Вот посильной ликвидации этой неразберихи и призвана статья В.Эткина.

Очевидно, что теория, допускающая внутренние парадоксы, содержит некий изъян, а определение, допускающее множественные толкования, не полно. В статье «Многоликая энтропия» автор наглядно и убедительно обрисовывает проблему, демонстрируя читателю сложившуюся ситуацию.

А ситуация, кратко, такова. Существуют несколько математических представлений энтропии, которые не сводятся друг к другу, но которые объединены логарифмической шкалой и чем-то еще более значимым, но ускользающим от понимания. Предлагаемый физический смысл каждого определения также производит двойственное впечатление: каждый тип энтропии явно отличен от других, и в то же время это все об одном.

Если профессор Эткин не предлагает решения этой проблемы, то значит это не так просто. А учитывая ситуацию с парадоксом Гиббса, для которого предложено около десятка решений, и ни одно из них не обладает необходимой убедительностью и универсальностью, то приходится признать, что выявление общего начала в понимании сути многоликой энтропии, действительно является в настоящий момент проблемой.

Одним из способов преодоления подобных ситуаций является дискуссия в форме так называемой «мозговой атаки». Особенностью такой дискуссии является допустимость (даже желательность) участия в ней не вполне профессиональных аналитиков, а также допустимость всевозможных интуитивных предположений без всякой аргументации. Обязательная коллективная критика всех поступивших предложений, напротив, должна быть максимально аргументированной и убедительной. История открытий знает примеры, когда выдыхающаяся мозговая атака заканчивалась нарочито-вздорным предположением, и именно это предположение оказывалось ключом к решению проблемы.

Все последующие рассуждения производятся в рамках правил мозговой атаки, в которой предлагается принять участие всем желающим. При раздражающем дефиците приведенных аргументов см. [4], http://www.sciteclibrary.ru/rus/catalog/pages/10168.html.
Анализ понятия энтропия начнем с пресловутого парадокса «тепловой смерти», которому и В.Эткин вновь уделил достаточно внимания.

Методы научного познания обширны. Обратим внимание на два распространенных приема: идеализация и вычленение. Оба метода достаточно эффективны, и оба требуют дополнительного анализа после получения первичных результатов, которые всегда являются промежуточными. Физическое абстрактное преобразование – идеализация, должно помогать выявлению некой сути реальности, способствуя пониманию сложных реальных процессов (заведомо не совпадающих с идеальными) за счет отвлечения внимания от мало существенных свойств явления. Более точные количественные оценки исследуемого явления достигаются в этом случае последующими исследованиями (методами вариаций или др.), которые и дополняют первичные результаты. Полное пренебрежение дополняющими характеристиками необходимо доказывать!

Вычленение производится исключением из предмета исследования равнозначных сущностей, характеризуемых малой корреляцией взаимодействия с исследуемым явлением. Сам характер метода, по определению, не предполагает последующего обобщения выводов на исключенные явления.

Два названных метода на первый взгляд представляются совершенно разными. Однако они имеют общую границу, и можно найти область, где разделить их трудно.

Обратимся к энтропии в термодинамике. Для исследования явлений в рамках термодинамики используются следующие абстрактные объекты-понятия: идеальный газ и идеальная жидкость. Авторитарный принцип, процветающий в современной науке, не позволяет исследователю даже задуматься над вопросом, является ли идеальный газ идеализацией, или это вычленение. Сказано: идеальный газ – значит идеализация. А суть незаданного вопроса сводится к следующему, если это вычленение, то ни один из выводов термодинамики нельзя воспринимать как главенствующий во Вселенной. Являются ли свойства элементов реального газа, от учета которых отказались, малосущественными, или они равнозначны? Для качественной оценки используемого упрощения рассмотрим следующую тестовую ситуацию.

С точки зрения энтропии одним из состояний вещества, близким к абсолютному максимуму энтропии, является высокотемпературная протонно-электронная плазма. Усредненное действие электрических полей на каждый заряд в этом состоянии равно нулю. Однако кажущееся равновесие сил является динамическим, и реализуется только как усредненный статистический параметр. Реально, каждый заряд постоянно (за редчайшим исключением) находится в отличном от нуля электрическом, стороннем поле. Электроны, сталкиваясь с протонами, заполняют промежуточное пространство электромагнитным излучением с соответствующим высокотемпературным спектром. Если рассматриваемая область пространства является частью бесконечной вселенной, то плазма, несколько остыв за счет энергетических затрат на излучение, достигнет равновесия с излучением, и развитие термодинамического процесса на этом прекратится. Тупик прогресса системы.

Допустим теперь, что рассматриваемая область с плазмой конечна и не испытывает внешнего воздействия, кроме электрически нейтрального ограничителя объема. В этом случае излучение будет покидать плазму, и она, в конце концов, остынет до температуры, при которой математический формализм предписывает электронам упасть на протоны. Но известно, что этого не происходит. Стандартная модель предполагает в этой ситуации образование атомов водорода. Последнее утверждение является практическим знанием и явно противоречит законам шариковой термодинамики, т.к. является самопроизвольным внутренним процессом, сопровождающимся уменьшением энтропии. Последующее формирование молекул водорода еще больше уменьшит энтропию. И так до галактик.

Рассмотрим еще одну элементарную ситуацию. В свободном пространстве на некотором удалении находятся неподвижный протон и неподвижный электрон. Что произойдет — известно. Электрон начнет «падать» на протон, в результате чего образуется атом водорода. Для строгости рассуждений можно ввести вероятность этого события, но суть от этого не изменится. Зная начальную фазу и конечный результат, можно восстановить промежуточную фазу. А именно, электрон, приближаясь к протону, за счет электромагнитного взаимодействия приобретает спиральное ускоренное движение, замедляя за счет этого скорость своего приближения к протону. В результате электрон оказывается на возбужденной орбите атома водорода, и после излучения или поглощения соответствующих фотонов, стабилизирует свое состояние. Если кто-то сможет этот процесс представить в исполнении твердых упругих шариков, то пусть всем покажет.

Какой вывод можно сделать. Вывод очень простой: при идеализации реального вещества идеальным газом, были отброшены (как несущественные) сущности гораздо более важные (или не менее важные), чем те, которые были оставлены. Таким образом, метод идеализации оказался методом вычленения, к чему отнеслись без должного внимания. Допустимость вычленения определяется исследователем, но принятие решения обязательно должно быть осознанным и предполагающим восполнение. Однако в сложившейся ситуации ни того, ни другого не произошло.

 

Процессы, противостоящие росту мировой энтропии, явно не относятся к существующей термодинамике. Поиск возможных причин стабилизации или аномального уменьшения энтропии в рамках термодинамики, предпринятый В.Эткиным в конце статьи, может, и приведет к усовершенствованию термодинамики, но не решит проблему.

 

Интуитивно, явления и процессы, которые своим действием реально уменьшают энтропию и противостоят её повсеместному интегральному росту, в своей всеобщей согласованности могут быть отнесены к философской категории «гармония».

Гармония – это наиболее сложно определяемое философское понятие, роль которого в силу объективных причин была временно принижена. Из первоначально философской категории она, в результате практического применения, сведена в рядовое понятие, относящееся к светской культурологи, и даже стала, уже совершенно не по рангу, синонимом красоты.

Попробуем восстановить изначальный смысл гармонии, усовершенствовав его в соответствии с современными достижениями.

Гармония – это процесс и одновременно результат объединения разнообразных сущностей, порождающий принципиально новые качества и свойства системы, признаки которых иногда невозможно обнаружить в объединяемых субстанциях.

Самосовершенствующаяся система является гармоничной. Именно таков реальный Мир. Термодинамическое, необратимое увеличение энтропии, как часть всеобщего вселенского процесса, само является участником гармонического процесса.

Рост термодинамической энтропии также естественен как скольжение с горки, но также как гравитационная аккреция не привела и не может привести к гравитационному коллапсу, так и неизбежный рост энтропии в тепловых процессах не может привести к тепловой смерти. Только рассмотрение искусственно изолированных процессов и необоснованное распространение полученных выводов на все оставшиеся, в отрыве от гармонии Мировой системы, может привести к абсурдным выводам о конце Света. Таким образом, парадокс «тепловой смерти», а также многие аналогичные (смерть Вселенной в «черной дыре») являются парадоксами антинаучного мышления, базирующегося на некорректных предположениях, и не более. Древние мыслители придумали наглядную аллегорию со слоном и слепыми мудрецами. Слепой мудрец, изучающий слона по его испражнениям, неизбежно придет к выводу о скорой кончине слона в результате истощения его физической сущности. Кроме того, оценив интенсивность испражнений и предположив величину массы слона, он может вычислить срок печального исхода.

Все заключения, приводящие к выводу о тепловой смерти абсолютно верны, но для вселенной, состоящей из упругих шариков; это относится и к молекулярному, и к атомарному, и квантовому уровню. Бесценный результат В. Томсона и Р. Клаузиуса, свидетельствующий о невозможности Мира из шариков, т.е. аргументирующий сложную природу первичных квантовых элементов любого уровня, на основе которых построен реальный (квантовый) Мир, превращен в ложный парадокс. Возможно, первоначально это произошло по недомыслию, но сейчас это уже похоже на сознательное сокрытие истины. Мир нельзя построить из шариковых вложений, как бы мелко их ни дробили.

 

Успешные попытки многих исследователей расширить область действия энтропии за рамки термодинамики не могут быть случайными.

Интуитивно все осознают наличие некоей скрытой изначальной сущности, и пытаются её вычленить и формализовать.

Ситуация с энтропией напоминает ситуацию с понятием физиологического здоровья. Воспользуемся этим понятием, как более близким и понятным всем, для сравнительной оценки.

Оценки здоровья могут быть статистическими, качественными, количественными,  специфическими и т.д. Можно производить оценку здоровья нации или некоторой категории населения, можно оценивать здоровье отдельного человека. Специалист по оценке здоровья — это врач.

Предположим, что группе врачей различных специализаций предложено выставить количественную оценку здоровью конкретного человека в системе отсчета, предложенной каждым врачом самостоятельно, и нормированной к единице. А после осуществления индивидуальной оценки, всем предложено собраться в консилиум и попытаться найти единый универсальный подход для оценки.

Не будем развивать аналогию далее. Совершенно очевидно, что даже если удастся найти универсальную оценку, она не сможет заменить и отменить частных оценок, которые будут все разными, будут более информативными и полезными. А самое главное, возникает встречный вопрос, стоит ли ставить задачу поиска единой оценки, пока в этом не возникнет практическая потребность.

Видимо, к аналогичному выводу должны придти и теоретики, занимающиеся вопросом энтропии. Но для этого у них должно сформироваться понимание проблемы, хотя бы близкое к уровню понимания проблемы здоровья врачами и их пациентами.

Похоже, В.Эткин интуитивно оценивает ситуацию аналогичным образом и не пытается вычленить невычленяемое, призывая лишь к корректному применению специализированных определений многоликой энтропии.

Но, возвращаясь к примеру со здоровьем, можно задать вопрос: стоит ли искать универсальный подход в случае с энтропией. Наверное,  стоит, если из этого поиска не создавать проблему: найдется решение – отлично, не найдется – ни чего плохого.

К пытающимся найти «золотое зерно» можно отнести А.Хазена. В своей статье [2] он явно достигает некоторого локального успеха, предлагая в качестве меры энтропии использовать понятие «действие». Но предоставим конструктивную критику этого предложения специалистам. В контексте же статьи гораздо интереснее исследовать определение энтропии, к которому пришел А.Хазен в процессе своих поисков. Вот это определение: «Энтропия есть реализованная действием (как в интуитивном человеческом смысле, так и в виде строгого научного термина) способность к превращениям». Определение явно философского толка. Оно удивительно похоже на данное здесь выше определение гармонии. Более того, определение А.Хазена практически перефразирует (с некоторыми потерями) определение гармонии, и это очень знаменательно. Часто анализ пар соответствующих противоположностей приводит к пониманию, что глубинные сущности их сближаются. Но не в такой же мере. Очевидно, что один из авторов (или оба) явно ошибается.

Энтропия в проявлении своей многоликости — это состояние движения системы, отражающее процесс диссипации запасенного действия; это процесс восстановления всех видов равновесия и процесс установления однообразия; это косвенная характеристика износа, старения и смерти всего, что исполнило свое предназначение. И еще многое другое из этого ряда.

Однако энтропия не может остановить нескончаемое развитие Вселенной. В диалектическом ракурсе ей противостоит гармония случайных связей, порождаемых хаосом теплового движения. Только модель молекул, представляющая голые, идеально упругие шарики, имитирует тепловую смерть всего сущего. Но молекула-шарик это всего лишь нулевое приближение окружающей действительности. К тому же, энтропия не равна по своему статусу значению гармонии. Энтропия имеет область применения, тогда как гармония ограничений не имеет. Энтропия сама является агентом гармонии.
Энтропия – одна из составляющих высшей Гармонии; она, уничтожая несостоятельные творения гармонии, формирует с помощью сохранения самых совершенных творений природы прогрессивный тип развития Вселенной.

 

            Нижний Новгород, март 2011г.

           

         

Источники информации

 

  1. В.А. Эткин. Многоликая энтропия. Интернет, Новости Науки и Техники, 2011г.
  2. А.М. Хазен. О термине действие-энтропия-информация. Интернет, 2003г.
  3. Физический энциклопедический словарь. М. Советская энциклопедия, 1983.
  4. В.Н.Леонович. Концепция физической модели квантовой гравитации. Интернет.

Кривизна пространства

Информация к размышлению

 

Аннотация. Представлено наглядное обоснование принципиальной невозможности существования кривизны пространства в понимании Римана, Лобачевского, Эйнштейна, т.е. кривизны, допускающей понятие замкнутого пространства.

 

Введенные понятия, профессионализмы, редко употребляемые слова:

1) Возмущение – состояние объекта, отличное от условно принятого за базовое состояние. Базовое состояние обычно характеризуется минимумом энергии.

2) Официальная наука – свод научной информации, представленной в учебниках, пособиях и справочниках, утвержденных к изданию Российской Академией Наук (РАН).

3) Коварный стереотип — неосознаваемый стереотип, представляющий ошибочное решение части исследуемой проблемы.  Например, квантовое мировоззрение не допускает существования неразрывных полей с бесконечной протяженностью. Однако и физики, и математики продолжают молча (без оговорок) пользоваться этими неприемлемыми уже представлениями.

 

Понятие «пространство» можно условно представить состоящим из трех частей.

а) Пространство геометрическое – объем геометрического объекта, абстрактной фигуры.

б) Пространство как обобщенное понятие места размещения определенных объектов: пространство листа бумаги, пространство помещения, пространство локализованного природного образования, пространство таблицы, пространство произвольного множества, пространство космическое.

в) Пространство пустоты – интуитивное и очень не конкретное представление о пустоте как материальной, но лишь косвенно ощущаемой сущности. Пространство пустоты мыслимо в двух ипостасях: пространство пронизывающее всё вещество присутствующих объектов; и пространство между веществом объектов, обволакивающее, не проникающее в вещество.

 

Все три представления о пространстве, сформулированные автором, не являются жестко обособленными, и в чем-то перекликаются друг с другом, но все-таки это не одно и то же. Нас в данном исследовании интересует безграничное космическое пространство пустоты.

Обратим внимание, что два первых представления принципиально обращены к ограниченным пространствам. Даже космическое пространство, без уточняющего обстоятельства «безграничное» непроизвольно ограничивается нами по мере надобности: солнечная система, звездное скопление, Галактика, Метагалактика,- это всё мысленно ограниченные пространства.

 

Логически, пустота не может иметь формы, и значит, не может иметь своих границ. Пустота, в рамках нашего стереотипа мышления, занимает всё доступное ей пространство, а доступно ей всё, что не занято мыслимыми и ощущаемыми нами объектами.

Пока атом представлялся научному сообществу цельной частичкой вещества, пустота естественно представлялась в образе эфира, обволакивающего атомы.

Однако, как только стало известно, что сам атом почти весь состоит из пустоты, концепция эфира потеряла опору, тем более сейчас, после разработки теории партонов в рамках Стандартной модели [&]. В теории партонов пустота занимает почти весь объем протонов и нейтронов.

Возникает вопрос: пространство, которое временно занято веществом, что оно из себя представляет? Интуиция и здравый смысл склоняли эрудитов XIX века к мысли, что пустота существует физически, на равных правах с веществом, т.е. устранение электрона из данной точки, вызывает смещение окружающей пустоты в освободившееся место, и влечет выдавливание пустого пространства из нового места расположения электрона.

Такое представление о пространстве (пустоте) является коварным стереотипом, который неуклонно склонял и продолжает склонять исследователей к образу эфира в форме обволакивающей идеальной жидкости.

Однако постепенно и неотвратимо, с приобретением новых знаний создается альтернативное мнение, по которому пространство, будучи неподвижным, формирует все известные нам объекты, как результат своего возмущения. Возмущения, которое перемещается от одного элемента неподвижного пространства к смежному элементу. Одним из первых эту идею четко сформулировал Лоренц. Вот как Лоренц выразил свою мысль: «Действительно, одно из важнейших наших основных предположений будет заключаться в том, что эфир не только занимает всё пространство между молекулами, атомами и электронами, но что он и проникает все эти частички. Мы добавим гипотезу, что, хотя бы частички и находились в движении, эфир всегда остаётся в покое. Мы можем примириться с этим, на первый взгляд поразительным, представлением, если будем мыслить частички материи как некоторые местные изменения в состоянии эфира. Эти изменения могут, конечно, очень хорошо продвигаться вперёд, в то время как элементы объёма среды, в котором они наблюдаются, остаются в покое» [Г. А. Лоренц. Теория электронов. М.: ГИТТЛ, 1953., с.32].

Это поразительное озарение могло стать вершиной уже вершившейся в то время научной революции, но рок распорядился иначе.

Вмешался Эйнштейн, который абсолютизировал пустоту и, связанное с пустотой, дальнодействие. И мир принял эту мистическую нелепость.

Философскую емкость идеи Лоренца трудно переоценить. Вдумаемся, всё безграничное разнообразие Вселенной в гипотезе Лоренца обеспечивается всего одним микроскопическим универсальным элементом (квантом) пространства, тиражированным беспредельное количество раз. Другого варианта нет. Эта гипотеза должна была вызвать прогрессивный переворот всего философского мировоззрения. Но Эйнштейн отодвинул это событие на несколько десятилетий.

 

Казалось бы, наглядное представление о пустоте получить просто. Для этого из интересующей нас области бытового пространства необходимо удалить все ощущаемые и мыслимые объекты. Однако процесс такого удаления приводит к философской проблеме (парадоксу). Оказалось, что из заданного объема невозможно удалить наблюдателя, т.е. самоё себя. Можете попробовать.

Как только научное сообщество признало свободное пространство материальным, так понятие «свободное пространство» стало условным. Действительно, от чего свободно пространство: от материи? Ведь в данном представлении пространство является своего рода божественной глиной. Получается, что свободным пространством надо считать «отдыхающее» пространство, которое свободно от своих функций-обязанностей.

Если Земля, например, сместится из данной области, то пространство не замещает освободившееся место, оно просто освобождается от функции быть Землей, передавая эту функцию в смежную область неподвижного пространства. А из этого следует, что каждый элемент пространства может на время становиться любой материальной сущностью.

В 1920 г. Эйнштейн дал свое определение пустоты «физического эфира», вот оно: «…общая теория относительности наделяет пространство физическими свойствами; таким образом, в этом смысле эфир существует… Однако этот эфир нельзя представить себе состоящим из прослеживаемых  во времени частей; таким свойством обладает только весомая материя; точно так же к нему нельзя применять понятие движения».  Конец цитаты.

Как видим, от определения Лоренца это определение Эйнштейна отличается значительной неопределенностью и нарочитой туманностью.

Когда обстоятельства заставили Эйнштейна полностью согласиться с Лоренцем, он и тогда не отказался от своего учения. Может, понимал, что общество уже не простит и не позволит ему этого сделать; Эйнштейн просто показал всем язык. Потомкам, которые разберутся в путанице учения Эйнштейна, это будет понятно.

Попытки теоретиков создать модель пространства, опирающуюся на подвижные материальные частицы пространства (бозоны), отличающуюся от предложенной модели Лоренц, заводят в дебри мистики. В результате, с Лоренцем постепенно соглашается всё больше исследователей, но еще не большинство. Элита РАН хранит молчание в пользу бозонного (скоростного во все стороны) пространства Стандартной Модели.

 

Итак, в случае неподвижного пространства, веществу и всевозможным полям, ничего не остается, как быть возмущениями материального пространства, или иначе, его локализованными трансформациями, перемещаемыми методом информационной эстафеты. В этом случае пространство освобождается от любых механических нагрузок и всех мыслимых парадоксов механического происхождения, но предъявляет нам свои новые качества, к которым официальная наука оказалась не готовой. Интуиция Лоренца не нашла полной поддержки. Поэтому, вывода-утверждения, о фундаментальности эстафетного метода перемещения в неподвижном (абсолютном) пространстве, научное сообщество сделать не решилось. Вместо этого официальная наука заполнила мир обезличенной энергией, предоставив ей право быть и пространством, и всеми полями, и всеми материальными объектами, исказив, таким образом, смысл эквивалентности вещества и энергии. Получается, что энергия, в форме множества своих представлений, и образует материальное пространство. Для вещества же аналогичная (симметричная) функция мыслится невозможной. При таком подходе пришлось наделить энергией и свободное (не обремененное обязательствами) пространство, а это нонсенс.

Получилась логическая неувязка. Пришлось энергию пустоты объявить океаном манящей и нескончаемой энергии, но из этого океана нам доступна лишь его пена, в образе флуктуаций. Мистика.

Эквивалентность массы и энергии выражается формулой Эйнштейна

E=mC^2.

Получается, что мы можем мыслить вещество изготовленным из энергии. Однако, в нарушение симметрии, энергию, изготовленную из вещества, мы мыслить не можем. В этом обстоятельстве скрыта некая философская несостоятельность, которая предполагает возможность полного превращения вещества в энергию. Но что в этом случае будет эту энергию реализовывать?

Обезличенная (не привязанная к веществу) энергия совместима только с квантами света. Для реализации бытовых скоростей вещества, приходиться энергию свертывать в вихри и торы, аналогичные «дымовым кольцам».

Однако такая (энергетическая) модель не снимает всех противоречий подвижного пространства. Как следствие, официальная наука погрузилась в мистику точечных сингулярностей, и в мистику плоских, бесконечных в пространстве, коллапсирующих волновых функций, оставив науку без непротиворечивой парадигмы.

Оставим проблему материального представления пространства, приняв к сведению, что наше представление о свободном (пустом) пространстве является не окончательным и неполным.

 

Из выше изложенного следует, что пространство это сущность необъятная, как по объему, так и по содержанию, требующая для своего изучения согласованных усилий многих наук в рамках философского подхода. Однако исторически сложилось так, что геометрия заявила на пространство свои особые права.

Геометрия – это практическая наука об измерении поверхностных и объемных фигур (и их соотношений), ограничивающих вещественную сущность физических объектов, находящихся в пространстве.

Геометрия неограниченного пространства – это философский изыск.

Гениальный разработчик теории геометрии, Евклид, был философом.

Как философ, Евклид при разработке геометрии столкнулся с тремя трудными проблемами. Решая эти проблемы, Евклид не поделился с нами своими сомнениями, он просто нам  предложил свое понимание геометрических аксиом, постаравшись обойти мешающие ему философские парадоксы.

Первая проблема связана с определением геометрической точки пространства. Евклид определил точку как нечто реальное, «что не имеет частей». Фактически, данное определение является определением пространственного кванта в современном смысле;  но для такого представления надо признать пространство квантовым. Евклид не обладал необходимыми знаниями, поэтому не смог выразить свою интуицию корректным образом. И получилось, что его определение формально не противоречит понятию точки как безразмерного объекта, ведь безразмерная точка тоже формально не имеет частей.

Однако сам стиль формулировки вскрывает сопротивление Евклида применению безразмерной точки.

Дело в том, что механика, в качестве практической кинематики, нереализуема для  тел, составленных из бесконечного числа материальных точек. Ни одно тело не сможет тронуться с места, если оно состоит из бесконечного числа точек, а скорость передачи импульса движения от точки к точке является конечной.

С точки зрения механики, мир может быть только квантовым, принципиально. Однако официальная наука условие принципиальности не приемлет; она признает мир только квантуемым по желанию исследователя, т.е. наблюдателя, что противоречит диалектической логике.

Фундаментальная геометрия Эйнштейна основана на безразмерных материальных точках. Почему официальная наука так бережно лелеет этот очевидный и бессмысленный парадокс, можно узнать только в РАН. Но у каждого интересующегося спросят причину (обоснование) вопроса, а узнав, объявят его представителем лженауки. Критерий – критика ТО.

Вторая проблема Евклида была связана с параллельностью прямых линий.

Задача построения параллельных линий сталкивает практическую геометрию с актуализацией бесконечного пространства. А древние мыслители в своих построениях старались избегать всякой актуализации бесконечности.

Евклид попытался обойти эту проблему с помощью неуклюжей, но, тем не менее, как подтвердила история, строгой формулировки своего пятого постулата. Вот эта формулировка.

«И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные неограниченно эти прямые встретятся с той стороны, где углы меньше двух прямых».

Как видим, в этой формулировке ни слова о параллельности, и ни слова об актуальной бесконечности.

Была еще и третья проблема, но во времена Евклида она еще не стала актуальной; эта проблема связана с методом построения прямой линии.

Евклид определил прямую линию как натянутую нить, или как луч света.

Ньютон определил прямую линию как траекторию тела, движущегося в свободном пространстве только под действием сил инерции.

Эти три проблемы, в полном объеме, не решены до сих пор. И причиной этого является устойчивый стереотип мышления. Дело в том, что все три проблемы достаточно легко решаются в реальном квантовом пространстве, которое таковым уже объявлено. Но, объявив мир квантовым, теоретики, тем не менее, следуя за официальной наукой, мыслят мир классическим, состоящим из безразмерных материальных точек. Вот проблемы и живут, благодаря коварному стереотипу.

Как видим, применительно к неограниченному пространству, мы имеем два эталона прямой линии: траекторию луча света и траекторию движения тела по инерции. Оба эталона небезупречны.

Свет искривляет свою траекторию в неоднородной оптической среде, а пробные вещественные тела искривляют траекторию инерционного движения вблизи других вещественных тел, устранить которые нет возможности.

 

Всякое обращение к актуальной бесконечности вызывает у авторов проблемы философского толка. Возникли проблемы и у геометрии Евклида при попытке её интерполяции на бесконечность. Научное сообщество усомнилось в полноте и непротиворечивости аксиоматики Евклида. Началась эпопея проверок, в результате которых сначала возникли гипотезы криволинейных геометрий, а следом возникли и гипотезы кривизны реального пространства.

Следует заметить, что все проблемы, касающиеся кривизны пространства, рождены «на кончике пера». Практика не дает никаких оснований для предположений о кривизне пространства. Но уж если теоретики вызвали джина из бутылки, то его необходимо идентифицировать.

Как на практике отличить бытовое криволинейное движение объектов, вызываемое множеством причин, от криволинейного движения, связанного с кривизной пространства?

С философской точки зрения вопрос примитивен до не корректности. Ведь, если криволинейное движение тела вызвано кривизной пространства, то логично причиной искривления траектории тела считать причину, которая вызвала кривизну пространства. Но ни кривизны пространства, ни причин её вызывающих мы не знаем. Что же с чем сравнивать?

Чтобы внести физическую определенность в этот вопрос, необходимо выделить оба типа движения хотя бы гипотетически и терминологически. Так и сделали.

Свободное прямолинейное движение по инерции в гипотетическом криволинейном пространстве назвали геодезическим, а причинное движение в этом же пространстве назвали мировым.

Ситуация конкретизировалась, но недостаточно.

Как наблюдатель определит, в каком пространстве он находится? Нужны критерии.

Однако практика никаких критериев не предоставляет.

Вывод: либо кривизны нет, либо реальная кривизна неуловимо мала.

Но теоретикам, которые втянулись в изучение кривизны пространства, и потратили на это много сил и времени, очень хочется, чтобы их труд был не напрасен. Интуитивно они понимают, что малозаметная кривизна космического пространства может быть связана только с распределением массивного вещества в космосе. Но как конкретно это реализуется, геометры не знают.

После первой попытки Лобачевского представить реальное пространство в качестве криволинейного, научное сообщество отвергло его притязания. Но вирус был выпущен. Вслед за геометрией Лобачевского появились другие. Появилась обобщенная криволинейная геометрия (семейство геометрий) Римана.

И, наконец, появилась еще одна, особенная геометрия – геометрия пространства-времени Эйнштейна. Геометрия – кентавр. Геометрия, оперирующая физическими полями, да еще претендующая на статус фундаментальной геометрии всякой физической сущности, начиная с гравитации.

С введением понятия пространства-времени Эйнштейна, практическое разделение движения на мировое и геодезическое, резко усложнилось. То, что раньше считалось мировой линией, например, движение планет, у Эйнштейна стало геодезической линией. По наблюдаемой кривизне траектории тела невозможно определить, геодезическая она или мировая. Все траектории планет превратились в прямые геодезические линии. Но видеть прямизну этих линий нам не дано, т.к. они являются объектами 4-х мерного пространства, которое реально не существует, но его формальным законам якобы объективно подчиняется вся динамика космоса. И эту динамику можно рассчитывать по формулам Эйнштейна.

Формулы очень красивые. Но решить эти формулы в практическом приложении фактически невозможно, из-за их сложности. К тому же, Эйнштейн наделил фотоны гравитационной массой, и те лишились возможности быть эталонами прямых линий. Если кто читал труды Эйнштейна, то могли бы заметить, что учение является принципиально приблизительным, о чем Эйнштейн напоминает в начале почти каждой своей статьи.

Реанимировав отжившую гипотезу Ньютона, о наличии гравитационной массы у фотона, Эйнштейн вынужден приписать наличие гравитационной массы любой форме энергии. Поворот развития прогресса в тупик – завершился.

Заменив силовые поля гравитации кривизной пространства, на что как автор модели Эйнштейн имел полное право, Эйнштейн освободил себя и остальных теоретиков, ратующих за всемирную кривизну пространства, от доказательства существования этой кривизны. Поскольку теперь кривизна бесспорно была всюду, то можно ставить вопрос только о том, чему равна средняя кривизна пространства Вселенной. А это формально соответствует научной постановке вопроса.

Однако произведенная замена требовала обстоятельного доказательства своей правомочности, т.е. адекватности нового представления. Такого доказательства в ТО у Эйнштейна нет. Похоже, Эйнштейн отнесся к произведенной им замене, как к смене координат, не влияющей на суть происходящего.

Вслед за Эйнштейном в это заблуждение впал А. Фридман, который операцию инверсии пространства принял (и представил) как преобразование координат.

Роковая ошибка, связанная с ошибочным представлением Эйнштейна о росте массы тел с ростом их энергии, последовала незамедлительно. В циклотроне, ослабление воздействия магнитного поля на движущиеся по круговой траектории электроны, было интерпретировано не как ослабление действия поля, а как увеличение массы электрона.

Несуществующую прибавку веса пришлось превратить в эквивалентность массы и энергии. Дальше – больше. Возникла лавина ложных интерпретаций множества связанных экспериментов [&Окунь].

Сформировалась ложная парадигма, которая живет и развивается до сих пор, повторяя по-своему историю поручика Киже.

 

Поскольку в представлении (континууме) Эйнштейна времени нет, а есть времени подобная пространственная координата «ict», то никакого движения в «пространстве-времени» быть не может. Могут быть только неподвижные геодезические и мировые «траектории» в сугубо математическом (наглядно непредставимом) представлении.

Но сам Эйнштейн не может преодолеть общий коварный стереотип – всё мыслить движущимся во времени. Он постоянно сбивается на описание неких движений в своём континууме. И это только малая толика лавины нелепых неразберих.

Эйнштейн совершил поступок невероятно дерзкий.

В своей модели гравитационного мира он отказался от гравитационных сил и гравитационного потенциала, и заменил их геометрической кривизной. В представлении любого человека, кривизна рельефа побуждает тела к движению; все забывают, что это притяжение Земли вызывает движение, а кривизна только направляет движение тел. Сама по себе кривизна не может вызвать движение. Таким образом, Эйнштейн косвенно ввел в геометрию элемент физики, сотворив небывалое доселе чудо – физическую геометрию, не имеющую аналога ни в природе, ни в науке о природе.

Если кривизна пространства побуждает массивные объекты к движению, то такая кривизна, в этом аспекте, ничем не отличается от силового поля, что представляется весьма сомнительным, т.к. кривизна должна сказываться в первую очередь на луче света, как эталоне кривизны.

Простота приведенных здесь аргументов критики пасует перед чудовищностью лжи, тиражируемой официальными СМИ и Академиями всех стан, во славу ТО.

Обратим внимание на то, что на момент замены Эйнштейном силы притяжения кривизной пространства, представление о кривизне еще только формировалось на основе домыслов; домыслов, исходящих от узкого круга лиц, так что проверить справедливость утверждений Эйнштейна было практически невозможно.

В представлении Эйнштейна кривизна пространства задается пространственным распределением массы и энергии. При этом свободное движение в любом гравитационном поле объявляется инерционным.

Вещество и энергия есть повсюду. Значит, прямолинейных участков пространства просто не бывает. Как же тут возразить, что пространство Эйнштейна не криволинейное. Но подвижность энергии делает задачу перевода энергии в неподвижную кривизну — неисполнимой, с очевидностью.

Модель Эйнштейна явно не адекватна природе, и не востребована практическими нуждами человека. А это значит, что для привлечения внимания общества к ТО нужно использовать всевозможные парадоксы, выявление которых связывалось исключительно с разработкой ТО, например, парадокс близнецов.

Общество было шокировано необычностью эффекта, и весь восторг удивленного обывателя был направлен на ТО и её автора, хотя эффект следовал непосредственно из преобразования Лоренца.

Становление ТО сопровождалось всевозможными интригами. Хочешь — не хочешь, а придется сделать отступление на анализ так называемого «человеческого фактора».

Подавляющему большинству населения Земли ненаблюдаемая и недейственная кривизна пространства безразлична, т.к. она не влияет на их жизнь по причине своего отсутствия. Прочтя любые разоблачения учения Эйнштейна, это большинство не будет вникать в их смысл и в суть ТО, но подумает, что не может быть, чтобы гениальный Эйнштейн ошибался, ведь интеллект  академиков заметил бы эти ошибки.

Узкий круг специалистов, который мог бы вынести профессиональную оценку учению Эйнштейна, является кругом персонально заинтересованных лиц. Молодые, пишут диссертации и делают карьеру; этим специалистам нельзя даже сомневаться в ТО – иначе они окажутся в изгоях от науки. А защитившись, и сделав карьеру, они тем более не будут критиковать ТО, ставшую их кормилицей.

И кто же остановит этот закольцованный процесс?

Остановят те, кто породил революцию, зашедшую временно в тупик. Остановят инженеры и исследователи-экспериментаторы.

Но этого может не случиться очень долго, если общество будет достаточно зомбировано. Теневое мировое правительство, подкупив академическую верхушку, к этому и стремится. Смысл этого стремления далек от темы данной статьи.

 

Попробуем разобраться в тонкостях вопроса о кривизне пространства, по методу Лобачевского. Для этого предположим, что реальное пространство является кривым, и попробуем установить критерии этой кривизны, которые должны проявляться с достаточной для обнаружения интенсивностью, но не обнаруживаются в силу ложности исходного предположения.

Чтобы облегчить читателю дальнейший анализ изложения, заявим сразу, что далее по тексту идет обоснование иллюзорности представлений о кривизне реального пространства. Поэтом, встретив в тексте аргументы в пользу кривизны пространства, надо их рассматривать в рамках доказательства от противного.

Итак, действенная кривизна всех римановских псевдо геометрий не вызывает сомнений. Но имеют ли эти геометрии какое-нибудь отношение к нашему космическому реальному пространству?

Начнем, естественно, с кривизны 4-х мерного пространства-времени Эйнштейна, освященного РАН статусом фундаментальности.

По утверждениям теоретиков, кривизна пространства непосредственно связана с пространственной метрикой.

Теоретики кривых пространств утверждают, что в метрическом пространстве, каковым, несомненно, является пространство нашей трехмерной Вселенной, всегда можно выбрать координаты, в которых для дифференциала пути будет справедливо выражение:

dS2 = dX 2+ dY2 + dZ2 (1).

В общем же случае (если не выбирать координаты) утверждается, что это будет тензор, перед каждым элементом которого должен стоять метрический коэффициент, зависящий от конфигурации кривизны пространства.

Вот как комментирует эту ситуацию сам Эйнштейн.

«В непосредственной близости от свободно падающего в гравитационном поле наблюдателя гравитационного поля нет. Поэтому мы всегда можем рассматривать бесконечно малые области пространства как галилеевы.

… Пространственно-временные области конечной протяженности, вообще говоря, не будут галилеевыми, так что в конечной области никаким выбором координат нельзя исключить гравитационное поле. Поэтому нет таких координат, в которых метрические соотношения специальной теории относительности выполнялись бы в конечной области. Но для двух соседних точек (событий) континуума всегда существует  инвариант  ds. Его можно выразить в произвольных координатах.

ds2=gijdxidxj

Функции g описывают в произвольно выбранной системе координат как метрические соотношения в пространственно-временном континууме, так и гравитационное поле.» [Том II, собрания сочинений в четырех томах, стр. 48-49]

Прочтите цитату еще раз, и посмотрите, как показательно строг к своим выводам Эйнштейн. И всё это лишь для того, чтобы усыпить бдительность читателя, потому что ключевое заключение: «Но для двух соседних точек (событий) континуума всегда существует  инвариант  ds.» — является ложным. И за доказательством далеко ходить не надо. Доказательством этого является вся вступительная часть цитаты.

А смысл неприметной приписки в этой цитате: «Функции g описывают в произвольно выбранной системе координат как метрические соотношения в пространственно-временном континууме, так и гравитационное поле» — это и есть тот самый необоснованный постулат по замене силовых полей гравитации параметрами кривизны. Читатель не найдет в трудах Эйнштейна, чем gij в уравнениях кривизны отличаются от gij   в уравнениях движения.

 

Функции gij  всегда присутствуют в системе тензорных уравнений Эйнштейна, но так же они присутствуют во всех метрических примерах и расчетах, хотя размерности функций, которые определяются тензором gij в этих двух применениях совершенно разные, не говоря уже о их реальных значениях. Инженер, взявшийся решать уравнения Эйнштейна, на этом месте будет вынужден остановиться в недоумении.

Чтобы понять смысл жонглирования индексами тензорных уравнений Эйнштейна, достаточно вспомнить школьные упражнения с тригонометрическими тождествами. И тригонометрические тождества, и уравнения Эйнштейна не имеют физического смысла, пока они не связаны с конкретными начальными и граничными условиями объектовой задачи, о которых в ТО нет ни слова. Эйнштейн, или его популяризаторы, демонстрируют читателю обобщенные свойства тензоров, безотносительно к реальному пространству, по аналогии c тригонометрическим выражением tg β = sin β /cos β, которое само по себе никому ничего конкретного не сообщает и не доказывает.

Когда же речь заходит о реальных свойствах пространства, Эйнштейн, если ему это надо, фальсифицирует фундаментальные положения своего учения.

Суть одной из фальсификаций, например, в заявлении, что в достаточно малой области произвольного криволинейного пространства всегда можно подобрать такие координаты, что выражение для квадрата метрики будут иметь вид уравнения (1). Эйнштейн, видимо, исходит из сомнительного приема, применяемого многими физиками. Прием состоит в следующем. Для того, чтобы к кривой линии применить формулу прямолинейной геометрии, отрезок кривой линии мысленно уменьшают, одновременно уменьшая масштаб наблюдателя, и добиваются кажущегося эффекта прямизны кривого в действительности отрезка. Этот же прием Эйнштейн использует применительно к малому объему криволинейного пространства. Эйнштейн не замечает (или не хочет замечать) одну особенность: уменьшение объема рассматриваемой области пространства при одновременном уменьшении масштаба наблюдателя в этом случае не влияет на угол расхождения «параллельных» геодезических прямых.

Если взять малый объем криволинейного пространства, в котором геодезические линии расходятся под некоторым конкретным углом, то как ни уменьшай малый объем, угол расхождения будет оставаться неизменным. А это значит, что условие (1) в данной области пространства невыполнимо.

 

Теоретики знают, что реальное пространство 3-х мерное. И других пространств не бывает.

Эйнштейн тоже это знал. Поэтому, излагая своё учение, он избегал термина «пространство», используя термин «континуум». Континуум может иметь любую мерность, и допускает формализм метрики, если данный континуум определить соответствующим образом.

Многозначительное выражение «определить континуум соответствующим образом» является магической фразой, после которой рассматриваемый континуум уже считается метрическим. А соответствующий образ для 4-х мерного континуума только один:

dS2 = dX2 + dY2 + dZ 2+ dW2

Давайте разберемся еще раз.

В выражении (1) dS является расстоянием между близкими точками пространства, а само выражение (1) является формой записи теоремы Пифагора.

Для того, чтобы рассматриваемый континуум был признан метрическим, необходимо чтобы  dS не изменяло своего численного значения при произвольном, линейном преобразовании координат. Здесь ключевым понятием является «линейное преобразование координат». Если континуум линейный – то он метрический. А если континуум не линейный – то о его метричности ничего сказать нельзя.

Чтобы криволинейный континуум обеспечивал существование метрики, необходимо, чтобы dS являлось инвариантом «линейных преобразований координат». А где взять «линейное преобразование координат» в криволинейном континууме? Это еще один коварный стереотип нашего мышления. Логика софистики заставляет нас искать, и иногда по ошибке находить то, чего нет.

Любая реальная или мыслимая кривизна является искусственной конструкцией в линейном евклидовом пространстве, и не более [2].

Производя всевозможные тензорные преобразования, Эйнштейн должен бы был доказывать, что собственно с пространством, и его объектами, в его модели, ничего не происходит.

В качестве критерия допустимости таких преобразований принято использовать инвариантность (относительно этих преобразований) заданного дифференциала между близкими точками, т.е. dS. Такие преобразования, сохраняющие инвариантность dS, Эйнштейн называет ковариантными. Инвариантность dS в данных ситуациях логично адресуется и к метрике, которую тоже называют инвариантной.

Но на основании этого критерия, инвариантность метрики континуума Эйнштейна весьма сомнительна, т.к. его метрика по определению является метрикой криволинейного пространства, зависящей от распределения массивного вещества и энергии в этом пространстве.

Эйнштейн замалчивает это обстоятельство, и придумывает ловкий прием. Он определяет метрику своего континуума как:

dS2 = dX2 + dY2 + dZ2 — c2 (dt)2= 0.        (2)

Это главная фальсификация Эйнштейна. Есть и другие, но эта – главная.

Во-первых, dS в (2) это не путь и не расстояние, и значит, не имеет к метрике никакого отношения, даже если dS является инвариантом; а само выражение (2) это даже не равенство. Присмотримся внимательно – и мы увидим, что dS в (2) это разность двух измерений одного и того же пути между двумя, близкими, по определению, точками реального пространства, измеренного двумя разными методами. Таким образом,  dS в (2) вовсе не метрика, и не расстояние между близкими точками, а метрологическая характеристика двух методов измерений. Первый раз замер производится линейкой, а второй раз – с помощью часов и луча света. И делается это в нашем, обычном трехмерном пространстве, а не в 4-х мерном пространстве-времени. И самое главное, такое сравнение допустимо (справедливо) только для фотона, и в этом случае является тождеством.

Инвариантности метрики соответствует условие равенства нулю её (т.е. метрики) параметрической производной. Выражение (2), заявленное как приращение пути, но на самом деле являющееся разностью одного и того же приращения, создает ложный эффект  (впечатление) инвариантности метрики.

Приравняв нулю, ложный дифференциал пути, Эйнштейн на самом деле заранее лукаво гарантирует равенство нулю второго дифференциала, что должно было бы подтверждать инвариантность ложной (несуществующей) метрики. Сконструировав выражение (2), Эйнштейн хотел с его помощью решить две задумки: представить свой континуум метрическим (что ему удалось, хотя и незаконно); и любые преобразования координат представить ковариантными (что тоже удалось благодаря попустительству оппонентов). Таким образом, Эйнштейн, не взирая на очевидный абсурд ситуации, заявил выражение (2) как метрику. И все это приняли.

Демонстрация коллективного зомбирования.

Однако континуум, представленный Эйнштейном, как только что выяснили, не является метрическим.

В искусственном четырехмерном континууме Эйнштейна, который определяется выражением (2), метрики не существует.

Эйнштейн утверждает, что его представление (модель), при отсутствии массы в пространстве, будет всегда реализовывать геометрию Евклида и признаком этого будет  dS = 0. Но ведь признаком линейности пространства является инвариантность отрезка dS, а перед нами не отрезок, а «0», который в данной ситуации означает отсутствие объекта (приращения пути). Вспомним о коварстве «0» из занимательной арифметики.

Обязательное условие dS=0 в (2), выдвинутое Эйнштейном, не допускает права интегрирования пути.

Википедия. «Интегрировать определённое таким образом расстояние нельзя, так как результат зависел бы от мировой линии, по которой бы велось интегрирование. Таким образом, в общей теории относительности понятие расстояния между далёкими объектами в трёхмерном пространстве теряет смысл. Единое исключение — ситуация, в которой метрический тензор gij не зависит от времени.» Конец цитаты.

Независимость метрического тензора от времени означает его непричастность к эйнштейновской модели пространства-времени.

Последнее условие выполняется только для абсолютно пустого пространства. Этот факт первым обнародовал астроном и математик Де Ситтер. Об этом мельком написано в некоторых справочниках, но, сообщив об этом, далее этот факт не комментируется, и нигде больше не упоминается.

Если же пространство частично заполнено массой, то оно в модели Эйнштейна непременно искривится, и dS из выражения (2) по утверждению Эйнштейна будет не равно нулю, dS ≠ 0, но бессмысленная величина dS инвариантом не будет. А это значит, что по изменению dS можно идентифицировать каждую ИСО, что в рамках ТО является недопустимым.

Модель Эйнштейна и геометрия Евклида призваны описывать одно и то же реальное пространство. При этом из постулата Эйнштейна о неизбежной кривизне пространства, т.е. dS ≠ 0, следует, что в геометрии Евклида между двумя точками реального пространства можно провести две прямые линии разной длины. И это уже не про модель Эйнштейна, а про реальное пространство.

Всё это напоминает методику Лобачевского по нарочитому искажению пятого постулата Евклида, только уже не в плане параллельности, а в плане длины отрезка L между двумя заданными точками.

Однако в методе Эйнштейна есть некоторая особенность. Эйнштейн молчаливо полагает (настаивает), что отрезки нужно измерять по разным методикам: один раз линейкой, а другой раз с помощью часов и луча света.

Покажем, что выражение (2), безосновательно названное Эйнштейном метрикой dS, в заданной Эйнштейном интерпретации не может быть не равным нулю. Если нам это удастся, то это будет отрицанием всей ТО.

Исходя из первого постулата Эйнштейна, все измерительные масштабы при переходе из одной ИСО в другую изменяются пропорционально, так что наблюдатель ни каким способом не может внутренними средствами своей лаборатории идентифицировать движение своей ИСО, и вынужден считать её неподвижной.

Поскольку, скорость света объявлена константой, то при измерении длины отрезка L с помощью часов получим L= c dt , т.е. dt = L /c. Тогда разность двух измерений будет:

ddS = L1 – L2 = L – c dt = L– c (L/c) = L – L ≡ 0.

Таким образом, наблюдатель всегда будет обнаруживать равенство двух измерений. Получается, что невозможно нарушить равенство dS = 0, не нарушив первый постулат Эйнштейна.

Вообще-то, для метрики, рассматриваемой в общем случае, действуют свои законы-леммы. Вот одна из них.

Если хоть одна из координат метрического интервала не равна нулю, то интервал тоже не равен нулю; интервал всегда положителен. Таким образом, выражение (2), которое явно не удовлетворяет этой лемме, не может рассматриваться как метрика, а континуум пространства-времени, как это уже отмечалось, не может быть определен как метрический. В этом весь фокус.

Википедия.

«Если основой построения геометрии служит понятие расстояния между двумя точками пространства, то прямую линию можно определить как линию, путь вдоль которой равен расстоянию между двумя точками». Конец цитаты.

 

Оставим эйнштейновский математический иллюзион, и обратимся к физической сути гипотезы кривизны пространства.

Предположим, что есть кривое пространство, которое имеет всюду одинаковую кривизну. Тогда, следуя геометрическому формализму, получается, что оно замкнуто. Это значит, что луч света, направленный в произвольную сторону, через конечное время вернется в точку излучения с обратной стороны.

Попытавшись мысленно представить траекторию замкнутого луча, мы испытаем известные трудности. Нужных траекторий окажется бесконечное множество.

В причинном мире этого вполне достаточно, чтобы утверждать невозможность замкнутого пространства.

Но апологеты кривых пространств не воспринимают логику философии.

Попытаемся разобраться в этом вопросе на примере двумерного пространства.

Обратимся к сферическому пространству. Встанем на экватор, и направим по нему луч света. Луч вернется, как и следует, с обратной стороны. Но где он повернул? Последуем за лучом — поворота нет. Это само двухмерное пространство извернулось в трехмерном пространстве – и замкнулось. Вот, теперь понятен принцип замыкания прямой геодезической линии. Чтобы замкнулось трехмерное пространство, совершенно необходимо четырехмерное пространство. А его, как все признают, не существует. Просто нет – и всё. А значит, нет и не может быть замкнутого трехмерного пространства.

Возможно, в рамках четырехмерного континуума можно сформулировать математический формализм, который позволит корректно объединить время и трехмерное пространство. Но зачем? Совершенно очевидно, что это представление будет громоздким и непомерно сложным. И ничего нового к нашим представлениям и нашим возможностям не добавит.

К настоящему времени с помощью десяти тензорных уравнений Гильберта-Эйнштейна сумели решить только три тривиальные задачи для двух обращающихся тел шаровой формы.

Непомерную сложность математического аппарата четырехмерного континуума пространства-времени можно представить наглядно. Сделаем это.

Пусть требуемый формализм такого континуума реализован, и мы имеем описание реального пространства в этом формате. Возьмем сечение континуума по произвольной координате времени t1, т.е. зададим конкретное время. Сечение сформирует объемную, трехмерную картину мира в момент t1. Это будет объемный образ одного мгновения прошлого.

Зададим далее dt – получим следующий слепок. Получилась машина времени.

А в будущее можно? Можно. Только надо заполнить континуум будущего. А для этого надо рассчитать каждую точку. А если не каждую, то хотя бы точки, интересующие нас.

Вот такая модель, может быть, и возможна. Но кто захочет ею пользоваться и за неё платить? И как долго будет идти расчет? И это не модель Эйнштейна, его-то модель, как мы выяснили, неадекватна, т.е. она местами — ложна. А где конкретно – неизвестно.

Если мы мыслим какое-то движение в псевдо-геометрическом континууме, как это часто делают популяризаторы с четырехмерным пространством-временем, то мы этот континуум бессознательно пополняем дополнительной координатой времени. Это метод нашего мышления. Это наш, тот самый, коварный стереотип. Мы, принципиально, ничего не можем себе представить вне времени. Даже если мы пытаемся представить нечто совершенно неподвижное, то оно неподвижно во времени.

Непроизвольное введение времени повышает мерность любого континуума на единицу. Так что, рассматривая движение в неподвижном 4-х мерном пространстве-времени, мы оперируем 5-ти мерным континуумом. Нам для этого не надо делать никаких усилий, всё делает наш стереотип мышления, и делает это подсознательно, так что мы этого даже не замечаем. Но оперировать при этом мы можем только сечениями, понижающими мерность до родного трехмерного пространства. Четырехмерное (и выше) пространство не существует, даже в больном воображении.

 

Вернемся к нашему примеру с двумерным кривым пространством.

Чтобы это пространство отличать от предметного (Земли, глобуса), надо наделить его отличительными качествами. А мы их еще и не сформулировали.

Помните, мы посветили лучом вдоль экватора – и луч изогнулся. Вот это и есть один из признаков кривого пространства – луч изогнулся.

А если это будет не луч, а длинный прямой штырь? И штырю навязывается то же самое качество, т.е. кривизна.

Таким образом, кривизна пространства диктует (навязывает) свою кривизну всем реальным объектам.

Но главное не в этом. Главное в том, что кривизна диктует искривление предметов, не прилагая усилий и не затрачивая энергии, а это по канонам философии — невозможно.

И вот здесь возникает философский вопрос. Философский, потому что практика не может дать ответ на вопрос о несуществующей сущности.

Что должно происходить, если мы будем вращать прямой стержень вокруг его оси в кривом пространстве? Какие возможности у кривого пространства? Ведь, никто их не знает. Мы просто предположили, что кривые пространства есть. Но какие они? И вот, зашли в тупик.

Логика нашего исследования диктует: если кривизна нашего штыря реальна, он же в замкнутом пространстве замкнется. Но тогда вращение вокруг оси невозможно. А значит, и для стержня любой длины тоже невозможно. И это совсем другой физический мир. И мы его не знаем. Его нет. Или это параллельный мир Эверетта, где можно всё, что придет в голову.

В криволинейном пространстве движение жестких объемных тел, а тем более их вращение, должно сопровождаться деформацией этих тел, и вследствие этого движение невозможно.

Если же твердые тела не являются жесткими, то их перемещение должно вызывать затрату энергии на деформацию – и движение по инерции перестает быть нескончаемым.

Как ни старайся, а бытовую кривизну пространства получить невозможно.

 

Несколько слов о Лобачевском и его геометрии.

 

Некоторая странность формулировки пятого постулата Евклида спровоцировала теоретиков на мысль, что Евклид сомневался в корректности своих представлений о  параллельности, и эти теоретики попытались улучшить формулировку Евклида, и даже попытались доказать её избыточность. Ведь сомнение Евклида в данной ситуации равнозначно недопониманию им сути проблемы.

А вдруг Евклид ошибся!

Однако все попытки закончились неудачей. Пятый постулат был сохранен, но формулировку его все-таки изменили. При новом издании геометрии Евклида Гильберт заменил V постулат Евклида формулировкой Прокла. «В плоскости через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной».

Во времена всеобщего сомнения произошло знаменательное событие.

Глубокое исследование V постулата, основанное на совершенно оригинальном принципе, провёл в 1733 году итальянский монах-иезуит, преподаватель математики Джироламо Саккери. Он опубликовал труд под названием «Евклид, очищенный от всех пятен, или же геометрическая попытка установить самые первые начала всей геометрии».

Идея Саккери состояла в том, чтобы заменить V постулат противоположным утверждением, а именно, его отрицанием; вывести из новой системы аксиом как можно больше следствий, тем самым, построив «ложную геометрию», и найти в этой геометрии противоречия или заведомо неприемлемые положения. Тогда справедливость V постулата будет доказана от противного.

Саккери рассматривает три гипотезы о 4-м угле четырёхугольника Ламберта, что равнозначно V постулату.

Гипотезу тупого угла он отверг сразу по формальным соображениям. Легко показать, что в этом случае вообще все прямые пересекаются, а тогда можно заключить, что V постулат Евклида справедлив — ведь он как раз и утверждает, что при некоторых условиях прямые пересекаются. Отсюда делается вывод, что «гипотеза тупого угла всегда целиком ложна, так как она сама себя разрушает».

Таким образом, было доказано, что реального пространства с положительной кривизной существовать не может.

После этого Саккери переходит к опровержению «гипотезы острого угла». Он допускает, что она верна, и, одно за другим, доказывает целый ряд следствий. Сам того не ведая, он продвигается довольно далеко в построении будущей геометрии Лобачевского. Многие теоремы, доказанные Саккери, выглядят интуитивно неприемлемыми, но он продолжает цепочку теорем. Наконец, Саккери доказывает, что в «ложной геометрии» любые две прямые или пересекаются, или имеют общий перпендикуляр, по обе стороны от которого они удаляются друг от друга, или же удаляются друг от друга с одной стороны и неограниченно сближаются с другой. В этом месте Саккери делает следующий вывод: «гипотеза острого угла совершенно ложна, так как противоречит природе прямой линии».

Саккери не приводит ни одного наглядного примера, который бы подтверждал его вердикт, и заканчивает свое исследование.

И самому Саккери, и его окружению, посвященному в его работу, совершенно ясно, что доказана невозможность геометрии, допускающей альтернативную формулировку V постулата Евклида, т.е. допускающей кривизну пространства.

Причина, побудившая Лобачевского усомниться в этом, и повторить исследование Саккери, нам не известна. Но это произошло.

Лобачевский решил самостоятельно провести доказательство от противного. Для этого он использует следующую преднамеренно абсурдную формулировку.

«Через одну точку, лежащую вне прямой линии на плоскости, можно провести как минимум две параллельные прямые», т.о. Лобачевский отрицает новую редакцию V постулата Евклида.

Далее Лобачевский приступил к построению ложной (неевклидовой) геометрии. Лобачевский не касается исследования варианта с тупым углом, считая его заведомо неприемлемым, для построения альтернативной геометрии. Он исследует вариант с острым углом, т.е. пространство с отрицательной кривизной.

Чем дальше Лобачевский продвигался в построении альтернативных теорем, тем больше проникался таинственной гармонией новой геометрии. В конце концов, он влюбляется в свое детище – и вот, перед нами новый Пигмалион.

Добравшись до ожидаемого абсурда, а он таки добрался, Лобачевский получает ошеломляющий вывод: в новой (ложной) геометрии сумма внутренних углов треугольника может равняться нулю. Разве не абсурд? Но новый Пигмалион не желает убивать свое детище, как поступил Саккери.

Лобачевский убеждает себя: а вдруг реальное пространство все-таки кривое, и предлагает подождать результатов эксперимента. Он даже начинает разрабатывать этот эксперимент. Его суть в том, что в очень большом треугольнике сумма внутренних углов будет чуть-чуть меньше π, что и требуется обнаружить.

Давайте рассмотрим эффект треугольника в космическом масштабе. Допустим, что реальное пространство реализует кривизну Лобачевского. В этом случае всегда найдется такой равнобедренный, треугольник, острая вершина которого будет  иметь нулевой угол. Тогда всё, что попадет на поверхность конуса, образованного вращением этого треугольника, будет для наблюдателя превращаться в точку.

Переводя взгляд по звездному небу с объекта на объект, мы будем видеть, как часть звезд на небе смыкается в одну точку, а когда мы смещаем взгляд, возникают в другом месте. Но ничего подобного на небе мы не видим.

Таким образом, Лобачевскому был доступен наглядный эффект, опровергающий его искреннее заблуждение, но он не захотел посмотреть на небо.

У Лобачевского кривизна отрицательна. Распределение массивных тел такую кривизну создать не может.

Эйнштейн выбирает геометрию Римана, которая допускает оба знака кривизны, безотносительно к применимости в реальном пространстве. Таким образом, действия Эйнштейна, если он был посвящен в суть проблемы пятого постулата Евклида, можно рассматривать как откровенную фальсификацию. Ведь, невозможность реального пространства с положительной кривизной была доказана. А отрицательная кривизна, которая реально тоже не существует, Эйнштейна не устраивала.

 

Есть очень странное обстоятельство. Со времен Эддингтона метрология сделала огромный шаг вперед, такой, что отклонение света звезд, вызванное Луной, уже наверное можно измерить с достаточной точностью, чтобы убедиться в искривлении луча света гравитацией Луны. И не надо ждать затмений Солнца, и преодолевать сопутствующие сложности. Но никаких сообщений об этих измерениях нет.

Мы вынуждены выбирать из двух возможностей: либо экспериментаторы не могут провести этот эксперимент (но где обоснование), либо они уже измерили отклонения (что скорее всего) – и молчат. О чем они могут молчать? Молчать можно только об одном – о нулевом отклонении. Фотон не имеет массы [5], и не искривляет континуум пространства-времени Эйнштейна.

 

Завершающие выводы.

 

Реальное пространство является трехмерным, прямолинейным пространством Евклида.

Геометрия Лобачевского реально существует, но только в качестве экзотического искусственного построения в рамках геометрии Евклида [2].

Четырехмерный континуум пространства-времени Эйнштейна существует по прихоти автора, но не является метрическим, и не может обеспечить адекватное отображение реального пространства.

 

Нижний Новгород, июнь 2018 года.

 

Источники информации

  1. Альберт Эйнштейн / Собрание научных трудов в четырех томах/ «Наука», Москва 1966.
  2. Кулигин В.А., Корнева М.В., Кулигина Г.А /«Внутренней кривизны» пространства не существует!/ Интернет.
  3. Интернет. /Кривизна простра́нства-вре́мени/.
  4. Интернет. /Аксио́ма паралле́льности Евкли́да, или пя́тый постула́т/.
  5. Леонович В.Н. / Импульс фотона, фотонный двигатель и философия/, Интернет: http://www.sciteclibrary.ru/rus/catalog/pages/13311.html .

О мифическом излучении орбитального электрона

Открытое обращение в Комиссию по борьбе с лженаукой и фальсификацией научных исследований и лично к председателю Комиссии академику Евгению Александрову

 

Во всех учебниках и официальных справочниках сообщается, что в рамках классической электродинамики заряд (электрон), движущийся по круговой орбите с постоянной скоростью, должен непрерывно излучать электромагнитные волны. И, теряя энергию, такой заряд должен бы упасть на центральный заряд (ядро атома).

Но электроны на ядро не падают, хотя атомы вещества при этом интенсивно излучают спектр фотонов с дискретностью, определяемой постоянной Планка и строением атома.

В свое время Бор предложил (предположил), а Паули конкретизировал квантовую модель, следуя которой электроны в атоме перемещаются только определенным образом, по разрешенным траекториям, и, находясь на этих траекториях (уровнях), могут не излучать, в силу не очень понятных квантовых свойств атома, интерпретируемых как волна де Бройля.

Наблюдаемое нами излучение атомов происходит только в момент перехода электрона с одного (возбужденного) энергетического уровня на другой, меньший уровень. Эти квантовые переходы возникают спонтанным образом, т.е. тоже непостижимо, и с разной вероятностью.

Получается, что разрешенные уровни не совсем устойчивы и не равноправны в этом смысле. И ко всему, всегда существует некий, самый низкий уровень (основной), с которого электрон излучить уже не может, принципиально.

Научное сообщество с этой моделью согласилось. А как не согласиться, если модель является описанием фактически наблюдаемых свойств атома.

Вот только термин подобрали не очень удачный. По общепринятой терминологии поведение электронов в структуре оболочек атома ПОДЧИНЯЕТСЯ принципу Паули.

Природа не подчиняется никаким законам, природа реализует свое поведение в соответствии с принципом причинности, а мы, в силу своего разумения, подбираем к этому поведению свои приблизительные законы. Эти законы в квантовом мире представляются в форме операторов. Принцип Паули – это очень объемный оператор, описывающий только равновесные состояния. А равновесные состояния в атомах постоянно нарушаются в моменты взаимных столкновений, и при поглощении фотонов.

Во время релаксации принцип Паули может нарушаться.

 

Всё было бы прекрасно, если бы в исходные положения не вкралась одна ошибка. Как она туда попала, сейчас приходиться только гадать.

Из самых общих соображений, опирающихся на уравнения Максвелла, следует, что компактный заряд, равномерно двигающийся по кругу, ничего излучать не может, т.к. при таком движении отсутствуют силы, способные совершать работу, в том числе и работу на излучение. Это заключение носит философский характер, и не требует математических выкладок, однако является совершенно строгим правилом.

При попытке прибегнуть к помощи рутинной математики, корректные решения всегда должны получаться нулевыми, т.к. приращение совершённой работы всегда определяется скалярным произведением двух векторов: действующей силы и приращения пути, а они при круговом равномерном движении строго ортогональны.

Казалось бы, какая разница для квантовой модели Паули, должен ли излучать электрон в рамках классической электродинамики или не должен,- все равно модель работает по своему квантовому алгоритму.

Однако авторитет квантовой теории так велик, что ложное утверждение об излучении отдельного элемента кругового тока перекочевало в классическую электродинамику, и процветает там, нанося повседневный ущерб, как теории, так и прикладным дисциплинам.

Так, экспериментальный факт естественного отсутствия излучения у токовой петли с коротким импульсом тока сверхпроводимости, при протяженности импульса много меньше длины токовой петли, поставил электродинамику перед неразрешимой проблемой.

Не знаю, чем дело закончилось, но первоначально было постановлено считать, что наблюдаемый эффект имеет квантовую природу, и значит ни в каком обосновании не нуждается.

Получается, что постоянный ток в индуктивной катушке не излучает, а только создает постоянное магнитное поле, следуя законам классической физики, и не излучает переменное поле электромагнитных волн, следуя уже квантовой физике.

Но причем здесь квантовая физика, если нет колеблющихся источников, необходимых для создания колебательного электромагнитного поля.

 

Рассмотрим решение, на которое опирается официальная точка зрения, постулируя излучение локализованного заряда, движущегося с постоянной скоростью по круговой орбите.

Автор этого решения (первооткрыватель) рассуждал следующим образом. Положение электрона в пространстве (в любой точке плоской токовой петли) может быть задано двумя ортогональными координатами.

Проекции точечного заряда, в процессе его движения по кругу, будут совершать синусоидальные возвратно-поступательные перемещения, характерные для элементарного синусоидального вибратора, — и это бесспорно.

Но как поступает автор в следующем шаге своего решения? Он удаляет исследуемый электрон из токовой петли, и заменяет его двумя электронами, расположенными в точках проекций, и перемещающихся по законам движения этих проекций уже не существующего заряда. Автор уверен (он даже не приводит никаких обоснований), что суперпозиция излучений двух ортогональных вибраторов будет идентична излучению первичного электрона, перемещавшегося по токовой петле. В результате имеем известное решение, с временем падения электронов (а указывается электрон), равным 1,3*10^(-11) секунд.

Нет слов. Ну, что можно возразить человеку, утверждающему, что дверь – это прилагательное. Ведь прилагается.

Перед нами пример стерильно математического подхода при явной физической и философской безграмотности автора, применительно к данной задаче.

Оба реальных, линейных осциллятора, которыми заменяется орбитальный электрон, имеют вполне конкретную диаграмму направленности (бублик) поляризованного излучения. Эти диаграммы направленности связанны с ориентацией осцилляторов. А эта ориентация в свою очередь зависит от выбора координат, которые мы вправе назначать произвольно. Получается, что мы можем по своему усмотрению изменять диаграмму направленности, а заодно и поляризацию излучения заряда, двигающегося по кругу.

Более того, мы можем выбрать координаты таким образом, что у нас получится три проекции электрона. Что тогда? А ведь три электрона в дальней зоне создадут утроенный потенциал электрического поля, а два электрона – удвоенный потенциал. Значит, заменять орбитальный электрон надо на дробные заряды. А в какой пропорции? Чем дальше в лес, тем больше абсурдов.

Частота колебаний виртуальных, имитирующих вибраторов точно определена, и равна частоте обращения орбитального электрона. Таким образом, частота тормозного синхротронного излучения в ускорителях при субсветовых скоростях, когда скорость практически постоянна и равна скорости света, должна определяться только радиусом ускорителя. Чем больше радиус ускорителя, тем меньше максимально возможная частота синхротронного излучения. Но этого же не наблюдается.

Легко рассчитать частоту синхротронного излучения для БАК (27 км), она будет равна примерно 11 кГц. Это звуковая частота из диапазона человеческого голоса.

 

В свое время официальное положение об излучении кругового заряда было просто ошибочным. Однако после того, как ошибка была обнаружена многими известными (но опальными)  учеными, и положение опровергнуто экспериментально, —  оно стало ложным. Однако ссылки на него в учебных пособиях и всевозможных, популярных публикациях не прекратились, и в этом невольно приходится искать уже чей-то корыстный умысел.

Есть работа для Комиссии по борьбе с лженаукой и фальсификацией научных исследований.

 

Может быть, для кого-то приведенный анализ покажется недостаточным. Предлагаем дополнительные аргументы.

Квант, всякой уже излученной радиоволны, не может рассматриваться как элемент излучателя, т.к. совершенно от него не зависит, однако он представляет собой реальную физическую сущность. Эту сущность необходимо рассматривать как локальное возмущение физического вакуума. Рассматриваемое возмущение пространства, какую бы природу оно ни имело, вызывается колебательным движением электронов. Именно — колебательным.

Википедия: «Колеба́ния — это повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия. Например, при колебаниях маятника повторяются отклонения его в ту и другую сторону от вертикального положения; при колебаниях в электрическом колебательном контуре повторяются величина и направление тока, текущего через катушку».

В макро петле замкнутого постоянного тока признаки колебаний отсутствуют. Повторяющиеся, циклические пролеты электрона через заданную точку токовой петли — колебаниями не являются. Если и рассматривать возмущения пространства, вызываемые пролетающими электронами, то они могут иметь только характер ударных волн. Практика свидетельствует, что инерциальное движение электронов излучения не вызывает.

В достаточно малой области, движение заряда по круговой траектории можно считать равномерным и прямолинейным. Ни о каком излучении в данной ситуации речи быть не может.

Именно отсутствие излучения орбитального электрона атома является природной нормой, следующей из классической физики, а вовсе не непрерывное излучение, якобы нарушаемое принципом Паули.

 

Представленная ситуация является наглядным примером проникновения элементов невежества в самые основы современной физической науки.

Только профан может объявить геометрическую проекцию любого объекта самим физическим объектом. Невежество этого действа так ошеломляюще, что, видимо, повергло всю научную общественность в транс. Иначе нельзя объяснить происходящее. А происходит не просто непротивление этому абсурду, а ежедневное повторение его в официальных наставлениях. Идет непрекращающийся сеанс всеобщего зомбирования. Кто его остановит?

 

Прошу всех, ознакомившихся с этим обращением, прокомментировать его любым доступным способом. Разделяющим позицию автора, можно просто переадресовать статью друзьям и отдельно академику Александрову через сайт Комиссии: algen@yandex.ru.

 

Нижний Новгород, октябрь 2017 г.

Автор: Леонович Владимир Николаевич, выпускник радиофизического факультета Горьковского Государственного Университета им. Н.И. Лобачевского.

Место работы: НИИ Измерительных Систем им. Ю.Е. Седакова.

Тел: 8-910-129-9059.

E-mail: vleonovich@yandex.ru

Инерция и принцип относительности

Инерция и принцип относительности

Информация к размышлению

 

Рассмотрим два идентичных шара, изготовленных из сплава нескольких металлов. Ядро каждого атома «парит» в стабильно-переменном поле электронов своей оболочки. Усредненная структура быстропеременной оболочки внешне проявляет себя в нашем восприятии как достаточно жесткая.

Ядра атомов, составляющих сплав, образуют в пространстве свою, жесткую структуру, в нашем случае аморфную, но часто доменно-кристаллическую. Ядра совершают около своего местоположения хаотические колебания, размах которых соответствует температуре металла. Конфигурация атомов в шаре, и в любом твердом теле, в целом очень устойчива, и определяет твердость и упругость шара. Устойчивость конфигурации атомов обеспечивается силами, называемыми связями Ван-дер-Ваальса, природа которых не совсем ясна.

Однако конечный результат действия сил сцепления атомов и молекул известен, как известны и исходные структуры интегрируемых элементов. В такой ситуации неизбежен вывод о деформации начальных структур составляющих элементов. Динамические поля каждого атомы должны чуточку измениться. Но это предположение испытывает противодействие со стороны принципа Паули. Таким образом, необходимо признать, что принцип Паули является всего лишь некоторым приближением, которое допускает множественные вариации разрешенных электронных траекторий.

В рамках сил Ван-дер-Ваальса теоретики почему-то рассматривают только динамические кулоновские поля и их производные поля диполей, совершенно не рассматривая поля магнитные, формируемые групповыми токами электронов оболочки.

Исследование межатомных связей в твердых телах фактически сводятся к подбору максимально адекватных моделей, которые с очевидностью должны преодолевать стереотип официальной парадигмы, в основе которой лежат принципы нулевых приближений, и замалчивающих свою приблизительность. Но на этом, и так не легком пути, стеной стоит организация чиновников по борьбе с лженаукой, фактической целью которой является канонизация современных представлений в последнее слово науки. Это отвечает интересам внешних, враждебных сил.

Какие бы гипотезы об атомных связях ни предлагались, у них намечается общая тенденция – признаки этих связей отсутствуют у свободных атомов, они возникают лишь по месту, в момент соприкосновения доменов, молекул, атомов.

Ни ядра, ни электроны в структуре вещества твердых тел никогда не сталкиваются. Получается, что все твердые тела это своего рода твердые облака из заряженных полу-подвижных частиц.

 

Пусть шар 1 покоится, а шар 2 движется по инерции точно в центр шара 1 со скоростью V.

По доступным для наших возможностей измерениям характеристик и признаков составляющих элементов шаров мы не можем определить, какой из шаров покоится, а какой движется. Пока не можем. Безуспешные, множественные попытки преодолеть это «не можем» стали причиной для канонизации противоестественного свойства отсутствия признаков состояния движения, в принцип всеобщей относительности.

Можно было бы не канонизировать, а отложить обнаружение соответствующих параметров на будущее. Однако в этом случае принцип относительности не мог бы претендовать на статус фундаментальности. Но наука делается людьми, и нельзя не учитывать человеческий фактор.

Канонизируя принцип относительности, мы привносим в картину причинного мира элемент мистики, позволяющей наблюдателю решать, какой шар в данном эксперименте движется, а какой неподвижен.

Создав прецедент властного наблюдателя, наука покатилась по наклонной плоскости вниз.

Но вернемся к нашим шарам.

Они неразличимы, но каждый, из них, «знает» с какой скоростью, и куда, он должен двигаться. Значит, признаки движения все-таки есть, и более того, в момент столкновения один шар передает эти признаки другому шару. А передавать можно только нечто существенное (физическое).

Наблюдая за поведением элементов эклектического состава шара, находящихся в согласованном движении, приходится предположить, что носителями признаков инерционного движения должны быть универсальные элементы, из которых и состоят нуклоны и электроны, т.е. предположить существование еще более элементарных и универсальных квантов, чем нуклоны и электроны. И эти кванты являются носителями признаков движения.

Все элементы каждого шара согласованно сохраняют, как поступательное движение, так и круговое. Но это не означает, что первичный признак вращательного макро движения существует; он может быть вторичным, т.е. производным от поступательного движения. Как оказалось, в природе реализованы оба варианта.

Судя по функциям, выполнение которых обеспечивается свойствами инерционного движения, а эти функции — величина скорости и её направление, структура первичного универсального кванта должна быть достаточно сложной, и реализована очень надежной и устойчивой конструкцией.

Моделировать такую конструкцию,- являющуюся управляющей в смысле реализации движения,- с помощью энергетических вихрей или волн представляется неуважением по отношению к гармоничной Вселенной. Как много всего противоестественного надо напридумывать, чтобы вихри выполняли требуемые функции.

Рассмотрим подробнее, как реализуется передача информации о движении в момент макроскопического взаимодействия.

Вот шары соприкоснулись. Очень малая часть атомов шаров, а именно в точке соприкосновения, испытает воздействие, выражаемое в деформации электрических и магнитных полей электронных оболочек атомов. Эта деформация непременно вызовет смещение в траекториях электронов, что сразу требует введения поправок в принцип Паули.

Далее развивается ударная волна внутренних соударений. Невозможно поверить, что в процессе одного прохождения этой волны, явно ослабевающей за счет геометрического рассеяния, установится единая скорость всех элементов обоих шаров. Однако мы точно знаем, что единая скорость устанавливается очень быстро. Приходится предположить многократное отражение ударной волны.

С точки зрения абсолютной упругости атомов, процесс отражений никогда не должен прекратиться.

Абсолютная упругость атомов и молекул, рассматриваемая в термодинамике, является достаточно грубым приближением, и надо быть очень внимательным при определении границ его применимости.

В момент соударения двух атомов, сначала смещаются только легкие оболочки атомов, а тяжелые ядра некоторое время остаются на месте (условно). Затем, за счет возникшего дипольного поля приходят в движение и тяжелые ядра атомов.

Качественный анализ многообразия само согласующихся соударений приводит к мысли, что скорости распространения полей, приравненной к скорости света, может быть не достаточно для реализации наблюдаемой скорости установления состояния твердых тел в момент соударения.

Если принять во внимание, что динамическое равновесие сил внутри атома реализуется для трех типов сил: инерционных, гравитационных и электрических,- а инерционные силы действуют мгновенно, то и гравитационные и электрические силы (поля) должны бы распространяться мгновенно.

А учитывая наше знание (официально не признаваемое) о мгновенности скорости распространения гравитации, мы уже можем настаивать на мгновенном распространении электрических потенциалов. Такое поведение электрических полей более соответствует мировой гармонии. Экспериментально этот факт уже подтвержден эффектом Басова. Обнаруженное им небольшое превышение скорости света является результатом сложения скоростей для двух процессов, один из которых распространяется со скоростью света, а второй (электрический потенциал) – мгновенно.

 

Обратимся к варианту безмассовой инерции, т.е. рассмотрим инерцию фотонов.

Роль и назначение фотонов в составе Вселенной достаточно прозрачна. Звезды являются мощными локализованными источниками лучистой энергии, а фотоны являются её переносчиками.

Сразу ясно, что такая точка зрения предполагает существование процесса наделения звезд энергией.

Молодая звезда, будучи энергетически заряженной, очень медленно (с малым расходом) и достаточно равномерно во времени, распределяет эту энергию в своей окрестности, на потребу теплому веществу планетных систем, способных обеспечить существование жизни.

Распределение энергии идет безадресно и односторонне в формате фотонов – универсальных носителей разных по величине порций энергии. Обратим внимание, сам формат энергии фотона тоже универсален, и может быть воспринят множеством систем с различными свойствами и конфигурациями.

Одной из потребных форм энергии является тепловая энергия, которая не мыслима без участия импульсов движения, что и послужило причиной заблуждения, в результате которого фотон был наделен релятивистской массой инерции. Однако это вызвало множество парадоксов, и не отвечало предположению об универсальности формы энергии фотона. Для выполнения условия универсальности фотона, принимаемый импульс должен быть нулевым, каковым он и является [1]. Энергия, переносимая фотоном и принятая в импульсном формате, является обязательно парой противоположных импульсов, что позволяет фотону быть безмассовым, не вступая в противоречие с его универсальностью и пространственной инвариантностью, которая совершенно необходима для мировой гармонии.

Гипотетическое предположение о наличии массы у фотона привносит в картину мира множество дополнительных эффектов, которые должны наблюдаться при фотонном обмене, и которые, прежде всего, необходимо объяснить с точки зрения их назначения и необходимости в природе. Фантазии на эту тему вызывают только явную путаницу, несуразицы и парадоксы. Как, например, можно представить процесс гравитационного покраснения фотона. Излучением вторичных фотонов? Если нет, то надо указать смежный, согласованный процесс, использующий теряемую энергию и информацию.

При обнаружении и исследовании фотоэффекта, экспериментаторы (в том числе знаменитый Лебедев П.Н.) второго импульса не заметили [2], а Эйнштейн, фривольно относившийся к философии, до безмассового фотона не додумался.

 

Распределяя энергию по своим окрестностям, звезда неминуемо стареет, и должна, в конце концов, перейти к реализации циклического процесса восполнения энергии.

Если звезда получила первичную энергию от ядра своей галактики (это одна из самых здравых гипотез), то в эволюции звезды должен быть путь возвращения к ядру галактики. Если же звезда образовалась из пыли, то именно этот путь должен быть ей уготован.

Нам известен процесс образования сверхновых звезд, в результате которого образуется другая, менее массивная, но более плотная, звезда. Ей официальные теоретики предрекают путь в Черную Дыру – тупиковый вариант эволюции вещества.

Другая часть взорвавшейся исследуемой звезды превращается в пылеобразное облако, материал которого может принять участие в создании новой звезды. Но этого материала явно недостаточно, а если достаточно, то только для затухающего процесса. Таким образом, нескончаемые циклы пылевых превращений тоже ведут в тупик. Однако, как замечено, теоретики астрофизики и квантовой теории поля очень плодовиты на выдумки, которые невозможно ни проверить, ни опровергнуть. Одной из таких выдумок является испарение Черных Дыр. Но читайте Эйнштейна. Вещество, которое Эйнштейн называл материей, состоит у него из материальных безразмерных точек. Такое вещество под действием бесконечной силы гравитации может сжаться только в безразмерную точку, с нулевой поверхностью, т.е. в ни что. А «испарение» из флуктуаций формируется в пустоте, на условной границе, пополняя энергией, как внешний мир, так и Черную Дыру. Где же испарение? Абсурд.

Заметим, что в квантовом мире, ни какая локальная бесконечность не может быть физически реализована.

Парадокс Черных Дыр в том, что они имеют конечную массу и конкретную относительную скорость в пространстве. Эти параметры каким-то образом зафиксированы и сохраняются ЧД, и форма представления этой информации должна быть вещественной, что вынуждает утверждать, что ЧД не может быть точкой.

Безразмерная материальная точка не может существовать физически, т.к. негде поместить информацию, содержащую сведения о массе и скорости. И кто будет излучать гравитоны, или другим способом создавать поле притяжения? Безразмерная материальная точка может существовать только в умозрительных, математических построениях.

Возвращаясь к постулатам Эйнштейна, обратим внимание на то обстоятельство, что Эйнштейн, многократно обращаясь к постулату о безразмерной материальной точке, всё же не включил его в свой перечень, видимо чувствуя исходящую от этого постулата опасность для своего учения. Эйнштейн использовал этот постулат как общепринятый.

А РАН принимает этот постулат? Заявления отсутствуют. Но ТО канонизирована. Значит – принимает.

 

Исходя из того, что основным неизбывным свойством материи является свойство «быть», приходим к выводу, что свойство сохранения инерции тела является частным проявлением фундаментального свойства выделенного материального объекта сохранять себя и свое состояние в интервалах между возможными взаимодействиями, в условиях непрекращающегося движения материи.

Это положение можно перефразировать: любой материальный объект  может изменять свое состояние только в результате внешних воздействий.

Вот что написал в свое время о пространстве действительно гениальный ученый Г.А. Лоренц. Цитата.

«Действительно, одно из важнейших наших основных предположений будет заключаться в том, что эфир не только занимает всё пространство между молекулами, атомами и электронами, но что он и проникает все эти частички. Мы добавим гипотезу, что, хотя бы частички и находились в движении, эфир всегда остаётся в покое.

Мы можем примириться с этим, на первый взгляд поразительным, представлением, если будем мыслить частички материи как некоторые местные изменения в состоянии эфира. Эти изменения могут, конечно, очень хорошо продвигаться вперёд, в то время как элементы объёма среды, в котором они наблюдаются, остаются в покое» [3, с.32].

В представлении Лоренца пространство, являющееся материей, невозможно рассматривать как материальный объект. Вследствие этого, ни о каком взаимодействии материальных объектов с пространством речи быть не может. Однако односторонние воздействия пространства на уже сформированные объекты вполне мыслимы, и мы их наблюдаем.

Воздействие пространства на материальный объект проявляется только в формате реакции самого объекта на свое линейное ускорение. Процесс реализуется как инерция, по отношению к массе тела, или как самоиндукция, по отношению к ускоряемому заряду.

Одним из фундаментальных философских выводов является постулат о независимости свойств произвольной системы от её местоположения во Вселенной, при совпадении внешних условий.

Из сформулированных положений, естественным образом следует, что изменение пространственных координат тела не может вызывать изменений состояния тела, и соответственно, материальный квант не может и не должен иметь параметров, связанных с положением в пространстве. Положение объектов в пространстве можно описывать только координатами, взятыми относительно других объектов.

Физический смысл принципа относительности состоит в том, что никакой материальный объект не содержит в себе информации о своем местоположении. Математически это положение выражается пространственными преобразованиями Галилея.

Скорость систем не является очевидным индифферентным параметром. Однако множество безуспешных попыток обнаружить зависимость какого-либо параметра от скорости перемещения системы привело к преждевременному утверждению принципа всеобщей относительности.

Культура оформления фундаментальных открытий требовала проведения проверки принципа эквивалентности масс при всех доступных относительных скоростях. Почему-то такого стремления среди исследователей не наблюдается. Его нет даже в настоящее время, когда такая возможность появилась. Все релятивистские зависимости очень легко устанавить в современных ускорителях, имеющих стационарную орбиту ускоряемых частиц (тел).

Представьте себе ситуацию. Несколько десятков высокопоставленных, маститых ученых, на сверхдорогой установке, построенной по их указанию, обнаруживают явное несоответствие истинных параметров с предсказаниями канонизированного учения. А они все, на основе этого учения сделали карьеру, и издали множество трудов во славу ТО.

Как им поступить?

Пока затаились.

Они не понимают смысла фотографии автора учения с высунутым для них языком. Они полагают, что это экстравагантная шутка.

Поясним для несведущего читателя, что указанная фотография сделана по заказу автора, и является постановочной, а вовсе не удачей какого-то папарацци.

Подробнее об этой ситуации в [4].

 

Модель пространства с необходимыми, перечисленными в настоящей статье, свойствами и параметрами представлена в авторской работе [5]. Описанная там структура пространства полностью соответствует гипотетическим представлениям Г.А. Лоренца.

Согласно концепции, представленной в [5], физическая информация об абсолютной скорости материального объекта содержится в каждом универсальном кванте этого объекта. Эта информация в макроскопическом представлении отображается как уменьшение эффективной массы гравитационного взаимодействия по отношению к инвариантной массе инерции.

Математически эта связь отображается следующим образом:

Vабс= C√{(Mи-Mэ)/Mи}, где Vабс – абсолютная скорость относительно физического вакуума; C – скорость света; Mи – инвариантная масса инерции; Mэ – эффективная масса взаимодействия или масса гравитации.

Эта формула более наглядна в следующем представлении:

Mэ = Mи (1- Vабс^2/C^2).

Для бытовых скоростей величина ∆M = Mи-Mэ неимоверно мала. Но она вполне ощутима в масштабе массы Земли, и её космической скорости.

Действие эффекта проявляется, и наблюдается, как прецессия земной оси [6]. Таким образом, все предположения, высказанные в данной статье, можно считать экспериментально доказанными. Вот только ни настоящую статью, ни [6] в научные, рецензируемые журналы не принимают, т.к. они попадают под определение (клеймо) лженаучных.

 

Нижний Новгород, октябрь 2017 г.

 

Источники информации

 

  1. Леонович В.Н. «Импульс фотона, фотонный движитель и философия». Интернет:

http://www.sciteclibrary.ru/rus/catalog/pages/13311.html .

  1. Костюшко В.Е., «Экспериментальная ошибка П.Н. Лебедева – причина ложного вывода об обнаружении им давления света». Русское Физическое Общество Энциклопедия Русской Мысли. Т. XVI, стр. 34, Интернет: http://v-kostushko.narod.ru .
  1. Лоренц Г.А. «Теория электронов». М.: ГИТТЛ, 1953.
  1. Леонович В.Н. «Экспансия ушлости». Интернет: http://www.proza.ru/2017/09/30/939 .
  1. Леонович В.Н. «Концепция физической модели квантовой гравитации». Интернет: http://www.sciteclibrary.ru/rus/catalog/pages/10168.html .
  2. Леонович В.Н. «Тайна прецессии земной оси». Интернет:

http://www.sciteclibrary.ru/rus/catalog/pages/11478.html .

Экспансия ушлости

Леонович Владимир

Ушлый: хитрый человек, находящий свою выгоду в любой ситуации.

Викисловарь: хитрый, вёрткий, изворотливый, хваткий.

Ушлость — это не базовое качество человека, это классификационная, многопараметрическая характеристика, определяемая набором естественных свойств человека, проявляемых с превышением установившейся социальной нормы. Если музыкальный талант означает наличие музыкальных способностей превышающих некоторую общечеловеческую норму, то ушлость можно рассматривать как гипертрофированные приспособленческие способности, тоже своего рода талант.

 

Ушлый человек в обществе потребления имеет преимущество перед нормальным (не ушлым) человеком, но именно в плане потребления общественного продукта.

Как это проявляется. Вот типичная история.

Ушлые родители в школе устроят своего ребенка к лучшему учителю, используя для этого связи, подарки или свои маленькие хитрости. Перед поступлением в институт этому ребенку наймут репетитора, обязательно из ВУЗа, в который собирается поступать ушлый школьник.

По окончании института, ушлый выпускник получит распределение по заявке (организованной) в престижную организацию. Там ушлый молодой специалист сразу станет общественным активистом и ненавязчивым угодником своего начальства. Поразительна способность ушлых  искренне любить всех, полезных для них людей.

Это способствует их преуспеванию в карьерном росте даже при наличии более достойных и одаренных конкурентов.

Заняв руководящую должность, ушлый человек (уже начальник) будет тормозить рост перспективных конкурентов, присваивая их идеи и достижения, или занижая оценку их деятельности. И т.д., по Макиавелли [читайте произведение «Государь»].

 

Гипертрофированное приспособленчество, в формате ушлости, можно воспитывать (взращивать) и тренировать, чем ушлые родители и занимаются в отношении своих детей.

Опережая в карьерном росте более достойных, ушлые люди создают ситуацию, способствующую замедлению общественного прогресса.

Наносимый ушлостью вред для общества не является смертельным. Но в условиях жесткой борьбы социальных формаций или экономических структур, этот вред может стать гибельным для формации, в которой паразитирует ушлость.

Если не принимать специальных мер, то в обществе может сложиться ситуация, когда основная масса руководителей будет занимать должности, требующие большей компетенции, чем та, которую могут осилить ушлые начальники.

Если потолок интеллектуальных возможностей служит причиной ограничения карьерного роста нормального человека, то ушлый человек преодолевает (но только по должности) этот барьер. Вот эта ситуация, повсеместной недостаточности компетентности руководителей, и реализует максимальный вред обществу от ушлых начальников.

Чиновничество является наиболее привлекательной сферой деятельности ушлого человека. Но случается, романтизм молодости забрасывает ушлого человека в другую сферу деятельности. Однако, повзрослев, такой ушлый человек стремится все-таки к распределительной деятельности. Для этого он использует всевозможные общественные организации, и более всего профсоюзы и партийные организации.

Ушлость не в силах остановить прогресс, но может существенно его замедлить.

Академия наук и Правительство, как самые консервативные и устойчивые по своему кадровому составу организации, чурающиеся потрясений и всяких пертурбаций, максимально подвержены экспансии ушлости.

Чтобы противостоять возможной экспансии ушлости, её приемы надо изучать и уметь идентифицировать. Методы борьбы с ушлостью не могут быть регламентированы; эти методы схожи с воспитанием (созданием) общественного иммунитета, т.е. они должны носить характер кропотливой воспитательной работы, производимой на фоне совершенствования законодательной базы, в плане обеспечения открытости и отчетности деятельности руководства всех уровней. Законы, а особенно подзаконные акты, должны максимально затруднять превращение распределительной деятельности в кормушку для начальника.

 

Одним из известных исторических аналитиков ушлости является гениальный Макиавелли, написавший руководство для ушлых правителей под названием «Государь».

Другим великим произведением, представляющим онтологию одного из аспектов ушлости, а именно — становление партийного и государственного лидера, является роман Горького «Клим Самгин». В силу сложившихся обстоятельств, анализ ушлости в этом произведении имеет подспудный, скрытный характер.

Сталин, нуждаясь в масштабной личности писателя, для продвижения своих замыслов, хитростью заманил Горького к себе, и «посадил его в золотую клетку», надеясь таким образом манипулировать творчеством великого писателя. Однако Горький быстро разобрался в создавшейся ситуации, и поняв, что ему не выбраться из западни, принял достойное решение. Под видом онтологии революционного процесса Горький написал историю становления типового, революционного деятеля ушлого толка, каковым и являлся Сталин.

Но Клим Самгин это не образ Сталина, это собирательный образ всех сталинов и маодзедунов, сознательно рвущихся к власти. Это развернутый анализ действенных методов, как стать лидером чего угодно. Для реализации амбиций ушлого человека может оказаться безразличным характер власти, к которой он рвется. Вполне возможно, что Гитлер, оказавшись в революционной России, стал бы конкурентом Троцкого или Дзержинского.

Биография Клима нашпигована биографическими эпизодами, взятыми из жизни Сталина. Важно было не переборщить. И Горькому это удалось — он издал роман.

Только в условиях тюремного заключения можно написать такой объемный занудно-гениальный труд.

Когда Сталин понял, что Горький перехитрил его, было уже поздно. Единственное, что можно было сделать, это подвергнуть гениальное произведение активному прессингу замалчивания. Что и было сделано.

Сейчас, когда официальный запрет снят, современные ушлые правители тоже не желают популяризации романа в его истинной задумке. Они заказали и произвели на свет художественный фильм, в котором вся аналитика ушлости выхолощена. Это легко было сделать, учитывая вынужденную скрытность изложения именно этого аспекта романа.

Однако в романе есть один, явно придуманный Горьким, эпизод, который является ключом к пониманию всего романа. Вот суть ключевого эпизода.

Маленький Климушка играет в гостиной, где его отец беседует с гостем. Климу скучно – и он иногда прислушивается к разговору, чтобы удачнее встрять в него со своей ребяческой просьбой. В какой-то момент беседы гость делает броское заявление; и оно случайно запоминается Климу.

В другой раз, когда в доме собралось довольно большое количество революционно настроенной интеллигенции, и шло бурное обсуждение текущего момента, Клим уловил сходство обсуждения с прошлой беседой отца, и, воспользовавшись случайной паузой, громко провозгласил броское заявление того, прошлого гостя.

Комментарий малыша, произнесенный с глубокомысленным выражением, оказался таким уместным, что все присутствующие пришли в восторг и умиление, выразившиеся в бурных похвалах и внимании. Климу это очень понравилось – и он начал сознательно прислушиваться к разговорам взрослых, запоминая их высказывания, чтобы потом использовать эти высказывания как свои. Это вошло в привычку.

Никогда Клим Самгин в последствии не выступал на революционных собраниях в первых рядах, он всячески старался высказывать своё мнение обязательно после того, как выслушает мнение всех присутствующих, чтобы его мнение было заключительным, обобщающим и запоминающимся.

 

В современной обстановке, из ушлых правителей и академиков легко, методом манипуляции обстоятельствами (прикармливанием), создаются агенты влияния, которые об этом могут даже не догадываться.

Лысенко, например, никогда не был идейным противником линии партии, но задушил генетику, а Горбачев, наверное, очень удивился тому, что способствовал развалу державы.

Кто-то задушил микроэлектронику, и продолжает душить новую физику. Кто-то завел в тупик квантовую теорию, вынуждая квантовую науку продвигаться на ощупь.

США, посредством агентов влияния, втягивает нас (Россию) в разорительные, обреченные на неудачу, проекты. Самый крупный из них под крылом академика Велихова. Обратим внимание, США не участвуют в проекте ИТЭР, они там только в качестве спонсирующего (совсем немного) наблюдателя. Конечно, можно немного и потратиться, чтобы разорить конкурента основательно.

Скоро (после фиаско проекта ИТЭР) вскроется, уже сейчас известная руководству США истина о ложности ТО Эйнштейна, но для нас, россиян, опять будет поздно. Стыди тогда академиков, сколько хочешь. А им-то что? Их позиция известна.

«А был ли мальчик-то?»

Это летучее выражение из романа «Клим Самгин» — бальзам для ушлости, когда у неё начинает просыпаться придушенная (для их пользы) совесть.

Мальчик тонул, и Клим Самгин мог попытаться его спасти. Но не сделал этого.

Так же и академики не делают даже попыток спасти разворованную, при их потворстве, Россию.

Им это накладно. А девичья память успокоит остатки их академической совести.

Не было мальчика.

Ушлость мимикрирует под талант выживания.

Ушлость мимикрирует под талант предпринимательства.

Но ушлость не является ни тем, ни другим.

Ушлость – это гипертрофированная способность, формирующая потребность присваивания в обход закона.

Ходарковский признался, что деятельность его команды фактически являлась воровством, но воровством, совершаемым без нарушения законов. А законы эти производил на свет их духовный лидер, Гайдар.

Таблетки из мела, сосиски без мяса, нитратные овощи, недостроенные дома дольщиков, лавина сфабрикованных банкротств – и всё это совершенно безнаказанно. Это следствие гайдаровских законов.

В быту ушлый человек может быть очень привлекательным и добродушным, но это только до тех пор, пока вы не представляете для него угрозу. Всё присвоенное, ушлость склонна считать своим кровным достоянием. Защита этого достояния толкает ушлость на всевозможные преступления, вплоть до уголовных.

Ушлость чиновников естественным образом порождает коррупцию на всех уровнях власти.

Чем продолжительнее период стабильного существования любой организации или общественной формации, тем больше эта формация поражается удушающей ушлостью.

Плесень всегда, в конце концов, убивает объект, на котором паразитирует.

Но плесень – это не полноценное сравнение для ушлости. Плесень видима. Ушлость неприметна. Она даже благопристойна. Болезненный (туберкулезный) румянец общества.

 

Ушлость не метит людей особой печатью. Ушлость человека вообще может никак не проявляться, пока не возникнут соответствующие условия. Но, начав действовать (присваивать), ушлость способна совершать уголовные преступления. Этот аспект бытовой ушлости описывается в литературном жанре «чисто английское убийство».

Многие аферисты являются типичными представителями ярко выраженной преступной ушлости.

Ушлость может проявлять себя и в положительном качестве. Но это, как правило, временное явление, пока ушлый начальник не оказывается занимающим положение выше потолка своей компетенции.

Посмотрите на РАН в свете последних событий (попытка принятия первой очереди правительственных чиновников в академики). Похоже, РАН собиралась внедрить свое влияние непосредственно в правительство, при этом повысив благосостояние, как членов Правительства, так и членов Академии. Это был бы эверест законной коррупции.

Ушлый человек, заняв общественное положение, превышающее потолок его компетенции, естественным образом становится активным ретроградом. Будучи не в силах оценивать прогрессивные новации, ушлый ретроград, опасаясь разоблачения своей некомпетентности, просто не будет продвигать новаторские идеи. Он предпочтет заняться борьбой с лженаукой.

 

Нет сомнения, что почти бескровная революция по отстранению от власти ушлых коммунистов (других практически не было) была обеспечена не только фондом Сороса, но и всеохватывающей экспансией ушлости в период брежневского застоя, давшей свои плоды уже при Горбачеве. В этой революции трудно отделить вклад  и стремления собственно ушлых лидеров от вклада и интересов их кукловодов. Но нет никакого смысла изучать движущие силы и помыслы жирующей «свиньи под дубом», от которой надо просто избавиться.

 

Нижний Новгород, сентябрь 2017 г.

 

Контакт с автором: vleonovich@yandex.ru

 

С другими публикациями автора можно познакомиться на странице http://www.proza.ru/avtor/vleonovich сайта ПРОЗА.РУ.

 

Загадка лазера. Информ ация к размышлению

 

Еще на заре лазерных разработок, в лаборатории Басова был обнаружен необычный эффект, демонстрирующий перемещение информации со скоростью, заметно (но незначительно) превышающей скорость света [1].

Участник разработки, и автор воспоминаний [1], Крюков П.Г. пишет следующее. «К нашему изумлению, форма импульса при уси­лении заметно не изменялась, но усиленный им­пульс явно сдвигался к входному. Ошибка в экспе­риментах исключалась. Получалось, что при про­хождении импульса в усиливающей среде лазерный свет распространяется со скоростью, большей ско­рости света. Требовалось объяснить столь неверо­ятное, на первый взгляд, явление» [1].

На фоне множества других открытий, связанных с лазером, и не вызывающих протеста, этому эффекту, возмутительному по своей сути, все-таки не уделили достойного внимания. Эффект, теоретически, с небольшими натяжками, был объяснен в статье Ораевского А.Н. [2] – и благополучно забыт.

Однако, через некоторое время эффект опять потревожил исследователей. На этот раз, в опытах Вонга 1982 года [3], и в схожих экспериментах других исследователей, проведенных  уже в XXI веке.

В этих экспериментах эффект стал объектом пристального внимания. Объяснения Ораевского оказались неуместными, т.к. импульс лазерного усилителя опережал импульс возбуждающего лазера на время, превышающее длительность самого импульса. Более подробно  эта ситуация описана Гришаевым А.А., см. [4].

На этот раз было получено достаточное количество соотношений, чтобы на их основе можно было сделать правильные и однозначные выводы.

Опишем суть эффекта.

Для определения скорости распространения светового импульса в рабочем теле усилителя Басовым был применен следующий прием. Импульс задающего, стартового лазера делился на два канала. Первый канал, по световоду определенной оптической длины, был соединен со входом двухлучевого измеряющего осциллографа. Второй канал, состоящий из трех последовательных участков (световод 1, рабочее тело лазера, световод 2), соединен со вторым входом осциллографа.

Оптическая длина этих двух каналов подбиралась одинаковой. Калибровка установки производилась в пассивном режиме усилителя, т.е. без его возбуждения.

Было установлено, что при достижении некоторого уровня мощности задающего лазера усиленный импульс вдруг начинал опережать задающий импульс. При этом время опережения точно равнялось суммарному времени, требуемому на прохождение импульсом световода 1 и световода от задающего лазера до раздваивающего устройства, т.е. оптическому пути от задающего лазера до усилителя.

После произведенных манипуляций (вариаций) этой оптической длиной, стало очевидным, что стартовый импульс с задающего лазера на лазер усилителя, минуя световоды и делитель, перебрасывается мгновенно.

Однако, несмотря на полученные наглядные результаты, вывод о мгновенном распространении стартового импульса от задающего лазера до усилителя не был сделан. Так велика вера исследователей в невозможность мгновенной скорости распространения информации.

Дело в том, что исследователи, проводившие эксперименты, по всей видимости, не имели правильного представления о мгновенной скорости, и пользовались традиционным официальным представлением, считающим мгновенную скорость синонимом (т.е. равной) бесконечной скорости. А бесконечная скорость действительно невозможна.

Как же удалось официальной науке выйти из этого положения, и все-таки достаточно убедительно обосновать работу лазеров без интерпретации эффекта Басова?

Попробуем разобраться.

 

Основа официальной модели лазера проста и красива.

По этой модели фотоны излучаются электронами атома при переходе с одного энергетического уровня, на котором они находятся, на другой, меньший уровень.

Согласно официальным представлениям, электрон, обращающийся по круговой орбите, должен излучать электромагнитные волны, фотоны. Это, трагически ошибочное представление, попавшее во все школьные учебники, в данном случае никому не мешает, т.к. компенсировано (нейтрализовано) принципом Паули.

Принцип Паули постулирует существование дискретного набора энергетических уровней орбитального электрона, находясь на которых, электрон не излучает. Этих, разрешенных  энергетических уровней у электрона строго определенное количество, и величина их также строго определена, и квантована в масштабе постоянной Планка.

В исходном (невозбужденном) состоянии, соответствующем нулевой температуре, все электроны атома абсолютно устойчивы. При возбуждении конкретного электрона, он скачком переходит на один из разрешенных для него уровней, который уже не является абсолютно устойчивым, и называется возбужденным (квазиустойчивым).

Возбуждение конкретного электрона осуществляется при тепловом столкновении атомов или при поглощении атомом подходящего (резонансного) фотона. В момент возбуждения электрон атома ничего не излучает.

В возбужденном состоянии электрон тоже ничего не излучает, как не излучает любой круговой постоянный ток, но нас принуждают думать, что это особый квантовый эффект.

С возбужденного уровня электрон в какой-то неизвестный момент, спонтанно (самопроизвольно) может возвращаться в исходное состояние, излучая при этом фотон с соответствующей, строго определенной энергией.

Суммарное спонтанное излучение тела происходит хаотическим образом, т.е. в случайное время, в случайном направлении и со случайной энергией. Это излучение формирует характерный для каждого вещества спектр, вид которого является визитной карточкой данного вещества, т.к. зависит от устройства атома, т.е. типа вещества.

Лазер – это хитроумное устройство, генерирующее излучение фотонов в узком энергетическом диапазоне, и практически в одном заданном направлении.

Как это происходит.

Во-первых, изначально искусственно создается возбуждение атомов подобранного вещества лазера не в естественном энергетическом спектре, а на одном избранном уровне. Это сложная задача, но решаемая. Затем, искусственно провоцируется лавинообразное излучение в заданном направлении, формирующее монохроматический, синфазный лазерный импульс — луч.

Лавина формируется за счет вынуждаемого излучения возбужденных электронов первичными стартовыми фотонами, путем многократного отражения этого излучения в оптической системе лазера.

Полная рабочая теория лазера сложна, и полна всевозможными нюансами и тонкостями, выявленными разработчиками лазеров в процессе практических опытов. Эти нюансы отвлекают внимание теоретиков от красивой основы, изложенной выше, своей наблюдаемой экзотичностью. Теория тоже становится экзотичной, порождая мистику, и внедряется в стереотип мышления, становясь постепенно непререкаемой истиной.

Давайте оглянемся на эту основу – и подвергнем её тестовому сомнению.

Начнем с расхожего сейчас в квантовой теории понятия спонтанности.

Википедия. Спонтанный — (лат.  — самопроизвольный) — самопроизвольность; характеристика процессов, вызванных не внешними влияниями, а внутренними причинами…

В этом, совершенно верном на первый взгляд определении упущен очень важный нюанс. Внутренний процесс, вызывающий спонтанную реакцию, является скрытым.

В нашем случае (тормозного излучения электрона) мы должны предположить, что в электроне идут некие существенные процессы, которые вызывают срыв электрона с возбужденной траектории. Сумрачная ситуация. Ситуация, вынуждающая догматически постулировать спонтанный переход электрона.

Здесь актуальны следующие слова Ланжевена:

«Для борьбы с догматизмом в науке бывает очень полезно ознакомиться с тем, насколько основатели научных теорий лучше своих продолжателей и комментаторов отдавали себе отчет во всех слабостях и недостатках своих теорий. Со временем их оговорки постепенно забываются; то, что для них было гипотезой, превращается в догму, становящуюся все более непререкаемой по мере удаления от первоисточника, пока, наконец, не потребуются значительное усилие для того, чтобы порвать с установившимися взглядами, представляющими собой более или менее отдаленные выводы из теорий, временный и гипотетический характер которых давно забыт«.

Квантовые теоретики уже давно сталкиваются с квантово-философскими парадоксами, но упорно не хотят признавать несовершенство своих основ квантовых представлений, противоречащих выверенным философским принципам.

Поскольку в теории лазера внутренние процессы в электронах не предполагаются, то срыв электрона в исходное состояние становится необоснованным, т.е. он невозможен без внешнего участия, которое в теории лазера тоже не рассматривается. Приходится признавать, что первый стартовый, сорвавшийся электрон производит излучение совершенно без причин. Вроде бы, мелочь. Но …

“Нет ни чего позорнее для ищущего истину, чем мнение, будто что-либо может произойти без причины”. Это слова Цицерона. И это фундаментальная философская концепция. Но Цицерон ничего не знал о квантовых казусах, скажут современные академики, умеющие управлять процессами, суть которых им непонятна.

Однако давайте согласимся с Цицероном, что возбужденный электрон излучит фотон и перейдет на устойчивый нижний энергетический уровень только по причине некоторого, не замечаемого нами взаимодействия.

Интерпретаторы теории лазера так и поступают, ссылаясь на взаимодействие электрона с пролетающим мимо фотоном, ведь так дальнейший процесс и описывается. Процесс, из спонтанного превращается в вынуждено-детерминированный. При этом энергия излученного фотона оказывается равной энергии фотона, пролетающего мимо, что естественно, т.к. мы возбудили атом специальным образом. Но вот то, что при этом совпадут направление излучения, и, самое главное — фаза излученного фотона совпадет с фазой пролетающего – это совершенно непонятно, и в теории это умалчивается.

Селекция (отбор) однонаправленных фотонов оптической системой лазера – неубедительна, т.к. в других (не лазерных) системах так эффективно не работает.

Фотон — нейтральный объект, не имеющий силового электрического поля. Как он может воздействовать на возбужденный электрон атома? Только своим гравитационным полем, которое официальной наукой признается. Но об этом в теории лазера нет ни слова. Кроме того, каким образом гравитация фотона сообщит электрону, в какой начальной фазе должен стартовать вторичный фотон, опять же непонятно.

Давайте припомним, каковы интересующие нас в данном случае свойства фотона.

Фотон это истинный квантовый объект, который можно и обнаруживать, и измерять. Правда, при измерении фотон неизбежно исчезает. Выражение «поглощение фотонов» — это фразеологический нонсенс. На самом деле поглощается только энергия фотона, и обязательно вся целиком. Фотон в момент «поглощения» прекращает свое существование. Ни в самом атоме в целом, ни у отдельных электронов фотонов нет.

Таким образом, пролетающий фотон никакой информации электрону атома о фазе частоты фотона и его направлении передать не может. Но ведь лазер работает!

Возникает курьезная ситуация, и в науке это не в новинку. Исследователь, встав на позицию, содержащую ошибку, криво объясняет работу исследуемого объекта. Ему на эти натяжки указывают, а он, в качестве доказательства, ссылается на функционирование объекта. Возникает порочный, замкнутый круг.

Обратим внимание на то, что до сих пор в РАН не решен вопрос о размере фотона. Между тем существует постановление РАН, обязывающее исследователей считать процесс излучения фотона мгновенным. Обратим также внимание на то, что размер всех атомов, независимо от их массы и количества электронов в оболочке, практически одинаковый.

Фотоны тоже, непроизвольно (интуитивно), мыслятся одинаковыми.

Перечисленные аргументы складываются в пользу естественного предположения, что фотоны излучаются не электронами, а атомами, как пространственной структурой, и, видимо, не превосходят по своим размерам размер атома.

В момент излучения фотона происходит мгновенное (происходящее за один квант времени, или малое количество квантов) изменение электрического момента атома. Это по определению. На это время, за счет разных масс, при одинаковых зарядах, у  атома возникает электрический дипольный импульс.  Сам атом, принимая во внимание нулевой продольный импульса фотона, остается неподвижным. Однако возникший на короткое время электрический импульс имеет возможность произвести требуемое лазеру воздействие на соседние, возбужденные атомы. В случае такого взаимодействия, в возникшей системе из двух соседних атомов, излучивший атом приобретает продольный импульс второго порядка малости, являющийся причиной якобы спонтанного излучения.

Отсутствие продольного импульса у фотонов подтверждено многочисленными экспериментами, в том числе и повторением (с отрицательным результатом) опытов Лебедева [5]. Беда в том, что в научных экспериментах, обычно, обнаруживают что-то новое, а тут с упорным постоянством не находят то, что ищут. А несбыточная надежда при этом хорошо оплачивается.

В официальной науке описание фотона без продольного импульса искать бесполезно. В связи с этим приведем краткое описание такого фотона.

Фотон — не частица, и не имеет ни релятивистской массы инерции, ни массы гравитации; с частицей  его роднит только свойство жесткой локализации и свойство сохранения направления движения.

Фотон не является осциллятором, и не может рассматриваться как цуг. Частотные эффекты фотона имитирует его крутизна фронта.

Фотон – специализированное возмущение пространства, распространяющееся как локализованная волна особого, уникального вида. Элементы пространства в продольном перемещении фотона участия не принимают, т.е. неподвижны, что и роднит его с волной.

Фотон – инструмент посреднического взаимодействия пространства с веществом.

Фотон – признак всеобъемлющей гармонии Вселенной. Фотон это единственный объект, доступный нам для непосредственного исследования дальнего космоса.

 

Гравитационное поле и постоянное электрическое поле распространяются с мгновенной скоростью, которая определяется отношением расстояния распространения к планковскому значению кванта времени [6]. Экспериментально измерить, эту огромную скорость, пока нет возможности. Поэтому исследователи указывают только порядок превышения скоростью гравитации скорости света. По расчетам Лапласа это превышение не менее 107 раз.

Эта неопределенность, точнее её причина, вкупе с отсутствием рабочей гипотезы, объясняющей природный механизм такой необычной скорости, дает РАН основание не замечать неудобные для ОТО факты.

Отсутствие необходимых рабочих гипотез гарантируется официальным запретом на критику ОТО. Но не только это мешает появлению требуемых гипотез.

Общество зомбировано пропагандой официальной парадигмы, подчинившей себе все учебные программы. Эта парадигма неправомерно допускает бесконечную плотность массы в безразмерной материальной точке, но не допускает существования мнимой (метафизической) мгновенной скорости. Благодаря этому даже в Интернете нет гипотез (кроме авторской статьи [6]), предлагающих механизм реализации мгновенной скорости. Концепция Гришаева [4], признающая и оперирующая мгновенной скоростью, просто постулирует её как природную данность.

В эффекте Басова все фотоны движутся без превышения скорости света. Эффект возникает только для регистрируемого импульса, за счет суперпозиции двух типов скоростей: скорость распространения фотонов (световая) и сверхвысоких (мгновенных) скоростей распространения возбуждающих электрических потенциалов.

Мгновенная скорость – это не физическая скорость. Это скорость метафизическая, но реально наблюдаемая и измеряемая. Подробнее об этом см. [6].

 

Приведенные сведения наводят на грустные размышления. Получается, что технический прогресс иногда развивается не благодаря науке, а вопреки ей. Ведь, каков философский смысл и логические следствия, например, вывода о том, что фотон не имеет продольного импульса, но при этом является переносчиком кванта энергии. Смысл в том, что передавая приемнику квант энергии, фотон не может не предавать при этом квант импульса. Таким образом, можно говорить о переносе фотонами и продольных импульсов. Так и есть, но дело в том, что переносимые импульсы это не единичные импульсы, а обязательно, как минимум, пара импульсов, сумма которых строго равна нулю.

Получается, что фотон может быть поглощен только соответствующей системой, способной реализовать сразу два противоположных импульса, и не может быть поглощен иной системой, и тем более, элементарным объектом, каковым является электрон.

Последний вывод является значимым вкладом именно в философскую копилку фундаментальных знаний. Осознав философский смысл явления, необходимо приступить к поиску новых, адекватных интерпретаций многих известных процессов, которые рассматриваются сейчас как тормозное излучение.

Тормозное излучение это всегда финал системного процесса, в котором участвует рассматриваемый электрон. Для правильного и максимально эффективного использования явлений, сопровождаемых тормозным излучением, необходимо полное знание поведения не только электрона, но и всей системы.

Последнее утверждение, в условиях ведущейся экономической войны, является стратегическим ноу-хау. Может быть, именно поэтому вдруг прекратились все западные публикации на эту тему. Российские же разработчики, либо подавлены мнимым величием  ОТО, либо ангажированы западными благодетелями (гранды, симпозиумы, платные лекции, издание трудов), и не хотят даже слышать о возможности повторения названных опытов.

Автор обращается ко всем патриотически настроенным читателям с просьбой поделиться данной информацией с людьми, причастными к лазерным разработкам. Может быть, найдутся истинные исследователи.

 

Нижний Новгород, сентябрь 2017 г.

 

С другими публикациями автора можно познакомиться на странице Интернета http://www.proza.ru/avtor/vleonovich сайта ПРОЗА.РУ.

 

Источники информации

1.​ П.Г. Крюков /Как это было. К истории рубинового лазера/  Вестник РАН, 2007, том 77, № 10, с. 915-920

2.​  Ораевский А.Н. /Сверхсветовые волны в усиливающих средах/ Успехи физических наук, 168, т 12 (1998) 1311.

3.​ S.Chu, S.Wong. Phys.Rev.Lett., 48, 11 (1982) 738.

  1. Гришаев А.А. /Опыт Басова: мгновенный переброс лазерного импульса на расстояние/ Интернет: http://newfiz.narod.ru.

5.​  Костюшко В.Е. /Экспериментальная ошибка П.Н. Лебедева – причина ложного вывода об обнаружении им давления света/ Русское Физическое Общество. Энциклопедия Русской Мысли, т. XVI, стр. 34. Интернет http://v-kostushko.narod.ru

6.​ Леонович В.Н. /Концепция физической модели квантовой гравитации/ Интернет, http://www.sciteclibrary.ru/rus/catalog/pages/10168.html.

  1. Н.Г.Басов, Р.В.Амбарцумян, В.С.Зуев, и др. ЖЭТФ, 50, 1 (1966) 23.

 

 

 

 

 

 

 

 

 

 

 

Образование континентальных плит и сопутствующее горообразование

 

            Чтобы знать, куда ты идешь,

 и много ли прошел,

— надо знать, откуда ты вышел.

 

В статье рассмотрена и обоснована космическая катастрофа, равной которой на малых планетах Солнечной системы не прослеживается. Но совершенно очевидно, что катастрофа не вызвала гибели всего живого, более того, считается, что погибло не более 20% видов животных и растений. Жизнь, оказывается, более живуча, чем ей назначили теоретики от официальной науки.

Но выживаемость природы – это одно, а выживаемость цивилизации – это совсем другое. Катастрофа может повториться. Свидетельством тому комета Шумейкеров-Леви.

То, что вероятность подобных катастроф постоянно уменьшается, совсем не повод, чтобы к ним не готовиться.

 

Когда в науке происходит очередной прорыв, всякий раз возникает или выходит из тени новый лидер, новая научная дисциплина. Новый лидер привносит новые отношения, которые непроизвольно частично переносятся на традиционные научные направления. И это неконтролируемое, опосредствованное влияние не всегда является благотворным.

Сейчас несомненным лидером в науке является квантовая механика. Идут споры о её полноте и достаточности. Одно то, что такая проблема обозначилась, свидетельствует о неполноте квантовой теории.

Дело в том, что квантовая теория сразу появилась с родовым пороком: найденный аппарат квантовой теории, и способ его применения, не приемлет фундаментального принципа причинности. В силу этого, все, что наблюдается, но не может быть разумно объяснено, сразу возводится в закон. Эти законы также легко трансформируются или вообще отменяются, как только меняется реальная ситуация.

Любая научная дисциплина, совершив в какой-то момент стратегическую ошибку, начинает испытывать после этого постепенно нарастающее давление неразрешимых проблем.

И вот, вместо классического возврата из тупика к исходным позициям и поиска там стратегической ошибки, лидер, квантовая теория предлагает революционный принцип: принимай всё, как есть.

Смею утверждать, что стратегических ошибок в избытке накопилось в геофизике. Соответственно, они порождают множество неразрешимых проблем разного уровня. И что же? А всё, как в квантовой теории. Если все лунные кратеры удивительно круглые, то это значит, что все астероиды падали на Луну строго вертикально. Пойди, проверь.

 

Процесс формирования горных массивов Земли большинству исследователей, занимающихся изучением этой проблемы, исходя из преподаваемых концепций, представляется весьма загадочным. Во множестве публикаций, непредвзято освещающих эту тему, вынужденно утвердился бессодержательный штамп «период горообразования».

В предвзятых источниках, основой процесса горообразования считается тектоника плит. Всё остальное: вулканизм и катастрофические сценарии,- рассматривается в качестве косметических дополнений.

На первый взгляд, кажется, что теория тектонических плит всё объясняет. Но это только на первый взгляд, при условии, что вы полностью доверились интуитивным представлениям авторов идеи. Но ни одна из представленных моделей горообразования не описана от начала и до конца в динамике. Тем более невозможно обнаружить анализ этого процесса с учетом его исключительной медлительности.

При этом, наблюдаемое строение горных массивов таково, что попытка объяснить их происхождение реальным движением массивных материковых плит приводит к умопомрачительным натяжкам и фантастическим допущениям, особенно в области прочности плит на излом и энергетики их перемещения. Посмотрите на рисунок 1, приведите его в действие, и попробуйте мысленно получить два варианта горных структур, запечатленных на фото1 и фото2.

Тектон Плит

Рис. 1. Схема земной коры

Фото 1 Альпы-Америк

Фото 1. Альпы. Южная Америка.

Фото 2 Кордильеры

Фото 2. Кордильеры.

У вас ничего не получится. Дело в том, что подавляющее большинство гор явно ударного происхождения.

Движение материковой плиты подобно движению гигантского ледокола, подминающего сплошную и тонкую океаническую плиту. Наверное, потребляемую мощность можно рассчитать, хотя бы приблизительно. Но никто этого не делает. Знают авторы, что результат будет абсурдным. Подминая слабую океаническую плиту, невозможно вздыбить горный массив, подобный Андам. А это значит, что горы можно сформировать только столкнув материковые плиты. А какой такой магмоворот миллионы лет двигает одну плиту на другую. А вторая, вместо того, чтобы уступить и двигаться в том же направлении, сопротивляется с огромной силой.

А ведь преодолев сопротивление промежуточной океанической плиты, две материковые плиты должны совершить еще одно чудо: раскрошить одна другую на осколки, вздыбив осколки как торосы, и сформировать поле горного массива. И всё это очень медленно. Так медленно, что никак не верится в такую возможность, предлагаемую без доказательств авторами тектоники. Вернее, с единственным доказательством, которое всегда у них под рукой – реальные горные массивы. Вот они – стоят, то как гигантские торосы, то как плоские, горизонтальные отложения.

Альтернативную точку зрения представляют гипотезы космических катастроф. Но их практически никто всерьез не принимает. Слишком робко они заявляют свои возможности. Ну, как космическое столкновение создаст Уральский хребет, а тем более Анды и Кордильеры?  И это при том, когда все уверены, что столкновение с относительно маленьким астероидом Чиксулуб едва не привело к уничтожению всего живого на Земле.

Геофизики запугали себя страшилкой, получаемой методом пропорциональной экстраполяции. Суть самообмана в следующем. Всю кинетическую энергию космического тела, по аналогии с исходом сгорающих крошечных метеоров, конвертируют в тепловую энергию.

Вот и всё очевиднейшее заблуждение. Энерговыделение любого столкновения рассчитывается методом прямого умножения энергии сгорания однограммового образца на массу космического объекта, хотя совершенно очевидно, что зависимость выделяемой тепловой энергии от массы космического тела является существенно не линейной. Чем больше объект, тем меньший процент его кинетической энергии превращается в тепловую энергию.

Не менее загадочна проблема различия толщины континентальных и океанических плит. Нет у апологетов тектоники ответа на вопрос, как образовались две первичные платформы: материковая и океаническая.

Но, даже постулировав эту невероятную ситуацию, невозможно продолжить её развитие к существующим реалиям. Представьте, почти плоская (т.е. без гор) материковая платформа, возвышающаяся над океанским дном в среднем на 3 км, раскалывается на континентальные плиты Гондвану и Лавразию; и они как ледоколы начинают расходиться, подминая под себя уже существующую океаническую платформу, которая ломается, тонет и плавится (по учению тектоники).

Возникают, по крайней мере, три вопроса: как из океана выросла континентальная протоплита, или наоборот, как утонула океанская плита; почему тонут обломки океанической плиты, если не тонет материковая плита, лишенная спайки с океанической платформой по всему своему периметру; и как образуется новая океаническая плита между расходящимися Гондваной и Лавразией. Почему процесс закончился срединным хребтом? Или он начался со срединного хребта? Цепь вопросов нескончаема. Не имеет смысла искать ответы на обреченные вопросы, проще попытаться построить новую, логичную цепь событий, определивших эволюционный процесс Земли, понимая, что эволюция — это цепь причинных явлений. Малейшая ошибка в одном звене влечет лавину несуразиц во всех последующих звеньях.

Идея происхождения Солнечной системы (и Земли в её составе) из космического облака – первое, что приходит в голову любому исследователю, т.к. лежит на самой поверхности. Это и послужило причиной её популярности в своё время. Но сейчас-то, когда имеется множество фотографий астероидов, и все астероиды оплавлены, т.е. явно сформированы из расплава, как можно совместить этот факт с пылевой теорией. Это явная стратегическая ошибка. В недрах этой идеи множество «подводных камней», их так много, что в стройном, проработанном виде эта идея тоже не изложена, одни общие, разрозненные рассуждения, часто ни чем не обоснованные. Например, простой расчет показывает, что однородное и неподвижное космическое облако (так называемое первое приближение) начнет сжиматься под действием гравитации, уплотняясь вовсе не с центра, а с периферии [7]. Об этом в облачно-пылевой теории ни слова. Несовместимы параметры Солнечной системы с моделью пылевой аккреции и по многим другим показателям, которые при этом хорошо вписываются в модель горячего происхождения [1].

При исследовании любой парадоксальной проблемы можно выдвигать идеи любой степени вздорности. Это положение входит в принцип мозговой атаки. Однако автор выдвигаемой идеи, чтобы не представляться абсолютным профаном, сам должен, до начала дискуссии, произвести её анализ и дать диалектическую оценку своему вздорному предложению.

Например, упорно муссируется нелепая идея захвата спутников планет в момент космических сближений с пролетающими объектами. А баллистики молчат, хотя знают, что такой результат сближения двух космических тел принципиально невозможен. Захват возможен только при временном присутствии третьего тела, двигающегося по уникальной траектории, и вероятность этого события ничтожна.

Все спутники вращаются по практически круговым орбитам, и обязательно в экваториальной плоскости планеты. Даже у лежачего Урана спутники экваториальные. Отсюда вывод: гипотеза захвата ошибочна, а Земля имела первоначальную ось вращения соответствующую плоскости обращения Луны, т.е. стандартную для Солнечной системы.

Принимая во внимание все выше сказанное, попытаемся решить проблему возникновения плит и проблему горообразования, отслеживая значимые этапы эволюции Земли, начиная с момента, когда термодинамическое состояние Солнечной системы описывается практически идентично и пылевой гипотезой, и гипотезой горячего происхождения Солнечной системы.

Примем за исходное состояние Солнечной системы тот момент, при котором все планеты и их спутники в основном сформированы, и пребывают в расплавленном состоянии. При этом продолжается затухающий процесс аккреции, т.е. поглощение крупными объектами смежного космического вещества-мусора.

Эту картину необходимо дополнить кометами, которых в то время было значительно больше, чем сейчас. О происхождении комет см. [1].

Итак, все планеты пребывали в жидком состоянии.

Жидкий космический объект достаточно большой величины принципиально не может вращаться так, чтобы каждый его элемент имел одинаковую угловую скоростью, т.е. как монолит. При любых начальных условиях у таких тел возникает тенденция образования широтных потоков с дискретным распределением угловых скоростей потоков. Максимальная скорость широтных потоков всегда формируется на экваторе. Это явление наблюдается на Солнце и на планетах-гигантах. На границах смежных потоков, двигающихся с разной скоростью, могут формироваться квазистационарные вихри различной величины. Например, Красный вихрь на Юпитере.

По мере охлаждения поверхностного слоя Земли его вязкость все возрастает и, в конце концов, поверхность затвердевает, превращаясь в монолитную сферу. При этом кора остается раскаленной на многие века. Этот период характеризуется следующими особенностями.

1) Атмосфера Земли относительно стабилизируется, т.к. падает поверхностное испарение. Атмосфера содержит максимальное количество всевозможных паров и туманов. Количество атмосферной воды нам неизвестно, но ограничительные оценки можно произвести.

Существование первобытного океана не вызывает сомнений, об этом свидетельствуют повсеместные песчаные и илистые отложения без содержания примесей органического происхождения.

Известно, что при глубине океана более 50 м поверхностное волнение до дна уже не доходит и не может вызвать эрозию дна, см.[Морск.сп]. Предположив среднюю глубину океана равной 25 м, и учитывая малую холмистость поверхности первобытной Земли, получим, что в первобытном океане, а значит и в первобытной атмосфере, количество воды не могло превышать 1% от современного количества, которое при равномерном распределении по всей гладкой поверхности Земли обеспечило бы глубину 2,5 км. Проведенная оценка весьма продуктивна, т.к. конкретно ставит проблему эволюционного пополнения водного запаса Земли.

Мир динозавров, представленный массивными и длинношеими животными с длинными хвостами, передвигавшимися на двух задних ногах, явно приспособлен к жизни в воде и травяной жиже мелководий. Длинные шеи и наблюдаемая тенденция к хождению на задних ногах являются жизненной необходимостью в условиях регулярных и сильных приливов и отливов, регулярности которых не мешали ни материки, ни наклон земной оси. Высота приливов зависела только от взаимного расположения Солнца и Луны. Из этого предположения следует, что огромный период времени первобытный океан оставался достаточно мелким.

Количество воды на Земле время от времени пополнялось за счет столкновения с кометами, но процесс, скорее всего, не был очень интенсивным.

2) После достаточного охлаждения, сопровождаемого образованием внешнего твердого слоя Земли, межпотоковые магматические вихри могут образовывать объекты типа Ришат (48 км в диаметре), см. фото 3. Для объяснения  происхождения магмоворота Ришат современная геофизика не может предложить ни одного разумного варианта.

Фото 3 Ришат

Фото 3. Структура Ришат со спутника Земли.

3) После образования первого твердого слоя, земная кора могла двигаться уже только как монолит, а подкорковая магма при этом продолжала поддерживать широтные потоки, а значит, и вихри. При неоднородном по химическому составу распределении вещества по поверхности Земли сочетание широтных потоков магмы с неподвижной корой приводит к формированию утолщающейся слоистой коры, что подтверждается обнаженными разломами горных коренных пород, сформированных поднятием земной коры, фото 1 и 2. Не предполагая образования слоистой структуры коры в момент застывания, а это происходит сплошь и рядом, геологи вынуждены такие слоистые породы считать тепловыми метаморфизмами осадочных пород, которые в природе тоже существуют. Оба процесса дают схожие текстуры пород, но не настолько, чтобы их нельзя было отличить. Ошибки в генезисе пород имеют фатальные последствия при восстановлении эволюции Земли.

4) Продолжающееся увеличение объема Земли, происходящее за счет космических тел пробивающих тонкую кору и ядерной реструктуризации радиоактивных пород, приводит к растрескиванию коры. Неглубокие трещины сразу заполняются магмой и образуют дайки, своеобразные швы земной коры. По различию состава вещества даек и приграничного вещества  можно судить о толщине земной коры на тот момент.

5) Пока кора еще очень горячая, вулканические извержения представляют относительно плоские разливы. Но постепенно, с охлаждением поверхности Земли, они начинают приобретать конусообразную форму, сначала очень пологую.

В этот же период в подкорковой магме происходит мало изученный процесс, процесс вспенивания глубинных расплавленных пород, который приводит к локальным, а иногда и обширным пучениям пластичной коры.

Пучение приводит к образованию холмистых возвышенностей, которые затем, после завершения внутреннего процесса вспенивания, могут испытывать локальные просадки, провалы и оползни. Иногда холмы пучения превращаются в коротко живущие вулканы. На Земле трудно обнаружить следы этих процессов, но они хорошо сохранились на Луне и на Марсе. Нельзя сказать, что планетологи не заметили этих явлений, но их масштаб и значение явно недооценены. А между тем подавляющее большинство кратеров на Луне вовсе не метеоритной природы, как это принято считать, а именно, провального происхождения.

На фото 4 приведен марсианский кратер явно ударного происхождения с не вызывающими сомнений следами расплавленного выброса. Сам кратер тоже заполнен расплавленной магмой. Таких кратеров и на Марсе, и на Луне очень мало.

Фото 4 Марс УдарнКрат

Фото 4. Ударный кратер на Марсе.

Фотография 5 с изображением лунных кратеров выбрана не случайно. Дело в том, что на ней по воле случая оказались объекты, являющиеся ключом к пониманию происходившего когда-то процесса, речь о группе холмов в правой части снимка 5. Эти холмы явно являются следствием локального поднятия (пучения) еще горячей и достаточно пластичной лунной коры. И эти холмы являются рудиментами Луны, демонстрирующими предысторию кратеров слева.

Фото 5 ПровальнКратер

Фото 5. Кратеры провального происхождения и сохранившиеся холмы вспучивания, предшествующие провалам.

Комментатор НАСА не желает замечать куполообразные (или конусообразные) возвышения в правой части фотографии, и никак не реагирует на характерные формы кратеров слева, которые называет ударными. Нужно быть фанатично целеустремленным, чтобы связать их происхождение со столкновением с метеоритом. Судите сами.

Процесс вспучивания с последующим осаждением является универсальным для малых планет, что подтверждает достаточно типовое марсианское образование, фото 6 .

Фото 6 Марс_Два вздутия

Фото 6. Марс. Два смежных вздутия. Одно с провалом, другое с осадкой смежной области. http://www.2photo.ru/16137-puteshestvie-na-mars/600/.

Перед нами результат специфического вулканического процесса, вызываемого  подкорковым «кипением» магмы. Вспучившаяся кора (холм-пузырь), достигнув определенного размера, разрушается, освобождая внутренние газы, и обрушивается в подкорковую магму, формируя гладкое дно кратера, окаймленного достаточно ровным возвышением.

На снимке одно из смежных вздутий осело, а второе сохранилось за счет осадки, произошедшей в его окружении.

Если очаг, вызывающий вспенивание, находится достаточно глубоко, то холм может не образовываться. Тогда  происходят просто провалы коры. В этом случае у кратера не образуются характерные возвышения, фото 7.

Тектон Плит

Фото 7. Луна, 24 апреля 2010г. (NASA/GSFC/Arizona State University)

Однако кратеры с круговым возвышением составляют подавляющее большинство, что и вызвало ложную оценку интенсивности астероидных столкновений.

Многие вулканы Марса тоже являются сопками, образованными локальным вспучиванием коры, часть которых так и не завершились вулканическим извержением, см. фото 8. Видно, что вулкан Олимп никогда не извергался. Кратер на вершине – это результат частичного осаждения, как и горизонтальные складки на склонах.

Фото 8 Марс_Олимп

Фото 8. Марс. Панорама вулкана Олимп.

Но самый весомый аргумент в пользу неизученного процесса вспучивания — это дихотомия Марса. Изучение облика Марса наталкивает на мысль, что вспенивание подкорковых пород на Марсе носило глобальный характер, а вот последующие глобальные осадочные явления произошли только в одном полушарии, что привело к загадочной дихотомии Марса. Обратите внимание на явно осевшие окрестности вулкана Олимп.

 

Лунная гигантская впадина Эйткен, называемая кратером, вовсе не является следствием столкновения с астероидом, а на самом деле есть результат гигантского проседания лунной коры, которое, вполне возможно, инициировано космическим столкновением. Об этом свидетельствует отсутствие выброса соответствующего объема, а также отсутствие даек и трещин в сопряженных областях кратера, см. фото 9. Явление, аналогичное тому, которое произошло на Марсе, сформировало дихотомию Луны, только масштаб значительно меньше.

Тектон Плит

Фото 9. Бассейн Южного полюса — Эйткена — лунный ударный кратер. Приблизительно 2500 километров в диаметре и 13 километров глубиной. Это крупнейший из известных ударных кратеров во всей Солнечной системе.

На Земле, обширные провалы, подтверждающие существование еще более обширных пучений, обнаружены совсем недавно благодаря космическим фотосъемкам. Речь идет о нуклеарах, поставивших последнюю точку в вопросе о раздвижке материков, см. рис. 2.

Рис 2-Нуклеары

Рис. 2. Схема расположения нуклеаров Земли — Гондваны:
1 — нуклеары; 2 — интернуклеарные пространства.

Именно земная дихотомия провальной природы могла вызвать образование первых равнинных материков и мелких океанов. Но этот процесс никак не мог вызвать наблюдаемых различий в материковых и океанических тектонических плитах.

 

6) Когда температура земной коры стала меньше температуры кипения воды, то на Земле должен был начаться период дождей.

Даже если изначально воды на Земле не было, то за период охлаждения Земли от 600˚С до 100˚С она могла много раз столкнуться с кометами. До периода дождей вся вода на Земле могла пребывать только в атмосфере в форме паров и тумана. В период дождей резко возрастает  интенсивность растрескивания коры. В этих условиях поднимающаяся по щелям вязкая подкорковая магма может не достигать поверхности коры, и в таком виде полузаполненых даек сохраниться до наших дней.

Самый первый океан на Земле был мелким и горячим. Он покрывал практически всю поверхность Земли, и его испарение было максимально большим. Вследствие этого на Земле, видимо, длительное время была сплошная облачность. Смены времен года не было, т.к. Земля, скорее всего, имела наклон своей оси близкий к нулевому. Это следует из ориентации лунной орбиты. Все спутники планет, кроме Земли, обращаются по экваториальным орбитам – это закон формирования спутников в Солнечной системе. Значит, наклон земной оси возник не в момент формирования планеты, а как следствие космического столкновения (космической катастрофы), время которого требуется определить, что и будет сделано ниже.

 

7) Толщина земной коры медленно, но неуклонно увеличивалась, причем на полюсах несколько быстрее. В силу отстойных эффектов, происходящих в магме, поверхностный слой Земли образован из наименее прочных, рыхлых и легких пород, которые затем океаном легко превращались в песок и глину.

Все реже и реже космические столкновения заканчивались пробоем коры, а это значит, что начался период формирования полезных ископаемых на поверхности Земли за счет космической аккреции. Первое метеоритное железо англичане добывали в болотах.

Для образования тектонических плит необходим был процесс резкого увеличения объема подкоркового вещества. Такой процесс исключать нельзя, но и постулировать тоже нет оснований. Предположим, что в некоторый момент земная кора лопнула сразу по всей поверхности и образовала имеющиеся тектонические плиты. А что дальше? Куда расходиться образовавшимся материкам? Образуются глобальные дайки – и всё стабилизируется, до следующего разрыва.

 

Кроме этого, необходимо осознать, что для образования гор, нужно принудительно уменьшить площадь проекции некоторого участка земной коры, сохраняя при этом его поверхностную площадь – это процесс обжатия плиты, а вовсе не раздвижка.

Чтобы тектонические плиты пришли хотя бы в небольшое относительное движение, необходимы титанические внутренние силы определенного свойства. И эти силы должны действовать на протяжении миллионов лет. Теоретики рисуют локальные внутренние потоки с необходимой для теоретиков направленностью, но где источники тепловых конвенций, и где расчеты необходимой скорости этих потоков. А такие расчеты давно по силам нашим математикам. По своей энергетической обоснованности, идея тектонического горообразования, мало чем отличается от идеи: из пушки — на Луну.

Рассмотрим типовой рисунок 1, предлагаемый теоретиками тектоники. Пусть сила движущая плиту существует. Предлагаем читателю развить рисунок 1 и внедрить его в топологию объемного глобуса. Ничего сложного – всё получится. Всё, кроме динамики. Мысленно попробуйте привести картинку в движение – и сразу столкнетесь с  абсурдами и несуразицами движения магмы, потоки которой должны быть обязательно замкнутыми. Попробуйте замкнуть потоки на любой тектонической схеме, где они всегда почему-то не замкнуты, – и вы поймете несуразность теории.

Но простим  этот абсурд. Пусть тектонический процесс горообразования состоялся и закончился. Обратимся к фактам. Самые молодые и самые высокие горы на Земле это Гималаи. Площадь их так обширна, а конфигурация резких границ так округла, что не хватает никакой фантазии, чтобы представить, как медленно сжималась Евразийская плита, самая мощная изо всех, чтобы получились горы, а вокруг все осталось более-менее ровным. Нельзя во внутренней области плиты деформацией сформировать горы, не исковеркав всю плиту в округе. Попробуйте с листом размоченного картона и все поймете. А еще вспомните, что основной процесс горообразования, произошедший много миллионов лет назад, уже закончился, т.к. все горы, кроме Гималаев и Тибета уже сформированы. И вдруг под Индостанской плитой образовался такой мощный магмоворот, что двинул её на самую мощную, Евразийскую плиту – и смял последнюю как скатерть.

Невозможно представить тектонические горы, отличные от хребтов, типа Урала, Анд и Кордильеров. Но где в Андах противоборствующие плиты. Разве может относительно тонкая океаническая плита так смять материковую плиту по такому огромному фронту. Нет. Теоретики тектоники – или слепцы, или себе на уме.

Взглянем на макет Гималаев, рис. 3 и 4, на которых запечатлены отроги Гималаев со стороны Индийского океана. Только слепой не увидит и не восстановит образ процесса, ставшего причиной образования комплекса горных массивов, Тянь-Шаня, Тибета и Гималаев.

Вот сценарий событий, который только что не кричит о себе с карты Тибета.

Тектон Плит

Рис. 3. Макет Земли  (заимствован из статьи о Челябинском метеорите).

Огромный монолитный астероид из плотной породы, 60 млн. лет назад, столкнулся с Землей в точке, находящейся в районе Турфанской низменности (155м ниже уровня океана). Удар был направлен с севера на юг. Астероид наклонно проломил земную кору, которая к тому моменту была уже достаточно толстая и прочная, вызвав ударную волну чудовищной силы. Импульс волны был так велик, что единовременно сформировал множество горных массивов, в том числе: Тянь-Шань, Тибет и Гималаи. Поставьте ножку циркуля в место столкновения, – Турфанскую низменность,- и очертите дугу по отрогам Гималаев. Видно, что отроги Гималаев представляют фронт ударной радиальной волны, рис. 4.

Гималаи-ТектПлит

Рис.4. Реконструкция. Отроги Тибета и Гималаев

Казалось бы, всё очевидно. Но почему геофизики как бы не замечают очевидного, хотя точно описывают Гималаи, как объект космического столкновения. Вот фрагмент описания Гималаев, данного в Интернете одним из профессионалов, пожелавшим остаться неизвестным.

«Гималаи — южное окраинное поднятие Тибет-Гималайской секции Средиземноморского молодого (альпийского) подвижного пояса, смещенного на север более чем на 1000 км относительно его сопредельных частей в Иране и Индокитае. Будучи частью этого пояса, они представляют собой поднятый, или как бы выдвинутый и преобразованный в систему надвиговых пластин, блок фундамента Индостанской платформы, отчасти перекрытый палеозой-мезозойскими осадками пассивной континентальной окраины. Поэтому большинство высочайших вершин мира сложены преимущественно пологозалегающими слоями известняков и других осадочных горных пород. Высокие Гималаи в виде гигантской моноклинали подняты на большую высоту и смещены по надвигам на юг вместе с подстилающим фундаментом древней платформы. И потому странной оказывается тектоническая позиция Индо-Гангского передового прогиба, сопровождающего эту горную цепь с юга. В отличие от других подобных прогибов он не разделяет платформу и складчатое сооружение, а как бы наложен на первую, поскольку край молодого орогенического пояса оказывается тоже частью древней платформы». Конец цитаты.

Представленное выше описание Гималаев, написанное профессионалом геофизиком, словно бы целенаправленно иллюстрирует сценарий космического столкновения. К этому описанию для убедительности следует добавить, что глыба астероида, отдав свою кинетическую энергию, остановилась под Индостанской платформой, создав аномалию её прогиба. Вот еще одна цитата.

«Судя по результатам глобальной сейсмической томографии и соответствующим расчетам, центр масс, обусловливающий существование Индоокеанского минимума геоида, находится на глубинах 700…800 м [6]. Следовательно, относительно тяжелое (охлажденное) тело имеет вертикальные размеры порядка 1500 км и, видимо, представляет собой гигантский коромантийный геоблок, объем которого минимум в 10 раз превышает объем литосферной плиты». Конец цитаты.

Ну, вот она, четко сформулированная  разгадка тайны Гималаев и Тибета, а заодно и Тянь-Шаня: под Индостанской плитой находится геоблок, сформированный космически холодным астероидом и остывшей вокруг него магмой. Справка: толщина земной коры колеблется от 6 км под океаном до 30…50 км на континентах. Теоретики тектоники никаких выводов не делают, они просто констатируют факт, прогиб (проседание) Индостанской плиты вызван её исключительной толщиной, и объясняют это глубиной охлаждения. Ну, если это твердая плита, то чем еще объяснить её неимоверную толщину, как ни охлаждением, вот только откуда столько холода именно в этом месте. Всё как в квантовой теории: геоблок, холод, прогиб,- и всё. Такой закон.

Вывод автором-профессионалом делается довольно странный: «Характер сейсмичности Тибета, Гималаев, Индостана и Индокитая не объясняется моделью субдукции одной литосферной плиты под другую в ее ортодоксальном исполнении. В морфологической и геологической структуре Гималаев наблюдается причудливое переплетение результатов разнородных геодинамических обстановок: элементов сходства с островодужной геодинамикой, включая формирование предгорного аккреционного клина; тектонического скучивания посредством одновременного перемещения надвиговых клиньев и пластин; приповерхностной складчатости и возможного гравитационного соскальзывания верхних частей литосферы над крутым и высоким скатом цоколя гор. Эта комбинация и делает Гималаи загадочными в их геолого-геоморфологическом отношении». Конец цитаты.

Как видно из этого вывода, автор проявил максимум изобретательности и выдумки, чтобы представить невероятное (в рамках тектоники) в качестве аргумента существующих тектонических канонов.

Сформировав Гималаи, ударная волна не затухла, она просто ослабла, потеряв способность взламывать земную кору. Волна прокатилась по всей Земле, вызвав массовый лесоповал и гибель многих представителей фауны. Неимоверное количество пыли и пара поднятого в атмосферу вызвали очередное резкое похолодание климата. Сценарий этого процесса хорошо проработан, применительно к астероиду Чиксулуб, столкновение с которым произошло примерно в то же время.

Движением плит невозможно объяснить происхождение многих горных массивов, один из примеров которых представлен на фото 10.

Тектоника плит

Фото 10. Кордильеры. Большой каньон.

Все, что сообщают о таких массивах  геофизики это то, что такие горы образованы выветриванием слабых осадочных пород.

Конечно, без выветривания здесь не обошлось, но это вторичный фактор. А породы вовсе не осадочные, а самые что ни наесть коренные, но действительно слабые и слоистые, т.к. представляют самые поверхностные слои земной коры, внешний вид которых подходит на результат теплового метаморфизма. А чтобы получить такую структуру в составе горного массива, необходимо первоначально осуществить параллельный подъем огромного участка земной коры, т.е. должен быть распределенный по большой площади вертикальный удар, который подбрасывает вверх огромный участок коры. Кора при этом растрескивается на множество вертикальных доменов, предоставляя фронт деятельности для эрозии.

Но как могут возникать такие ударные процессы.

Подсказку дает теория тектоники, сама того не желая. Подсказка в неоспоримом факте — раздвижке материков.

Признание механизма ударного (катастрофического) происхождения Тибета и Гималаев позволяет преодолеть тот внутренний барьер, который воздвигли в себе геофизики, отвергая всякую мысль о возможности столкновения Земли с космическим объектом более 10 км в диаметре. До сих пор считается, что это будет смертельным ударом.

Взяв результаты расчетов по выделению тепловой энергии при сгорании в атмосфере одного грамма вещества метеорита, теоретики рассчитывают выделение энергии при падении любого космического тела простым умножением на массу объекта, получая в результате для крупных астероидов жуткие страшилки, которые измеряют в единицах мощности бомбы, сброшенной на Хиросиму. Однако процент сгорания астероида быстро падает по мере увеличения его радиуса. Размер гималайского астероида видимо измерялся в сотнях километров. Космические баллистики могут прикинуть массу упавшего тогда астероида по смещению земной оси, которую он вызвал.

Вот момент, когда на Земле появились времена года. Это же так важно для всех отраслей геологии.

Формирование Тибета и Гималаев это последний штрих в процессе земного горообразования. Но что же происходило раньше на спокойно остывающей Земле.

Одно событие, фактически определившее дальнейшую эволюцию литосферы Земли, можно восстановить с большой степенью достоверности. 140 ÷ 200 млн. лет назад (время формирования дна мирового океана)  Земля столкнулась с огромной каменно-ледяной  кометой, сложенной из многих фрагментов, наподобие кометы Шумейкеров-Леви. Эта комета столкнулась с Землей в районе Тихого океана. Передовые фрагменты кометы разбили еще не очень толстую кору и вызвали в ней ударную волну, которая сформировала Анды и Кордильеры. Последующие фрагменты кометы, внедряясь во вскрытую мантию, по хорде пронизывали Землю, упираясь на исходе в те участки коры, которые сейчас являются Евразией и Африкой. В эту же область упирались мощные вихревые течения магмы, вызываемые подкорковым движением твердых фрагментов кометы. Часть магматических глубинных вихрей сохранилась в форме алмазоносных кимберлитовых трубок, которые были вынесены из глубинных слоев магмы к поверхности [16].

Огромная площадь земной коры была разрушена, погребена в магме, и вынесена под сохранившуюся часть земной коры, послужив источником органических ископаемых.

Ударно увеличившись в объеме и массе, Земля потеряла симметричную форму геоида. В результате, сохранившаяся после удара кометы земная кора треснула в местах максимальной деформации. Образовавшиеся материки поплыли по свободной магме как айсберги, увлекаемые  течениями магмы и силой гравитации.

Если бы магма имела плотность земной коры, то по закону Архимеда магма должна была подняться вровень с поверхностью земной коры, но магма была тяжелее. Кроме того, процесс подъема магмы был приостановлен интенсивным охлаждением водой мирового океана Земли, вызвавшим ударное отвердевание вскрытой подкорковой магмы. Так сформировалось дно океанов. Вода была практически всюду. Вспомним, поверхность Земли к моменту столкновения представляла собой единый океан с бескрайними мелководьями и с россыпью небольших материковых возвышенностей и болотистых островов. Воды было много, но все-таки, исходя из средней глубины современного океана, равной 2500 м, в несколько раз меньше, чем в настоящее время. Похоже, что большую часть водного дефицита принесла с собой именно эта гигантская комета.

Земля, испытав относительно быструю деформацию, и достигнув максимума искажения естественной формы, начала медленно восстанавливать оптимальную форму геоида. Быстро раздвинувшиеся материки, по инерции немного проскочили оптимальное положение, и поэтому чуть-чуть сдали в обратном направлении. В результате образовались срединные океанические хребты.

Тектоническая идея омоложения океанского дна, так обезоруживающе беспомощна, что её никто и не критикует. А что там критиковать – вздор, возведенный в догму, прикрывающуюся существующим фактом, экспериментальным подтверждением. Однако, собственно теорию тектоники все же критикуют. Вот цитата из интернетовской статьи тоже без авторской подписи.

«Если взглянуть на геологическую карту Аляски, то можно увидеть регионы, где пласты горных пород странным образом «срослись» с платформой. Южная Аляска – это скопление фрагментов всевозможных  форм и размеров, каждый из которых готов рассказать свою историю. Все они — «экзотические террейны», образовавшиеся в разных местах и ​​в разное время. Какие силы перенесли их сюда, и почему некоторые из них развёрнуты относительно соседей, — это загадка». Конец цитаты.

Сценариев формирования террейнов (небольших фрагментов коры, сохранивших признаки мест формирования), в рамках катастрофического происхождения, может быть предложено достаточно много, и совсем не загадочных.
Гигантские подвижки материковых и менее крупных разломов земной коры, испытывающие горизонтальные эшелонные взаимодействия, привели к активному процессу  торосообразного горообразования. Относительно тонкая земная кора вместе с осадочными породами, сформировавшимися на ней, превращалась в горные породы.

А сейчас обратим внимание на горные породы с тонкой слоистой структурой, как на фото 11.

Тектоника плит

Фото 11. Скарн 135х105х20мм

Такие породы геологи автоматически относят к осадочным метаморфизмам. Но что должно происходить в первобытном океане или атмосфере, чтобы с такой явной периодичностью повторять структуру тонкослойных прочных отложений.

А теперь представьте образование льда на реке, цвет воды в которой принудительно меняется каждый час. В результате получим лед с тонкой слоистой цветной структурой. А ведь образование земной коры именно так и происходило. Только скорость потоков магмы на каждой широте разная, да еще могли случаться магмовороты, обеспечивающие периодичность слоистых структур.

После столкновения с кометой, в процессе образования глубоких океанов, а процесс происходил одновременно с горообразованием, на вскрытой мантии испарилось так много воды,- а привнесенная вода кометы это лед,- что на Земле должны были наступить продолжительные сумерки и очень глубокое похолодание. Первый ледниковый период.

Удар кометы был направлен практически вдоль экватора по направлению вращения Земли, что существенно смягчило удар. Ось Земли при этом сместилась незначительно, а сутки заметно сократились. Судя по тому, что орбита Земли мало отклонилась от круговой, скорость столкновения была минимально возможной в той ситуации, что и предопределило не гибельный исход катастрофы.

Для флоры и фауны климатические изменения были грандиозными. Более подробно возможный сценарий событий описан в [7]. Однако гораздо более точное и подробное описание должно быть составлено специалистами-профессионалами. Наш же анализ имеет оценочно-философскую специфику.

 

Теперь можно приступить к описанию методов оценки параметров кометы.

Если на Земле нет следов других грандиозных столкновений с кометами, то приходится исходить из предположения, что земной протоокеан глубиной 20÷300 м был дополнен водой до условной глубины в 2,5 км практически именно этой роковой кометой. Таким образом, верхний предел водной составляющей кометы приблизительно может быть установлен.

Далее можно было бы воспользоваться имеющимся результатом восстановления праконтинента Панагеи. Но уже проведенные вычисления её площади, не принимающие во внимание последствий  столкновения с кометой, явно занижены, т.к. не учитывают площадь разрушенной земной коры. Исправить эти расчеты достаточно просто, если точно оценить масштаб разрушения коры, что опять же должны сделать профессионалы.

Кроме того, необходимо усреднение по комплексу различных оценок.

Возможен следующий, экзотический метод косвенного определения массы Земли до столкновения.

Обратимся к фауне того времени. Нас интересуют птеродактили и другие летающие ящеры. Представим, что их удалось клонировать. Смогли бы они летать в современных условиях? Скорее всего – нет. Но, ведь, летали. А в чем причина. Масса Земли была меньше, а атмосфера, скорее всего,  была плотнее, — ну хотя бы как на Венере, ведь океан был очень теплым, а водное зеркало огромным. Обратившись к аэродинамике, можно по летным качествам птеродактиля прикинуть массу Земли перед столкновением, и таким образом оценить суммарную массу кометы и всех последующих космических поступлений.

Аргументов в пользу идей столкновения с огромной кометой множество. Однако здесь излагается только концепция, а не строгое доказательство. Оставим строгое доказательство профессионалам геофизикам. Для максимально правильной оценки облика Земли накануне столкновения необходимо пополнить арсенал геофизиков знаниями о процессах пучения и последующей осадки магматических подкорковых образований, а также знаниями о слоистом формировании земной коры. Ну, и конечно, избавиться от «страшилок».

Объектом для изучения процессов образования пенистых пород, типа пемзы, на Земле мог бы стать вулкан Шивелуч. Форма Шивелуча не совместима с формой наливного вулкана, каким является соседний вулкан Ключевской. Похоже, что Шивелуч возник как результат столкновения с астероидом, который и вызвал вспенивание магмы, которая, вырвавшись через пробоину в коре, создала многокилометровое, почти горизонтальное поле пемзы. Автор не может указать источники сведений о лавовом поле, т.к. не смог найти их, но сам видел это поле и лично перешел пешком.

Заключение

Теорию катастроф выдвинул в 1812г. французский естествоиспытатель Ж. Кювье и развил французский палеонтолог А. д’0рбиньи, и другие. Согласно теории катастроф жизнь на Земле прерывалась неоднократно вследствие всемирных катастроф, а затем начиналась заново. Всего последователи этой теории насчитывают 27 катастроф, во время которых якобы погибал весь органический мир. Сомнительность этого утверждения обоснована выше.

На протяжении всей данной статьи автор последовательно подвергает критике положения теории континентальных плит, а заканчивает статью фактическим обоснованием этой теории. Дело в том, что критике подвергалась не концепция теории, а лишь её наивные обоснования и выводы, а также явно ошибочная экстраполяция в прошлое, нарушающая причинно-следственные связи. Не тектонические плиты породили горы и океаны. А тектонические плиты возникли в результате явления и процесса, вызвавшего формирование и гор, и океанов, и тектонических плит.

Нижний Новгород, январь 2015 г.

 

ИСТОЧНИКИ ИНФОРМАЦИИ

 

  1. Леонович В.Н. Происхождение Солнечной системы на основе квантовой парадигмы, Интернет: http://www.sciteclibrary.ru/rus/catalog/pages/11553.html
  2. Гансер А. Геология Гималаев. М., 1967.
  3. Хаин В.Е. Региональная геотектоника. Альпийский Средиземноморский пояс. М., 1984.
  4.  Хаин В.Е. Мегарельеф Земли и тектоника плит // Геоморфология. 1989. № 3. С. 3–15.
  5. Хаин В.Е.  Силы, создавшие неповторимый облик нашей планеты, Интернет.
  1. Тараканов Ю.А., Винник Л.П. // Докл. АН СССР. 1975. Т.220. №2. С.339-341.
  2. Леонович В.Н. Влияние комет на формирование Земли, Интернет: http://www.sciteclibrary.ru/rus/catalog/pages/10185.html
  3. Артюшков Е.В. Геодинамика М.: Наука, 1979. Геология на пороге новой научной революции // Природа. 1995. №1. С.33-5
  1. Еськов К.Ю. История Земли и жизни на ней: от хаоса до человека. М., 2004, с. 43, 44
  2. Добровольский О.В., Кометы, М., 1966.
  3. Человек и Вселенная: Атлас. Отв. ред. И. В. Мучникова. — М.: Комитет по геодезии и картографии, 1994.
  4. Морозов В.И., Физика планет, М., 1967.
  5. Вокулер Ж., Физика планеты Марс, М., 1956.
  6. Шаронов В. В., Планета Венера, М., 1965.
  7. Уиппл Ф., Земля, Луна и планеты, 2 изд., М., 1967.
  8. Портнов А., Алмазы – сажа труб преисподней. Наука и Жизнь, 1999 №10.
  9. Петро Пащенко, Катастрофическая архитектоника Земли, Интернет.

18  Львович М. И., Человек и воды, М., 1963.

  1. Интернет, Фотографии планет и фото реконструкция Гималаев.

Фотон квантовый. Информация к размышлению

Фотон квантовый. Информация к размышлению

Леонович Владимир

 

Ключевые слова: фотон, квант, когерентность, дуализм, физический вакуум, поляризация света, лучистый энергообмен.

 

Человечество познает мир посредством своего интеллектуального анализатора, подаренного ему природой. Это наш мозг — биологический компьютер, оснащенный органами чувств. Образная (компьютерная) модель мира, которая естественным образом создается нашим мозгом в процессе деятельности за выживание, называется эффективной картиной (или моделью) мира.

Эффективная модель мира не всегда совпадает с реалиями. Но это несовпадение постепенно и постоянно устраняется результатами практической деятельности человека. Наиболее наглядными несовпадениями эффективного представления с природными реалиями все знают. Это верх и низ на Земле, это обращение Солнца вокруг Земли, это цветовая гамма, в которой мы всё видим, хотя в природе нет цвета, есть только спектр энергии фотонов.

Человечество заинтересованно в устранении всяческих несовпадений нашего эффективного представления с истинным устройством природы, но полностью от них освободиться не удается. Однако, чем адекватнее наши эффективные представления, тем успешнее наша деятельность.

 

Можно с уверенностью заявить, что свет является самым изучаемым объектом природы, как в отношении сроков изучения, так и в отношении объема произведенных экспериментов. И не смотря на это, свет остается одним из самых загадочных феноменов природы.

Исторически сложилось так, что именно при исследовании световых потоков научное сообщество, пасуя перед непостижимостью поведения фотонов, стало постепенно отказываться от выверенных философских критериев.

Уже во времена Ньютона все понимали и соглашались с тем, что всякая теория, даже подтверждаемая множеством опытов, может быть опровергнута одним надежным отрицательным экспериментом.

Казалось бы, со светом так и случилось. Корпускулярное представление о фотонах было опровергнуто волновыми опытами Юнга.

На основании вышеизложенного философского критерия, после опровержения корпускулярной концепции должна последовать разработка новой, волновой, концепции. Однако ничего разрабатывать не пришлось.

Дело в том, что волновая теория вещественных сред уже существовала. Её и применили без должной оглядки на то, что эфир (физический вакуум) явно не относится к вещественным средам.

При этой пертурбации возник казус философского толка. Теперь уже волновая концепция фотонов могла быть опровергнута любым опытом, подтверждающим корпускулярность фотонов, а таких опытов было предостаточно. Вот глубинную суть этого, реверсивного развития событий, философы и естествоиспытатели не осознали в свое время. А в результате не состоявшегося осознания должна была возникнуть логичная мысль (вывод), ну хотя бы подозрение, что фотон не является ни волной, ни частицей.

Фотон — это нечто особое.

Изучение этого нечто могло бы привести к более адекватному пониманию мира. А получилось, что человечество, наскоро объединив в фотоне частицу и волну, заложило основу лукавого принципа дуализма в науке о квантах.

Конечно, дуализм, как пробная точка зрения, как инструмент, вовсе не абсурден. Абсурдна попытка выдать концепцию дуализма квантовых частиц за фундаментальный природный принцип. На этом абсурде возникла и процветает основная беда современной квантовой теории (КТ) — это универсальный метод КТ, который, пасуя перед непонятными явлениями, обращается к мистике, преподнося эту мистику как потустороннюю, непостижимую реальность. Главный аргумент этого метода в том, что конечный образ (результат) мистической модели почти всегда совпадает с действительностью, и обычно (достаточно часто) совпадает с прогнозом подобранной математической модели.

 

Так или иначе, испробовав несколько вариантов представлений: то в образе волны, то в образе частицы,- свет был признан потоком частиц с волновыми признаками или наоборот – волновым потоком с корпускулярными признаками.

Фотон оказался не единственным представителем, нуждающимся в подобном двойственном описании, и для этих ситуаций необязательный принцип дуализма был развит в обязательный принцип дополнительности.

Принцип дополнительности не ссылается на диалектический принцип единства и борьбы противоположностей, но видимо напрасно. Диалектика всегда присутствует в процессе мышления, но чрезвычайно редко явно выставляется в продукте мышления, являясь виртуальным приемом этого мышления. Принцип дополнительности, напротив, выпячивается на первое место в описании конечного продукта мышления.

Однако этот, искусственно внедренный принцип, не может быть признан научным инструментарием, т.к. не имеет критериев своей применимости. Его автор, Нильс Бор, призывал к максимальной осторожности при обращении к этому принципу. Тем не менее, теоретикам-последователям не просто удалось внедрить этот принцип в квантовую науку, им удалось, наперекор Бору, сделать его излишне популярным.

Однако, вопреки ожиданиям, при изучении фотона оказалось, что интерференция последовательности разрозненных когерентных фотонов не может быть непротиворечиво описана даже в рамках принципа дополнительности.

 

В предлагаемой статье физическая модель фотона принципиально рассматривается без обращения к принципу дополнительности Бора, к которому автор обращается только в историческом аспекте. Таким образом, здесь исследуется материальный фотон, который реализует принцип причинности, и проявляет себя сообразно своей сущности, которая и выявляется в наблюдаемых явлениях и экспериментах. А наша задача – понять эту сущность.

Вторично обратим внимание на курьезное обстоятельство. Весь вещественный мир собран из первичных элементов: протонов, нейтронов и электронов. Структурно этот мир построен из тел, молекул, атомов и собственно первичных элементов. Этот вещественный коктейль способен, при некоторой своей плотности, образовывать разнообразные среды, в которых могут распространяться известные нам волны. Ассортимент типов волн гораздо меньше, чем ассортимент сред, что наводит на мысль об универсальности принципов волнового движения в вещественных средах. Разработав волновую теорию вещественных сред, описываемых при помощи статистических методов,  мы упорно пытаемся применить эту теорию к локальным возбуждениям (фотонам) в непонятной, но явно не вещественной среде – физического вакуума. Не странно ли?

Ведь мы уверены, что вакуум это не вещественная среда.

Вот, и не будем об этом забывать.

 

В качестве определения понятия фотон в Википедии, и других энциклопедиях, приводится пространный, но всё равно неполный, список противоречивых свойств фотона. Не будем приводить цитату на три страницы, но будем пользоваться сведениями, приводимыми в справочниках и учебниках, сопровождая их ссылкой на официальную науку.

 

Итак.

Каким для нас должен представляться фотон, если мы воспользуемся развернутым официальным определением?

Если фотон волна, то фотон образован элементами неразрывного пространства. При этом, компактная группа элементов пространства, образующая фотон, выведена некоторым способом из нормального состояния, т.е. как принято в научном лексиконе, пространство локально возбуждено. Это возбуждение образует очень устойчивую и очень стандартную, динамичную структуру — фотон.

Сразу возникает вопрос философского толка. Возможно ли существование двух принципиально различных фотонов с одинаковой энергией?

Официальных деклараций по этому поводу не обнаруживается, но из эффекта Доплера и из принципа разумной достаточности следует, что все фотоны идентичны по своим функциональным возможностям, т.е. по своему устройству. Таким образом, в мире существует только одна, универсальная конструкция фотона. Любой фотон, не нарушая его целостности, может быть переведен в состояние с любой, позволительной для фотонов энергией. Это свойство фотона реализуется энергетическим обменом, происходящим при доплеровском  отражении.

Получается, что в природе не существует разновидностей фотонов. Запомним этот  предварительный вывод.

Если бы фотоны генерировались только атомами, то предыдущее положение было бы очень естественным. Но официальная наука предписывает способность генерировать фотоны и атомным ядрам, и отдельным электронам, и плазменным потокам. Таким образом, вопрос о квантовом стандарте конструкции фотона остается открытым, и всё еще требует изучения и обоснованной констатации.

В связи с этим возникает практический вопрос: что произойдет, если фотон с заданной энергией столкнется с атомной структурой, в которой не будет подходящей разности энергетических уровней.

При несовпадении энергии фотона с доступными уровнями атома, фотон, предположительно, должен, либо отразиться, либо миновать встреченный атом, что соответствует прозрачной среде. Оба варианта входят в понятие рассеяние. В обеих ситуациях фотон явно испытывает воздействие  вещества, но это воздействие не сопровождается обменом энергии. Однако информационное описание фотона, после такого воздействия может существенно изменяться. Таким образом, информационные преобразования могут происходить без затраты энергии. При этом расшифровка полученной информации невозможна без затраты энергии, т.е. без совершения работы.

 

Официальная наука ничего не предлагает в качестве пространственных квантов, формирующих физический вакуум, кроме бозонного поля Хиггса (не путать с тяжелым бозоном Хиггса, который является флуктуацией поля Хиггса, а точнее результатом несчастного случая – релятивистского столкновения вещественных элементов). Поле бозонов Хиггса является неразрывным, как и положено пространственной среде, но распространяется со скоростью света, и сразу во все стороны.

Предложить природе такую конструкцию модели вакуума – рука не поднимается.

Совершенно логично напрашивается модель пространства, сформированного неподвижными квантами [3]. Но все идеи (в этом плане) предшествующих мыслителей разбивались о невозможность относительного перемещения недеформируемых квантов в неразрывном пространстве. Декарт интуитивно уловил ключевую идею решения. Он пришел к выводу, что пространственный эфир должен быть всепроницающим. Однако Декарт не смог воплотить эту идею в конструктивную форму, как не смог и Гук, который продвинулся несколько дальше в обобщенном, интуитивном описании проникающего эфира.

Роберт Гук об эфире: «Я предполагаю существование тонкого вещества, которое включает и пропитывает все другие тела, которое является растворителем, в котором все они плавают, который поддерживает и продолжает все эти тела в их движении и который является средой, передающей все однородные и гармонические движения от тела к телу».

 

 

Оставим временно квантовое пространство, и обратимся к интерференционным световым явлениям, а конкретно, к их волнообразным проявлениям (картинкам).

Однако откуда такая уверенность, что картинки интерференционные, т.е. результат фазового сложения когерентных волн. Мы же знаем, что фотоны между собой не взаимодействуют. Кроме того, мы точно знаем, что последовательное воздействие двух фотонов на детектор не может реализовать эффект вычитания, из чего следует, что в зону интерференционного минимума фотоны либо не попадают, либо, попав туда, ни с чем не взаимодействуют. Таким образом, образование волнообразной картинки никак не связано с фазовым сложением электромагнитной волны фотонов. Значит, «интерференционная» картинка формируется не фазовым сложением волн, и не в зоне детектирования, где она только проявляется. Картинка неявно закладывается в структуру фотона, каким-то, нам не известным, способом. Видимо, это происходит в структуре щелей, и проявляется при статистическом процессе поглощения/отражения потока фотонов.

Это не предположение. Это строгий логический вывод.

А кто изучал щели интерферометров как квантовые динамические структуры? Что-то не наблюдается таких публикаций. Обычно щели рассматриваются как геометрические, эфемерные отверстия.

 

Обратимся теперь к теории лазеров.

Суть лазерного излучения в том, что фотон, случайно излученный возбужденным атомом некоторой специфической вещественной структуры, вызывает индуцированное излучение идентичных фотонов соседними атомами. Это так. И не подлежит сомнению.

По умолчанию считается, что излучение индуцированных фотонов инициируется пролетающими мимо фотонами.  Этот факт не обсуждается, и даже не постулируется, он преподносится, как очевидная неизбежность. И эта молчаливая убежденность является причиной того, что странности процесса лазерного излучения не исследуются, а маскируются теоретическими фантазиями.

Действительно, каким образом истинно нейтральная частица, фотон, пролетая в образе электромагнитной волны мимо соседнего атома, может вызвать излучение идентичного, обязательно когерентного фотона, не изменив при этом своего состояния. Ведь данная ситуация никак не подходит под случай чисто информационного обмена. В случае индуктивного излучения обязательно должен происходить энергетический обмен.

Возбужденный электрон  атома сначала должен получить некоторое приращение энергии, и лишь после этого излучить фотон. На этот процесс нужна энергия и нужно время. А времени, при точечном фотоне, нет. Получается, что фотон это цуг волн.

Естественно предположить, что возбужденные атомы излучают фотоны по одному внутреннему алгоритму, и эти излучаемые фотоны описываются схожими состояниями, в том числе и стартовыми фазами каждого фотона. Однако, согласно теории лазерного излучения, стартовая фаза каждого излученного фотона должна быть равна случайной фазе пролетающего (индуцирующего) фотона.

Поняв, как это происходит, можно узнать нечто новое об устройстве атома. Но теоретики, уже подобрав устраивающую их модель, к этому не стремятся, и даже блокируют новаторские исследования [4].

Теоретики уверены, что даже если всё происходит не совсем так, как они это описывают, то всё равно на их математическую модель это не повлияет. И это — так и есть.

Когда о фотоне мыслят как о цуге волн, этим подразумевается пространственная протяженность фотона по линии распространения, и эта протяженность равна нескольким длинам волн (количество не уточняется). В кристалле рубинового лазера длина волны примерно равна протяженности десяти атомов решетки.

Представление в цугах так нелепо, и так не соответствует экспериментальным данным, что большинство исследователей от него уже отказалось. Однако официальных рекомендаций на отказ от этого представления нет, и всем, кому это нужно, можно его использовать. А требуется оно теоретикам лазерного излучения.

Одним из условий работы лазера в предлагаемой физической интерпретации, является достаточно продолжительное взаимодействие пролетающего (длинного) фотона и возбужденного атома. Продолжительное взаимодействие нужно именно для того, чтобы обосновать принудительное равенство фаз возбужденного и возбуждающего фотонов.

Кроме того, обратим внимание, эта лукавая интерпретация работы лазера использует еще и понятие стоячей оптической волны, что не совместимо  с квантовой природой реальных фотонов, даже взятых в образе волн.

Пусть попробуют теоретики от официальной науки объяснить, что происходит в пучностях стоячих оптических волн. Это что, скопление фотонов? Или это энергетическая пучность, т.е. резкое повышение частоты фотонов в этом месте? Явная беспомощность принципа дополнительности — на лицо. Однако ответ для настойчивых оппонентов есть. Он как всегда в одном ключе: перед нами квантовый процесс, а квантовые процессы непостижимы для нашего воображения, по определению.

Любой философ древности мог бы дополнить это обоснование: квантовые процессы непостижимы только в рамках предлагаемых моделей.

 

Попробуем пересмотреть наши официозные представления о фотоне, начав с философского утверждения, что фотон это — и не волна, и не частица, а нечто особое.

Итак.

Фотон это, несомненно, материальный объект.

Во времена Ньютона этого утверждения, возможно, было бы достаточно для выбора парадигмы. Но в настоящий момент этого утверждения явно недостаточно. Мы вынуждены еще выбрать одну из двух концепций материализма.

Одна концепция рассматривает материю как сущность, способную бесконечно делиться. Основополагающим элементом концепции является безразмерная вещественная точка. Это концепция Ньютона, Эйнштейна и РАН. Приверженцы этой концепции слово вещественная никогда не используют, заменяя его словом материальная, что звучит не так абсурдно. Но так или иначе – точка в этой концепции является массивной. Этот абсурд и позволяет Вселенной сжиматься в одну точку, а звездам – в черные дыры.

Вторая концепция предполагает мир принципиально квантовым. В квантовом мире нет места безразмерным объектам, как нет места и локальным объектам с бесконечными параметрами. Любой материальный объект имеет конечный объем и конечные, другие параметры. И для каждого материального объекта может быть указан минимальный элемент (квант), из которых (квантов) объект и сформирован.

Эта, вторая, концепция витает в мыслях, излагаемых там и сям; она никем не оспаривается, но и не имеет официальной поддержки, т.к. не взята на вооружение ни одной из научных школ. (А мы попробуем взять).

Не странно ли? Но в науке господствует компилятивная парадигма, допускающая совместное существование двух несовместимых концепций: ТО Эйнштейна, и Квантовой Теории,- и всё это происходит под эгидой РАН, и также иностранных Академий.

Перечислим в произвольном порядке некоторые неоспоримые параметры фотона квантового.

Фотон – объект локализованный, и не делящийся на составные части. При этом фотон не является частью каких-либо устойчивых объектов или образований. Никакой континуум фотонов не образует среду.

Странно, но фотон не вписывается в привычное представление о квантах, ни по каким параметрам, кроме одного. Содержание энергии в фотоне меняется ступенчатым образом. Энергия одной ступеньки и является фотонным квантом, которого в природе, похоже, не существует, т.к. фотон с частотой 1 Гц и длиной волны 300 000 км пока не обнаружен.

Если в природе не существует фотонов с частотой 1Гц, то какая же тогда минимальная частота фотона? Действующая квантовая модель не дает ответа.

 

Фотон не может формировать устойчивые фотонные объекты. А именно это свойство является основным и отличительным признаком частиц.

Компилятивное определение понятия квант допускает как материальное, так и не материальное представление кванта, например, у фотона это ступенчато-параметрическое представление. Не разделив эти понятия, научное сообщество рискует попасть в сети самообмана.

Фотон, несомненно, является унифицированным переносчиком квантованных порций энергии. Хотя фотон не делим, но переносимая им энергия может порционно изменяться в процессе его жизненного цикла, но не произвольно, а только в строго определенных ситуациях. Пока из таких ситуаций известна только одна: это зеркальные отражения фотонов, сопровождаемые эффектом Доплера.

 

Атом, пребывающий в возбужденном состоянии, излучает фотоны с энергией, кратной постоянной Планка h. Но стоит поместить этот атом в магнитное поле, как энергия фотона может принимать значения равные nh±ћ/2, где h и ћ несоизмеримы. Таким образом, официальная парадигма требует существования, по крайней мере, двух типов фотонов, точнее, двух масштабов их квантовых ступенек.

 

 

Есть множество экспериментальных и теоретических оснований для утверждения, что фотон не имеет ни массы, ни импульса. Однако официально поддерживается мнение, предложенное Эйнштейном, что фотон имеет конкретную массу и импульс, и таким образом, участвует в гравитационных и механических взаимодействиях. При этом фотон передает веществу скоростной импульс, а обратно может получать только импульс с приращением собственной инертности, т.е. реальной массы. Ну, какое свойство фотона ни возьми – всё не как у всех.

Традиционные оговорки, что масса покоя фотона равна нулю, абсурдна, т.к. не имеет физического смысла. Они (оговорки) используются лишь для отвлечения внимания от вздорного утверждения о массивности реального (движущегося) фотона.

Между тем, отсутствие переносимого импульса у фотонов – очень информативный фактор, который в корне меняет интерпретацию многих экспериментов. Из него следует, что фотон может быть поглощен только вещественной системой, способной реализовать одновременно два противоположно направленных импульса. Из этого следует, что элементарные частицы принципиально не могут поглощать и излучать фотоны [5].

 

Исключительность фотона проявляется кроме всего прочего в том, что фотон не подпадает под  действие квантового принципа неопределенности. Обладая известной скоростью, фотон формально допускает неограниченную точность измерения своих координат.

 

Официальная наука объявляет фотон истинно нейтральной частицей. Но рассмотрим простейшие случаи изменения направления движения фотона при отражении от зеркальной поверхности или при прохождении сред с градиентом плотности, т.е. при явлениях аберрации. Во всех случаях фотоны не поглощаются веществом, и явно не входят с носителями вещества в контактное взаимодействие, т.е. в формате элементарных частиц среды. Однако при этом смена направления и поляризации происходит.

Такое поведение возможно только под действием постоянных электрических полей, формируемых электронами и протонами среды.

Анализ множества экспериментов указывает, что действенным фактором при этих взаимодействиях является не только величина поля, но ещё и градиент.

Если это так, то нам придется признать, что фотон является отличным квантовым детектором градиента электрического поля. Механизм детектирования является объектом будущих исследований.

Вдумаемся, если у фотона нет инерции, но фотоном можно управлять, меняя лишь признак направления его движения, то это значит, что в структуре фотона есть элемент, поворачивая который вместе со всем фотоном, мы можем задавать направление движения фотона. Перемещение фотона в направлении, заданном внутренним параметром фотона, без всяких внешних сил – это новое качество модели (не фотона), определяемое нашим новым знанием, и относящееся к новой парадигме новой физики.

 

Обратим внимание на один из метрологических эффектов квантовой природы, реализующийся при регистрации интерференции. Дело в том, что один и тот же фотон принципиально не может участвовать в двух актах регистрации. Это очевиднейшее утверждение. Выясним, к чему же оно приводит.

Если в качестве экрана для визуального наблюдения картины интерференции света применить фотобумагу, то визуальная картинка при экспонировании принципиально не может совпасть с получаемым чуть позже фотоизображением. Действительно, если мы увидели отраженный фотон, то он уже никак не может создать след (черную точку) на фотобумаге. И наоборот, если фотон оставил след на бумаге, то мы его уже никогда не увидим отраженным, т.к. он уже исчез.

Таким образом, в момент двойной фиксации картины интерференции (визуальной и фотографической) реализуется как минимум два потока фотонов, каждый из которых формирует похожие, но разные, картинки. Возникает подозрение, что суммарный поток может оказаться однородным по плотности, т.е. не содержащим изображения. А это означает, что, возможно, эти два потока формируются не фазой энергетического состояния, как предполагалось до сих пор, а фазой другого параметра, который мы не знаем и не учитываем, но который влияет на способность к поглощению и отражению фотонов именно таким, похожим на волновой процесс, образом. Но ведь никто не проверял.

Вспоминается предположение Эйнштейна о возможном существовании скрытых параметров. В свое время это предположение, сделанное им по поводу парадокса ЭПР, было искажено оппонентами, и подменено незнанием значений параметров, которые, в принципе, известны исследователям. Однако совершенно очевидно, что Эйнштейн имел в виду параметры, о существовании которых мы не подозреваем. Таким образом, концепция Эйнштейна предполагала дальнейшее углубление исследований, тогда как концепция оппонентов это исследование отвергала. В результате победы оппонентов, необходимые эксперименты не были проведены, что привело к торжеству мистических представлений.

Физик, не признающий фундаментального принципа причинности, может позволить себе делать необоснованные и непредсказуемые выводы, по своей прихоти относя, или не относя, их к законам природы. Попав в  правящую академическую элиту, такой физик становится опасным для общества.

 

Таким образом, возвращаясь к фотонам, мы еще раз утверждаемся в мысли, что ни о какой волновой природе интерференции света речи быть не может.

Однако картинка наблюдается – и это значит, что когерентный поток фотонов в какой-то области сближения фотонов с веществом модулируется определенным образом. Ни глаз, ни фотоэмульсия такой областью быть не могут. Значит, областью модуляции являются тонкие щели первого и второго экранов интерферометра.

 

Итак, у нас два эксперимента. Первый, с одной щелью, второй – с двумя.

Не хватает только третьего, с двумя щелями, одна из которых в тени веерного рассеяния фотонов первичного луча.

Почему в арсенале экспериментаторов нет интерференционных картинок от трех (и более) отверстий. А также нет картинок для щелей с разными отклонениями от заданной симметрии. И нет картинок, отличающихся формой экрана перекрытия потока фотонов от одной из двойных щелей до детектирующего экрана.

Может быть, такие эксперименты уже проведены, но общественности их не показывают? Ведь если они противоречат хотя бы одной из фундаментальных теорий: ТО или КТ,- то в соответствии с решением РАН о запрещении критики ТО, они не подлежат публикации.

Кроме того, уже давно можно было бы без особого труда уже проверить гипотезу, об отклонении фотонов градиентом электрического поля поверхностного слоя электронов. Для этого достаточно исследовать дифракцию на электрически заряженной струне. Это совсем не сложно.

 

Теоретики от КТ, мистифицирующие физический процесс интерференции, утверждают, что интерференционная картинка исчезает даже при намерении установить траекторию фотона. Для проверки этой придуманной страшилки можно предложить следующий эксперимент.

Соберем стандартную установку для наблюдения интерференции от двух щелей. Установим над вторым экраном с двумя отверстиями подвижный сплошной экран, перемещающийся над вторым не касаясь его. Пусть этот экран сначала будет расположен в стороне от отверстий, так далеко, что не будет влиять на интерференцию. (Или уже будет?) Никто не проверял.

Не прекращая наблюдения за интерференцией, будем пододвигать затеняющий экран к интерферирующим отверстиям, со стороны одного из отверстий.

Будем наблюдать, как изменяется интерференционная картинка и как она восстанавливается при обратном движении.

То же самое можно проделать еще с одним таким же экраном, установленным с другой стороны (снизу) от основного экрана со щелями.

Для получения дополнительной информации можно исследовать картинку в зависимости от материала основных экранов, и от расстояния затеняющих экранов от основного экрана, а ещё интерференцию от щелей разной длины.

Можно получить достаточное количество разнообразной информации, способной прояснить реальные (а не мистические) свойства фотонов. Эти эксперименты очень просты. Однако сообщения о них отсутствуют. А это значит, что они кому-то мешают.

Ангажированные исследователи, пытаются выявить исключительно волновые признаки, вызывающие интерференционные картинки. Однако можно бесконечно искать в черной  комнате черную кошку, которой там нет. А по сути — происходит именно это.

При прохождении фотона вблизи границы твердого тела он искривляет свою траекторию, реализуя дифракционное рассеяние. Первая щель сортирует поток фотонов по углу рассеяния, в соответствии со случайными значениями некоего параметра фотона, который мы определим как осциллирующий. Каждое значение случайного параметра задает свой угол отклонения. Таким образом, когерентность (или нечто иное) после первой щели уже сформирована. Однако при прохождении второго экрана с двумя щелями, узкий луч, вырезаемый каждой щелью, опять на этих щелях испытывает веерное рассеяние, формирующее, или не формирующее, интерференционную картинку. В чем причина? Можно гадать, а можно экспериментировать.

Относительно какого опорного состояния фотона происходит природное изменение фазы, влияющей на отклонение и отражение фотонов. Пока не ясно.

Каким образом происходит модуляция предполагаемого здесь осциллирующего скрытого параметра, тоже пока не ясно.

Предположительно, краевые эффекты одиночной щели существенно отличаются от краевых эффектов двух близких и параллельных щелей.

Все, достаточно подробно описанные в доступных источниках эксперименты по интерференции, не противоречат предположению о скрытом параметре. Но вариативность проведенных экспериментов совершенно недостаточна для выявления этого параметра.

Используемая сейчас эклектическая парадигма, ошибочно считая фотон частично волной, частично корпускулой, объясняет многое (но далеко не всё), и этим сдерживает поиск неведомого, или уводит  этот поиск в ложном направлении.

При касательном прохождении границы твердого тела, фотон испытывает действие переменного поля поверхностных электронов. Проявление этого воздействия вынуждает нас предположить, что фотон не может быть истинно нейтральной частицей.

Однако фотоны не оказывают никакого взаимного влияния друг на друга.

Получается, что фотон не имеет собственных электрических полей, но имеет собственный электрический заряд, скорее всего дипольный. Получается диполь без собственного электрического поля. Это нечто небывалое. Это гипотеза новой физики. Но эта гипотеза стучится в дверь, и позволяет многое объяснить из того, что до сих пор не поддавалось объяснению, и её надо иметь в виду в будущих исследованиях.

На основе предполагаемого здесь принципиально нового квантового свойства,- одностороннего действия,- не нарушающего ни один закон сохранения, можно создать сверхчувствительный сенсор, минимально возмущающий исследуемый объект.

 

Переносимую фотоном энергию принято соотносить с частотой фотона.

Планку ничего не стоило связать энергию фотона с длиной волны. В природе от этого ничего бы не изменилось. Изменилась бы только наша планковская константа, что иллюстрирует её непричастность к природным инвариантам.

Волновая природа фотона нами уже отвергнута. А что ещё кроме частоты и длины волны можно связать с энергией фотона? Такие параметры, более широкого действия, в арсенале природы есть. Это крутизна. Или градиент.

Если модель фотона – волна, то чем больше частота фотона,  тем больше крутизна волны. А если фотон не волна, то частота как параметр отпадает, а крутизна остается действующим параметром, и освобождает интерпретаторов от непосильной ноши в образе громоздких цугов.

 

 

Производство вещества из чистой энергии, а конкретно – из фотонов, является чрезвычайно сомнительной, околонаучной декларацией. Производство вещества никогда не наблюдалась в непосредственном акте столкновения фотонов. Все, так называемые рождения пар позитрон-электронов, происходят на ядрах атомов, что предполагает скорее эффект выбивания пар, чем их рождение из чистой энергии.

В связи с этой, естественной интерпретацией, возникает практический вопрос – во что превращается нуклон, из которого выбита позитрон-электронная пара, и какова его (нуклона) дальнейшая участь. Но официальная интерпретация блокирует это направление исследований.

 

Приверженцы идеи о наличии импульса у фотонов, опираются на фотоэффект и опыты Лебедева, а также на эффект Доплера. Действительно, никому непонятно, откуда может взяться дополнительная энергия у отраженных фотонов, если у них не будет импульса.

Хотя исследования последних лет опровергли выводы Лебедева, эти исследования замалчиваются, и официальная наука продолжает упорно настаивать на наличии импульса у фотонов [6].

Изменение энергии зеркально отраженных фотонов неожиданно оказалось связанным с изменением тепловой энергии зеркала. Этот эффект обнаружен при исследовании лазерного охлаждения. Эффекту присвоена характеристика «лазерный», т.к. он обнаружен в лазерных исследованиях. Однако это, видимо, общий квантовый эффект, реализующийся для произвольных потоков отражающихся фотонов. Но в лазерах он максимально интенсивен и заметен.

 

Последний параметр фотона, который мы рассмотрим, — это тот, который принято называть поляризацией. Что это такое, надо ещё разбираться. Но мы этого делать не будем. Доверимся на этот раз официальным теоретикам, которые, признав, что так называемая поляризация не может быть корректно описана с помощью принципа дополнительности, обратились для этого к эрмитовой матрице. Одного этого факта уже достаточно, чтобы утверждать, что фотон не является ни волной, ни частицей.

В этой, уже создавшейся ситуации, нас ставят в тупик не столько удивительные свойства фотонов, сколько реакция на эти свойства правящей академической элиты, продолжающей учить студентов тому, что фотон это и волна, и частица. Если уж пользоваться этой неудачной компиляцией, то надо добавить и третью составляющую – фотон это квантовый объект, описываемый шестимерной матрицей.

Осталось пояснить, почему матрица фотона шестимерная. Дело в том, что квантовое пространство принципиально не может быть изотропным [3], оно имеет,  предположительно, сотовую структуру, что и задает размерность матрицы.

Множество наблюдаемых непостижимых квантовых явлений объясняется нашим неведением о природном механизме преобразования квантовой геометрии в геометрию Евклида, которая описывает наш эффективный, макроскопический (пользовательский) мир. Реальным проявлением этого механизма является фундаментальное вращение всех квантовых конструкций вокруг шести осей симметрии пространства.

Вращение, снимающее анизотропию пространства, происходит последовательно вокруг каждой оси, но воспринимается нами как одновременное. Однако детектировать мы можем только одно направление вращения.

Эти, нивелирующие вращения, мы воспринимаем как спин.

 

Вывод, к которому мы пришли,  является следствием (и подтверждением) того, что  мы достигли той глубины квантовых уровней, где статистика уже неприменима, т.к. действуют только фундаментальные квантовые законы, к которым неприменимо понятие «приблизительно». Эти законы описываются булевой алгеброй и соответствующими программами операционного исчисления. Здесь правит не аналитическая математика, здесь правит универсальный программно-операторный метод, способный описать любой квантовый природный процесс, что и иллюстрирует эрмитова матрица, с помощью которой наиболее полно описывается частное свойство фотона — поляризация.

При исследовании поляризации фотона теоретики не сразу добрались до эрмитовой матрицы. Однако, когда добрались, то не решились на философское обобщение, состоящее в том, что фотон это уникальный природный объект, с малым (возможно минимальным) содержанием строительных элементов – пространственных квантов, т.е. запрограммированных (возбужденных строго определенным образом) квантов физического вакуума.

 

Дополнительные аргументы в пользу уникальности фотона, который, таким образом, не может быть отнесен ни к электромагнитным явлениям, ни к явлениям корпускулярным, — можно найти в работе [7], автор которой, Эткин В.А., глубоко (как профессиональный электродинамик) и широко (как прирожденный философ) изучил и представил проблему лучистого энергообмена.

 

Правильная интерпретация наблюдаемых фотонных эффектов помогла бы исследователям оптимально организовывать свои опыты и максимально эффективно применять полученные знания на практике. Дело в том, что в свете предъявленных сомнений, ни теория лазерного излучения, ни теория лазерного охлаждения, ни многие другие фотонные теории не могут считаться адекватным описанием реальных физических процессов.

 

 

Нижний Новгород, январь 2017 г.

 

Источники информации

  1. Википедия.
  2. Физический энциклопедический словарь. М. Советская энциклопедия.
  3. Леонович В.Н. «Концепция физической модели квантовой гравитации», Интернет  http://www.proza.ru/2011/01/12/1571
  4. Ораевский А.Н. «Сверхсветовые волны в усиливающих средах» УФН. Том 168, №12 1998г.
  5. Леонович В.Н. «Импульс фотона, фотонный двигатель и философия» Интернет, http://www.sciteclibrary.ru/rus/catalog/pages/13311.html
  6. Костюшко В.Е. «Экспериментальная ошибка П.Н. Лебедева – причина ложного вывода об обнаружении им давления света» Русское Физическое Общество, Энциклопедия Русской Мысли. Т. XVI, стр. 34
  1. Эткин В.А. «О неэлектромагнитной природе света» , Интернет

http://samlib.ru/e/etkin_w/oneelectromagnitnoyprirodesveta.shtml .

 

 

 

О магнитной природе ядерных сил на примере взрыва сверхновых

            Леонович Владимир

 

Ключевые слова: протон, нейтрон, сильное взаимодействие, взрыв сверхновой, Тунгусский метеорит, ядерный взрыв.

 

Головокружение от успехов – один из неизбывных пороков общества. Порок не очень заботит общество, т.к. наносимый ущерб относительно мал. Проблемы, связанные с проявлениями порока, решаются (или гасятся) обществом по мере поступления.

Успехи теоретической математики, достигнутые на базе квантовой физики, создали очередную проблему подобного рода. Любое экспериментальное открытие в квантовой физике практически моментально получает математическую интерпретацию. Такая расторопность обеспечивается особым статусом квантовой теории, который лидеры теории сумели навязать обществу. Суть этого статуса озвучил Ландау: мы (надо понимать — научное сообщество в лице его лидеров – квантовых теоретиков) можем гордиться тем, что умеем рассчитывать и управлять процессами, физического смысла которых не понимаем.

Если сейчас создать свод законов квантовой физики, то он будет похож на справочник по сопротивлению материалов — изобилие формул в ранге законов. Однако, ни у кого не возникает желание создавать такой свод, т.к. составляющие его  законы постоянно и очень существенно изменяются.

Математическая эйфория, сопровождающая порочный статус, возникнув в среде квантовой физики, распространилась и за её пределы. Особенно это ощущается в астрофизике, где интерпретация наблюдений очень зависит от субъективного фактора. Но в данном случае нас интересует теория атомного ядра. Экспериментально установлено, что ядро очень компактно и состоит из протонов и нейтронов. Нонсенс. Протоны не могут быть устойчивыми в контактной близости. Такого не может быть!  Однако, прецедент преодоления таких парадоксов уже есть. Достаточно классифицировать явление как квантовое – и объяснение превращается в простое описание происходящего. Протоны не разлетаются – значит есть удерживающее «сильное взаимодействие». Поскольку слабое взаимодействие реализуется гравитонами, а электромагнитное (среднее) – фотонами, которые обеспечивают силу отталкивания электронов в 10раз превышающую их притяжение, то по аналогии сильное взаимодействие должно реализоваться особыми, тяжелыми частицами – мезонами. И не беда, что давным-давно известно: на базе частиц можно реализовать только взаимодействие отталкивания; это ведь относится к классической физике.

Вдумаемся, что произошло. Эксперимент обнаружил ошеломляющий результат. Казалось бы, появился интереснейший фронт для новых исследований. Но нужны средства, а их выделение заблокировано авторитарным мнением.

Может быть ситуация такова, что действительно выход только один – смириться с позицией-диагнозом Ландау. Попробуем хотя бы убедиться в безвыходности ситуации.

Вот перед нами теория спин-спиновых взаимодействий. Она процветает. Выявлено множество законов. Но нет понимания их сокровенного смысла, природного назначения, главной функции. Зачем, например, спин фотону?

Диагноз Ландау освобождает от обязанности думать там, где истина дается с огромным трудом или даже требует ломки привычных представлений. Но хорошо, что не все смирились с диагнозом. Вот мнение думающего ученого, академика А.А. Тяпкина, по поводу одной идеи другого думающего, нобелевского лауреата Ю. Швингера.

«…Я могу сослаться лишь на гипотезу крупного теоретика, лауреата нобелевской премии за 1965 год Юлиана Швингера. Он в 1969 г. [5] высказал весьма неожиданное предположение о том, что магнитные заряды, которые безуспешно пытались обнаружить, на самом деле в виде дипольных моментов входят в основу любого вещества; они принимаются нами за особые коротко действующие ядерные силы, необычно большие по величине. Отметим, что эта удивительно красивая и смелая гипотеза прежде всего отвечает симметрии электрического и магнитного взаимодействия, заложенной в уравнениях Дж. Максвелла, а значительная величина магнитного заряда по сравнению с электрическим зарядом, как это было показано еще в 1931 году П. Дираком, непосредственно следует из законов квантования этих зарядов [6]. Коротко действующими же эти магнитные силы оказываются в силу того, что в веществе они существуют только в виде сильно связанных магнитных диполей. Эта почти забытая физиками идея Ю. Швингера не только красивая, но и удивительно рациональная в своей основе, поскольку сводит ядерные силы к магнитным.»

Вот достойное применение спин-спиновым взаимодействиям: ядерные силы, т.е. близкодействие в смысле современного понимания сильного взаимодействия. Разовьем эту идею как рабочую гипотезу, дополнив её по ходу изложения несколькими естественными предположениями.

Для начала рассмотрим и оценим функциональную роль атомного ядра.

Для определенности рассмотрим процесс падения с малой высоты одного кристалла алмаза на параллельную грань другого алмаза, установленного в плоском и слабом гравитационном поле.

Ядра атомов, образующих внешнюю грань неподвижного кристалла, находятся в одной плоскости, и могут совершать колебательные движения (тепловые и пр.) около центра своего равновесия, узла кристалла. Ядра ничего не касаются; каждое из них подвешено в электромагнитном поле кристаллической решетки. Поле подвески создают электроны из состава оболочки данного атома.

Электроны соседствующих оболочек атомов никогда не сталкиваются друг с другом (в механическом представлении), имеет место только рассеяние электронов, т.е. некоторые изменения их траекторий и обмен энергией. Если попытаться получить характеристики этого рассеивания в рамках дискретных уровней запрета Паули, то ничего не получится. Но при этом атомы, как и их ядра, взвешены в электромагнитном поле.

Таким образом, получаем — кристалл это упорядоченная взвесь атомных ядер и электронов. Если увеличить атом до размеров футбольного стадиона, то ядро предстанет кучкой теннисных мячей в центре поля, а электроны – маленькими горошинами, летающими над трибунами. В бытовом представлении это практически пустое пространство. И вот из такой пустоватой взвеси микроэлементов массивного вещества составлены все твердые тела. Эта просторная взвесь нуклонов и электронов у алмаза имеет удивительную прочность, хотя каждый атом нейтрален.

Вместо определения «нейтрален» по отношению к атому напрашивается более энергичная конструкция — «абсолютно нейтрален». Но именно здесь стереотип мышления скрывает истину. Атом абсолютно нейтрален только при усреднении, уничтожающем за границами электронной оболочки переменные поля. В действительности же такое поле существует и в каждый конкретный момент оно имеет вполне конкретное значение, даже если атом находится в невозмущенном состоянии. Вот эти быстропеременные поля и формируют динамическое, устойчивое взаимодействие, обеспечивающее прочность алмаза, как на сжатие, так и на растяжение. Самое замечательное в этом процессе то, что при отсутствии условий, необходимых для взаимодействия, признаки и параметры, обеспечивающее это взаимодействие, не обнаруживаются. Они возникают только как реакция на начальное взаимодействие, вызванное внешними причинами, и развиваются уже как внутренние признаки замкнутой системы. На это обстоятельство необходимо обратить особое внимание, т.к. его недооценка влечет искаженные представления о действительности, что вызывает фантазии мистического свойства.

Магнитный момент и кулоновское поле, формирующие необходимую потенциальную яму, отсутствуют у свободного атома. Эти поля возникают как реакция на сближение атомов, т.е. по ситуации, и формируются там, где надо. К тому же, оба поля формируются групповыми токами электронной оболочки, т.е. нет постоянного объекта статического заряда, и нет выделенных электронов, движущихся по петлевым траекториям, соответствующим сформированному магнитному моменту.

Эта естественная мысль заблокирована принципом (запретом) Паули, и даже не обсуждается. К тому же, изучать природу этого взаимодействия сложно, проще ввести некие силы (Казимира, Ван дер Вальса и пр.). В этом случае достаточно только определить значение этих сил экспериментальным путем. Здесь уместна цитата из Энгельса, обращенная к творчеству Гегеля. “Что касается специально Гегеля, то он во многих отношениях стоит гораздо выше современных ему эмпириков, которые думали, что объяснили все необъясненные еще явления, подставив под них какую-нибудь силу: силу тяжести, плавательную силу, электрическую контактную силу и т.д., или же, если это никак не подходило, какое-нибудь неизвестное вещество: световое, тепловое, электрическое и т.д. Эти воображаемые вещества теперь можно считать устраненными, но спекуляция силами, против которой боролся еще Гегель, возрождается как забавный призрак”.

 

Что же происходит при падении одного алмаза на другой, если оба алмаза электрически нейтральны. Заявляя об электрической нейтральности тел, мы готовим почву для самообмана, т.к. явно считаем, что сближение алмазов будет происходить до механического контакта. Механический контакт – это всеобщий стереотип, за которым стоит целая отрасль знаний, называемая теорией сопротивления материалов. Но задумайтесь, и сами ответьте на вопрос: могут ли в процессе механического контакта тел столкнуться два электрона или, тем более, два ядра.

Все механические взаимодействия есть результат статистического усреднения электромагнитных взаимодействий, у которых, как известно, нет четко обозначенной границы.

Так с чего же начинается твердое тело? В квантовой теории этот вопрос не корректен. Там вопрос необходимо формулировать в формате волновой функции. При решении разных задач, граница твердого тела может быть определена по-разному. В нашем случае уместно за границу принять плоскость, касательную к внешнему слою электронов, перемещающихся с линейной скоростью, приблизительно равной 1/137 скорости света.

При сближении тел на дистанцию, при которой оболочки атомов геометрически (т.е. гипотетически) имеют возможность соприкоснуться, электроны сближающихся тел своевременно меняют траекторию, и за счет нарушения прежнего равновесия и симметрии формируют групповое кулоновское поле и групповой магнитный момент. Естественно, электроны в момент сближения испытывают сильное кратковременное кулоновское отталкивание, а также воздействие силы Лоренца. Направленность этих сил может быть очень разной, но не произвольной. В результате сложнейших комбинаций взаимодействий, электронные оболочки внешних граней алмазов деформируются таким образом, что возникнут силы, которые остановят движение падающего слоя электронных оболочек алмаза. Но деформация электронных оболочек на этом не закончится. В наших рассуждениях мы еще не учли реакцию ядер. Начальная фаза взаимодействия остановит взаимное движение наружных электронных оболочек, но ядра продолжат движение по инерции, создавая напряжение, вызванное смещением от центра равновесия, которое дополнительно исказит электронные оболочки. В результате — остановятся и все ядра. Но ядра при этом чуть-чуть нагреются, т.е. начнут колебаться около центра равновесия.

Далее, в процесс соударения включатся внутренние слои тела, и т.д. Процесс завершится новым состоянием динамического равновесия для всех оболочек и ядер каждого атома. Этих состояний у каждого атома такое великое множество, и они (состояния) отрабатывают такие малые гравитационные смещения, что никаких разрешенных квантовой механикой уровней электронных орбит не хватит.

В этом заключении нет отрицания квантовых достижений в фотонной оптике. Очевидно, что квантовый характер излучения относится исключительно к фотонам, и не относится к состояниям электронных орбит. Электронные орбиты распределяются по зонам устойчивости, подчиняющимся законам резонансного взаимодействия. В каждой зоне устойчивости электроны имеют достаточную, очень большую, степень свободы.

Это простое и естественное предположение простительно упустить в момент разработки теории Паули, но после открытия излучения Черенкова, не рассмотреть такую возможность – является неосмотрительной оплошностью.

Квантовое объяснение излучения Черенкова,  преподносимое как очередной триумф теории, скорее можно отнести к фиаско последней. С какого квантового уровня, и на какой, переходят электроны при излучении фотонов, не изменяя при этом свою волновую функцию?

 

При дальнейшем исследовании функций электронной оболочки в атомах, примем как рабочую гипотезу предположение об отсутствии квантовых состояний электронов в атоме, заменив их соответствующими зонами устойчивости.

Если от мысленного эксперимента с падающими алмазами перейти к полномасштабным  механическим взаимодействиям, включая самые мощные взрывные процессы, то и в этом варианте невозможно найти повода для контакта между электронами и ядрами атомов. При этом электронные оболочки испытывают огромные ускорения и деформации. Тем не менее, как только бурные процессы заканчиваются, все электроны оказываются в строго определенных динамических состояниях, и все физические и химические параметры атома оказываются строго определенными.  Что обеспечивает стандарт физико-химических параметров атома? Официальную версию о самоорганизации электронов вокруг каплеобразного ядра поставим на последнее место. Самым естественным носителем стандарта может быть устойчивая объемная структура ядра; структура, которой, как видим, природа обеспечила максимально комфортные условия.

Внимательный анализ таблицы Менделеева однозначно свидетельствует, что строительным материалом атомных ядер являются не протоны и нейтроны в отдельности, а их стабильные связки протон-нейтрон. Такая связь может обеспечиваться или магнитными моментами нуклонов, или декларированным сильным взаимодействием. Сильное взаимодействие, в соответствии с рекомендациями мудрецов, мы опять отодвинем на последнее место, и рассматривать не будем.

Отказавшись от услуг сильного взаимодействия, необходимо предложить альтернативную идею, обеспечивающую преодоление кулоновского отталкивания. Такой идеей является предположение о непрозрачности нуклонов для кулоновских полей. Из этого предположения следует, что кулоновским полем пары протон-нейтрон является кардиоида с очень узким минимумом, к тому же размываемым с удалением от нейтрона. Можно не использовать геометрический образ кардиоиды, полагая, что нейтрон создает узкую и короткую тень в шарообразном поле протона.

Из таких строительных блоков, на пример, можно построить нитевидное ядро гелия. Но для этого необходимо потратить энергию на преодоление кулоновского отталкивания. Процедура аналогична зарядке арбалета. Сблизив два блока протон-нейтрон, и придав им требуемую конфигурацию, мы таким образом создаем напряженную конструкцию, существующую за счет функции-защелки, реализованной магнитным моментом и тенью нейтрона.

Не занимаясь дальнейшим конструированием всех ядер таблицы Менделеева, можно отметить общие свойства этих конструкций. Это будут ажурные, кораллоподобные конструкции, отвечающие жестким требованиям симметрии, вызванной необходимостью компенсации боковых воздействий от соседних протонов объемной структуры. Очевидно, что с ростом размеров такой конструкции, прочность её будет уменьшаться, что будет выражаться в сокращении срока полураспада. Кроме того, можно предположить некоторый кризис роста, когда логически законченная симметричная конструкция должна продолжать свой рост, и может это делать только за счет нарушения симметрии с привлечением дополнительных нейтронов.

Исходя из общих положений, можно сделать следующий прогноз. Среди тяжелых элементов возможны такие конструкции атомных ядер, которые имеют изотопные признаки, т.е. некоторое различие в свойствах, связанные с различной топологией, несмотря на полное совпадение состава нуклонов.

Из общих соображений так же следует, что все элементы могут рассматриваться как радиоактивные, а реакций синтеза с выделением энергии просто не существует.

Для сомневающихся приведем следующие аргументы в пользу выдвинутой гипотезы. Не все разработчики водородной бомбы уверены в том, что ими создана бомба именно на основе синтеза. В американских публикациях сообщается, что возможно дейтерий увеличивает плотность нейтронного потока и за счет этого повышает эффективность ядерного распада, не синтезируя гелия. По неофициальным сведениям, последнее испытание термоядерного устройства оказалось неожиданно мощным. Его мощность была так велика, что не могла быть объяснена потенциальной возможностью водородного заряда. Пришлось признать, что в цепную реакцию было вовлечено вещество, не относящееся к заряду. А это означает, что такое устройство становится принципиально непредсказуемым. Испытания были прекращены по инициативе исследовательской группы.

Кроме этого, уже настало время признаться (самим себе) в том, что всё время ядерный дефицит массы, вопреки здравому смыслу, интерпретируется в пользу теории Эйнштейна, не взирая на очевиднейшие противоречия. Так, вес протона и электрона, на которые распадается нейтрон, больше веса самого нейтрона; а суммарный вес отдельного электрона и отдельного протона больше веса атома водорода, хотя по теории Эйнштейна должно быть наоборот. Ведь вращающийся электрон, а его линейная скорость на орбите равна С/137, должен быть тяжелее спокойного (неподвижного). То же самое для любого атома или химического элемента, чем больше запасенная внутренняя энергия, тем больше дефицит массы.

Наши знания о протонах и нейтронах пока не позволяют построить конкретные ажурные конструкции ядер всех атомов, но сам принцип ажурной конструкции ядра позволяет понять природу взрыва сверхновых. Рассмотрим общие свойства ажурных ядер. Протоны удерживаются в тени нейтронов не только магнитным притяжением, но и  поперечной составляющей кулоновского поля объемной конструкции протонов; эта суммарная составляющая значительно слабее радиальных составляющих, и выполняет функцию усиления «защелки». При нарушении заданной конфигурации за счет флуктуаций, сместившийся протон вместе с опирающейся на него конструкцией ядра выталкивается из оболочки атома, реализуя природную радиоактивность. Но смещение протонов можно вызвать и бомбардировкой ядра энергичными частицами, что происходит в атмосфере Земли под действием космического излучения.

В сохранении устойчивой конфигурации атомного ядра огромное значение должны иметь электронные оболочки, обеспечивающие амортизацию при ударных (с большим ускорением) межатомных взаимодействиях. В свою очередь поле объемной конструкции ядра определяет стандарт устойчивой динамической структуры электронной оболочки.

Исходя из рассмотренной концепции, структура ядра гелия должна представлять вытянутую цепь, см. рис. 1, и являться одним из типовых элементов конструкции любого элемента таблицы Менделеева.

alfa-chastica

Эта конструкция естественным образом объясняет причину общего для всех радиоактивных элементов α-излучения. Особенно наглядно это видно на ядерной реакции

14N+p → 11C+ α, где азот под действием облучения протонами превращается в изотоп углерода. Реакция сопровождается α-излучением. Структурная схема реакции представлена на рис.2, где объемная структура ядра условно (и совсем не похоже) изображена на плоскости.

raspad-azot-uglerod

Рассмотрим теперь поведение ажурной структуры атомных ядер в составе звезды. В горячих звездах при столкновении атомов, их электронные оболочки для обеспечения взаимодействий, происходящих с огромными ускорениями, испытывают сильнейшие деформации, но они кратковременны и не нарушают структуру атома. Когда же звезда остывает, ее вещество замедляется и уплотняется. Атомы при этом сближаются так, что геометрические области правильных электронных оболочек начинают пересекаться. Что происходит с реальными траекториями электронов, можно только догадываться, но то, что электроны не склонны сталкиваться – эта тенденция сохраняется. Оболочки начинают испытывать постоянную деформацию, снижая качество выполнения функции стабилизации ядра. Более того, деформированные траектории электронов начинают оказывать негативное воздействие на устойчивость конструкции ядра атома, переводя его в радиоактивное состояние со все уменьшающимся периодом полураспада. В конце концов, наступает ситуация, при которой «защелка» не выдерживает, т.е. протоны ядра смещаются из области тени нейтрона (глубокого минимума) и, попадая в нормальное (сильное) кулоновское поле, разрывают ядро. Все «защелки» взорвавшегося ядра и «защелки» соседних атомов также находятся в ослабленном состоянии, поэтому даже при относительно слабых ударных взаимодействиях они тоже взрываются. Возникает цепная реакция и происходит взрыв сверхновой. Таким образом, по этой модели естественным концом звезды любого типа должен быть взрыв сверхновой, если звезда не взорвется раньше по другой причине. Единственным условием, при котором звезда может избежать взрыва, является недобор критической массы.

Взрыв звезды инициируется в её центре. Оболочка звезды, даже если для нее в начальный момент не выполняются условия взрыва, при взрыве центральной области, получает ударное ускорение такой интенсивности, что тоже взрывается по схожему алгоритму, тем более что плотность активирующих нуклонов огромна.

Оболочка звезды из остаточного водорода не участвует в процессе освобождения энергии и служит всего лишь для создания начального давления, а при взрыве — амортизатором.

Есть основания считать, что человечеству пришлось быть свидетелем мини взрыва по типу сверхновой. Это взрыв Тунгусского метеорита. Все известные, парадоксальные характеристики этого взрыва прекрасно вписываются в модель взрыва сверхновой, но с учетом некоторых особенностей. Дело в том, что ослабление «защелок» в этом случае происходило не за счет давления, а за счет физического удаления значительной части электронов, т.е. за счет интенсивной ионизации.

Сразу возникает вопрос, почему такой взрыв был только один. Видимо, потому что метеорит был уникальный. Во-первых, он видимо прилетел из дальнего космоса, т.е. его скорость могла быть больше, чем у обычных метеоритов, а температура ниже, что содействует взрыву. Во-вторых, он очень быстро вращался. О частоте его вращения можно судить по частоте гула, который он производил. Быстрое вращение способствовало равномерной (по его поверхности) ионизации вещества, что привело к объемному взрыву, в котором участвовало почти всё вещество метеорита. При отсутствии вращения могла бы взорваться только малая часть. Кроме того, всеми свидетелями отмечается явная и необычная реакция поверхности Земли на пролет метеорита. Это могло быть только реакцией на огромный электрический заряд, образовавшийся на метеорите. Взрыв ионизированного вещества вызвал ионизацию большой области атмосферы, что привело к необычным грозовым разрядам, которые также отмечаются свидетелями.

Еще одним свидетельством в поддержку данной гипотезы могли бы быть так называемые космические ливни, которые правильнее называть лавинами, как иногда и поступает Лекомцев В.А. [8]. Но интерпретация этого явления не совсем соответствует действительности. Дело в том, что при столкновении космической частицы с элементами земной атмосферы происходит последовательное (лавинообразное), ударное (по типу второй фазы взрыва оболочки сверхновой) расщепление ядер азота, кислорода и углерода. При этом энергия лавины непрерывно пополняется за счет энергии расщепляющихся атомов атмосферы (по современным представлениям эта реакция энергозатратная). К счастью, плотность энергии лавины все-таки падает — и лавина затухает. Неправомерное присвоение всей (или значительной её части) энергии лавины одной космической частице, многократно завышает её истинную начальную энергию, что влечет бессмысленный поиск источников сверхмощного излучения в космосе. Но это отвечает интересам некоторой части научного сообщества.

На этом цель статьи можно было бы считать достигнутой. Сделав несколько совершенно не фантастических предположений (скорее даже естественных), была построена модель строения ядра атома без привлечения понятия сильного взаимодействия. Модель не только соответствует современным знаниям о веществе, но и позволяет объяснить некоторые ранее необъяснимые явления.

Однако, исключительный характер взрыва сверхновой (взрыв от охлаждения) затрагивает философский аспект, а именно, кругооборот вещества во Вселенной. По этому поводу необходимо добавить несколько слов.

Взрыв Сверхновой является ядерным взрывом с максимально возможным делением вещества. Взрыв Сверхновой это естественное завершение одного из циклов в процессе самосовершенствования материи. Взрыв переводит вещество в состояние с максимальной энтропией, готовя его для начала нового восхождения к вершинам гармонии. По современным теориям, тяжелое вещество, начиная уже с меди, не может синтезироваться в недрах звезд. Откуда же тогда оно берется. Логика подсказывает единственный пока ответ. Гравитация должна собрать нуклонное вещество в гигантские образования, которые уже не могут взорваться по алгоритму сверхновых, т.к. состоят только из нуклонов и электронов, и за счет энергии гравитации синтезировать в недрах этих образований весь ряд элементов таблицы Менделеева. Данные нейтронные образования, по всей видимости, должны находиться в центрах галактик. Такая возможность более подробно рассмотрена в авторских статьях «Формирование звезд и спиральных галактик» [9] и «Формирование Солнечной системы на основе квантовой парадигмы» [10].

 

Нижний Новгород, декабрь 2011г.

 

Контакт с автором E-mail: vleonovich@yandex.ru

 

СПИСОК ЛИТЕРАТУРЫ

  1. Физический энциклопедический словарь. М. Советская энциклопедия, 1983.
  2. Ландау Л.Д., Румер Ю.Б., К., 1965.
  3. Прохоров А.М.: Большая Советская Энциклопедия (3 редакция).
  4. Тяпкин А.А., Обнаружение аномальных свойств при исследовании Черенковского излучения, ОИЯИ, Дубна.
  5. Швингер Ю. Магнитная модель материи, //УФН, 1971, Т. 103, С.355.
  6. Dirac P.A.M.  // Proc. Roy. Soc. (London), Ser. A, V. 133, P.60 (1931); Phys. Rev. 1948, V.74, P.817
  7. Форд К., Мир элементарных частиц, М., 1965.
  8. Лекомцев В.А., О возможности обнаружения сверхсветовых частиц в шальных экспериментах, Интернет
  9. Леонович В.Н., Формирование звезд типа Солнце в составе спиральных галактик, Интернет, http://www.sciteclibrary.ru/rus/catalog/pages/10304.html.
  10. Леонович В.Н., Происхождение Солнечной системы на основе квантовой парадигмы, Интернет, http://www.sciteclibrary.ru/rus/catalog/pages/11553.html.

 

 

 

 

Импульс фотона, фотонный двигатель и философия

Леонович Владимир

            Современное поле научной деятельности так широко и так разнообразно, что кто-то сравнил интегральное научное представление об окружающем нас мире с плохо сшитым лоскутным одеялом. В идеале, каждый лоскут должен быть естественным, непротиворечивым продолжением соседних лоскутков. Однако реалии таковы, что в одеяле пока еще много дыр, а где казалось бы, «дыр» быть не должно, теории не стыкуются.

 

Ситуация вполне естественная, но требует контроля, учета и координации действий по выявлению и устранению недостатков и противоречий. До создания научных академий эту функцию выполняли философы-энциклопедисты. В настоящее время философия эту функцию практически утратила, но значимость прежних достижений философии от этого ничуть не уменьшилась.

 

Словосочетание «философский закон» несет двойную нагрузку. Это может быть любой природный закон, имеющий философскую значимость, но это может быть и закон, являющийся исключительно достижением философской мысли, который в принципе не может быть установлен в рамках практической физики. Эти законы философии дополняют  систему физических законов, и действуют также неукоснительно, без исключений и без погрешностей.

 

Свод исконно философских законов автору, к сожалению, не встречался. Эти законы рассыпаны по трудам классиков, и более концентрированно представлены в первоисточниках, которых тоже достаточно много и их трудно собрать воедино.

 

Несоблюдение законов философии, особенно при построении модели мира, подобно сну разума, порождает чудовищ. Это приводит к бессмысленной трате ресурсов общества, как материальных, так и интеллектуальных.

 

При анализе современных гипотетических теорий создается впечатление, что многие теоретики просто не знают основополагающих законов философии. А может быть и знают, но эти законы так им мешают, что авторы не хотят их знать. Примером может служить философское положение (закон) о  невозможности существования в природе объектов с бесконечными или нулевыми размерами. Нет отверстий с нулевым диаметром, как нет и точечных частиц с нулевыми размерами, и как следствие не существуют бесконечные плотности и бесконечные напряженности. И это всего один из многих постоянно нарушаемых философских законов.

 

Пренебрежительное отношение части исследователей к достижениям философии приводит к появлению ложных научных концепций, на базе которых появляются следующие поколения недееспособных научных и технических проектов.

 

Одной из ложных научных концепций является официальное представление об импульсе фотона.

 

Все энциклопедические справочники и все учебники предоставляют одинаковую информацию о величине импульса фотона и способах его расчета, а также сообщают об экспериментальной проверке, которая многократно подтвердила предлагаемую математическую модель p=hf/c, где с – вектор скорости фотона.

 

Официальная академическая позиция открывает перспективу создания фотонных двигателей. И работы уже ведутся. Например, разработка Photonic Laser Thruster (PLT) – фотонного лазерного двигателя для коррекции траектории искусственных спутников, которую ведет НАСА. И это далеко не единственная коллаборация, ведущая такие разработки.

 

Принцип двигателя прост. Солнечные батареи аккумулируют энергию космических фотонов и по мере накопления энергии поддерживают работу управляемого лазера, создающего фотонную тягу.

Поздравлений с успешными испытаниями не слышно. И это естественно, т.к. положительный результат невозможен по причине принципиальной неосуществимости фотонного двигателя.

 

Докажем это утверждение, основываясь только на самых общих соображениях, т.е. используя инструментарий присущий философскому методу.

 

Начнем доказательство с анализа самых бесспорных знаний о фотоне.

 

Известно, что фотоны излучаются всеми вещественными объектами, температура которых больше абсолютного нуля.

 

Известно также, что освещаемый объект всегда нагревается, т.е. получает тепло от фотонов. Единичный квантовый акт прироста энергии хаотического теплового движения невозможно реализовать без прироста импульса одного из элементов этого движения. Таким образом, факт переноса импульса фотоном можно считать также бесспорным. Но также бесспорно, что передача импульса происходит только совместно с передачей энергии. Невозможно сообщить вещественному объекту  дополнительный импульс, не изменив соответственно энергию объекта.

 

Также известно, что поглощение тепловой энергии от стабильного потока фотонов тем меньше, чем ярче выражены отражательные способности освещаемого объекта. Логично допустить, что при полном отражении, передача энергии от фотона к отражателю вообще не происходит, т.е. равна нулю.

 

Принято считать, что в природе нет вещества, способного реализовать полное отражение. Однако создание искусственного вещества с всё большим и большим отражением успешно прогрессирует. А квантовый акт отражения в принципе не может быть частичным, т.е. или отражения фотона нет, или это полное отражение.

 

Если при полном отражении нет передачи энергии, то нет и передачи импульса, это очевидно. Однако академическая наука предлагает всем формулу для расчета импульса, из которой следует, что при полном отражении отражатель приобретает удвоенный импульс фотона. Вот эта формула: p = (1- k + q)·I/c, где I — интенсивность падающего излучения; c — скорость света, k— коэффициент прохождения, q — коэффициент отражения.

 

Абсурд ситуации очевиден, но все же прокомментируем. Представьте два свободных параллельных отражателя и фотонный луч между ними. По официальной версии, при каждом переотражении, фотоны будут многократно сообщать отражателям свой удвоенный импульс, пока зеркала не разгонятся до субсветовой скорости, а фотоны постепенно лишатся при этом своей несуществующей массы, за счет эффекта Доплера. Суммарное количество движения системы при этом будет  все время сохраняться (что, видимо, и усыпило бдительность первооткрывателей), а энергия системы будет беспричинно возрастать, что почему-то осталось и остается незамеченным. Однако, нарушение закона сохранения энергии не вызывает сомнений.

 

Предыдущий мысленный эксперимент может быть оспорен, т.к. проведен в отсутствии гравитации. Приведем модификацию этого доказательства с учетом гравитации, но в более традиционной форме — от противного. Для этого сконструируем на основе официальной модели вечный двигатель. Закрепим идеальные отражатели на пассивный механический привод, и подберем массу отражателей так, чтобы сила притяжения между ними была в два раза меньше предполагаемой силы давления светового луча. Теперь сформируем прерывистый луч со скважностью ½, т.е. меандр, с длиной волны модуляции, равной удвоенному расстоянию между отражателями, — и вечный двигатель, в принципе,  готов. Пока один из отражателей испытывает давление луча, которое в два раза больше силы притяжения, он ускоряется от центра конструкции. В это же время другой отражатель, испытывая только силу притяжения, ускоряется к центру конструкции. Легко убедиться что, результирующие силы, действующие на отражатели, всегда направлены одинаково, и согласованно меняют свое направление, создавая вечный механический вибратор, т.е. вечный двигатель. А это невозможно.

 

Вывод однозначен: при полном отражении фотона (луча) отражатель не получает ни энергии, ни импульса. А это значит, что импульс фотона (а ранее показано, что он существует) после отражения тоже должен остаться неизменным.  Единственной возможностью избежать  очередного парадокса является признание поперечного направления переносимого фотоном импульса, т.е. отказаться от идеи, что фотон при отражении проявляет себя как частица. Но если это так, то и при поглощении фотона происходит передача только поперечного импульса.

 

В таком уточнении модели фотона нет ничего удивительного и неожиданного, ведь фотоны признаны поперечными электромагнитными волнами. А всем известно, что радиоволны, электромагнитная природа которых несомненна, раскачивают электроны проводимости, создавая в приемных антеннах переменный ток, исключительно в поперечном направлении, т.е. вывод о поперечном импульсе фотона экспериментально давно уже подтвержден.

 

Обратимся еще раз к справочникам и учебникам, которые сообщают читателю, что наличие у фотонов продольного импульса подтверждено множеством прямых и косвенных экспериментов.

 

Не будем утомлять читателя критикой техники проведения этих экспериментов. Их несостоятельность можно считать доказанной на кончике пера независимым исследователем А.А.Гришаевым [3].

 

Самым распространенным аргументом в пользу светового давления до сих пор являются ссылки на опыты П.Н. Лебедева [4], которые в свое время стали решающими в борьбе мнений. Эти опыты тщательнейшим образом повторены на более высоком техническом уровне и расширены В.Е. Костюшко [5]. В этих опытах светового давления обнаружить не удалось, при этом выявлены (экспериментально) все ошибки, допущенные Лебедевым.

 

Логично предположить, что все наблюдаемые эффекты, связанные с передачей фотонного импульса, если они демонстрируют продольное направление действия, являются вторичными.

 

 

 

Представленный анализ и последовавшие выводы могут быть оспорены на основе интерпретации эффекта Доплера. В эффекте Доплера с использованием движущегося отражателя фотон после отражения изменяет свою энергию, и создается впечатление, что при полном отражении фотона в этом случае все-таки происходит передача энергии или фотону, или отражателю.

 

Попробуем разобраться. Все предыдущие мысленные эксперименты представлены в традиционном стиле, без учета влияния материального пространства. Дело в том, что мы реально живем в условиях, определяемых принципом относительности Галилея, а принцип относительности живет в нас, это наш всеобщий стереотип мышления. Галилей не изобретал принцип относительности, он его обнаружил и описал математически. При этом им была допущена фатальная ошибка, которую он мог бы не совершать. Галилей абсолютизировал принцип относительности, лишив его границ применимости.             Последствия известны.

 

Физика фотонов и электромагнитных волн не вписывается в линейный мир бытовой относительности. Преобразования Лоренца явно описывают принципиально нелинейное пространство и предоставляют возможность определять границу применимости принципа относительности, исходя из задаваемой погрешности. Это относится как к мысленным, так и к реальным экспериментам, которые требуют особой культуры проведения экспериментов и последующего их описания и интерпретации.

 

Не будем указывать на недостатки методики приведенного здесь анализа, они не привели к ошибкам, просто постараемся провести последующее изложение без стереотипных допущений-ловушек «по умолчанию», когда все первичные ИСО считаются неподвижными.

 

Рассмотрим систему, реализующую эффект Доплера и состоящую из неподвижного излучателя с известными параметрами и идеального отражателя, движущегося прямо на излучатель. После отражения фотоны приобретут порцию энергии, которая зависит от скорости излучателя. В соответствии с законом сохранения, отражатель должен потерять столько же энергии, если процесс происходит в замкнутой системе. Но рассматриваемая система и не замкнута, и не полна. Мы вновь не учитываем входящее в неё пространство. И даже вспомнив о нем, не знаем, как его учитывать.

 

Для более углубленного понимания природы эффекта Доплера и осознания её новизны и непривычности, рассмотрим еще один вариант его проявления. Пусть в этом варианте отражатель стоит неподвижно относительно пространства, а излучатель в связке с измерительным прибором с той же скоростью (из первого эксперимента) движутся в его направлении. В этом опыте движущийся прибор зарегистрирует начальную энергию фотонов, равную энергии в первом опыте. При этом отражатель и стоящий рядом второй, неподвижный измеритель воспримут её как энергию с приращением. Фотон отразится от неподвижного отражателя именно с этой энергией и будет зарегистрирован первым измерителем около излучателя как фотон, получивший приращение энергии от отражателя, хотя нам известно, что приращения в момент отражения от неподвижного отражателя не было.

 

Происхождение прироста энергии фотонов движущегося излучателя можно понять. Для этого заменим направленный излучатель изотропным. При неподвижном излучателе фотоны всех направлений идентичны по энергии. Но стоит привести излучатель в движение, как получим известное распределение, определяемое эффектом Доплера. Энергия фотонов по направлению движения излучателя возрастет, а против движения соответственно уменьшится. Суммарная энергия на затраты излучения останется неизменной. И это будет истинное распределение энергии фотонов в неподвижном пространстве, а всякие другие распределения, которые можно получить, манипулируя движением прибора-приемника, будут результатом этого относительного движения, т.е. метрологическим эффектом. Таким образом, движение излучателя фотонов относительно пространства вызывает перераспределение общей излучаемой энергии по фотонам различного направления. Это и есть результат взаимодействия движущегося вещества излучателя с неподвижным, по начальным условиям, пространством.

 

Но как идентифицировать неподвижное пространство, или что, то же самое, определить собственное движение наблюдателя? Принцип относительности Галилея, а потом и принцип относительности Эйнштейна, запрещают это, ставя исследователя в противоестественное положение, не позволяя ему выглядывать из замкнутой лаборатории. Ну, а если все же выглянуть…

 

Проведенный анализ и последовавшие выводы опираются на знания, которые объединяются понятием «общие соображения». Эти знания были доступны ученым конца 19-го и начала 20-го века, создавшим теорию фотонного излучения. Придуманный ими продольный импульс фотонов  — это ошибка (и наказание), вызванная пренебрежительным отношением к достижениям философии.

 

Но не надо забывать, что теория создавалась во время научной революции, со всеми атрибутами смутного, революционного времени. Революции не гарантируют принятие оптимальных решений. В революции всего важнее победа, которая иногда достигается авантюрными методами и поступками. Продольный импульс фотона это всего лишь один случай из целого перечня прижившейся лжи.

 

Итак, продольный импульс, переносимый фотоном, не существует ни в образе фотона-частицы, ни в образе фотона-волны. А это значит, что мечте о маршевых фотонных двигателях не суждено сбыться. Все разработки таких двигателей – это черная дыра бюджета. Но это мелочь, по сравнению с потерями гипотетической термоядерной энергетики, в которой основополагающие эффекты происходят в результате давления света.

 

Каким же образом можно уточнить модель фотона, и каково может быть его природное назначение в свете установленной истины.

 

Рассмотрим изотропный излучатель когерентных фотонов в неподвижном пространстве. Исходим из того, что каждый излученный фотон распространяется в свободном пространстве, не изменяя своих параметров.

 

Каждый излученный фотон отнимает у излучателя калиброванную порцию энергии и уносит её в неопределенную даль со скоростью света. Фотон в свободном физическом вакууме распространяется  с постоянной скоростью, строго прямолинейно, без затухания и дисперсии. Единственным мыслимым назначением излученного уже фотона является возможность быть поглощенным другим веществом. Бесконечное во времени убегание (распространение) фотона, без гарантированного поглощения (взаимодействия), является для системы, называемой Вселенная, уничтожающим фактором, ведущим к  неизбежному энергетическому истощению системы. Исключая такую возможность, т.е. утверждая, что каждый фотон будет неизбежно поглощен, можно утверждать, что фотоны обеспечивают принудительный обмен энергией между веществом Вселенной.  Дальнодействие фотонов является неограниченным и гарантированно обеспечивает энергообмен в подсистеме любого размера. Фотонным обменом природа обеспечивает превращение тепловой энергии в другие виды энергии, противодействуя этим неограниченному увеличению энтропии. Таким образом, фотоны, как и гравитация, выполняют системообразующую функцию, не искажая при этом гравитационных законов движения массы. И это наиважнейшее философское положение, недоступное математической физике.

 

Таким образом, фотон является одним из ключиков к пониманию устройства Вселенной. Декларируемый здесь принцип неизбежности поглощения каждого фотона веществом, в космологическом аспекте является очень действенным требованием, предъявляемым к гипотетическим моделям устройства Вселенной. Это отличный критерий для всех космологических теорий.

 

Анализ параметров вещества, обеспечивающего максимальное отражение, а непременный их атрибут — это гладкая поверхность, позволяет сделать более частные предположения об устройстве  фотона.

 

Поверхность является максимально гладкой, если все атомы наружного слоя находятся в одной плоскости и образуют правильную решетку. Это качество реализуется на бездефектных гранях кристаллов. Поверхностный электронный слой таких структур образуется электронами, плоскость обращения которых практически ортогональна отражающей поверхности. Если для отражения это свойство является определяющим, то можно предположить, что поглощение фотонов осуществляется электронами, орбиты которых параллельны отражающей поверхности.

 

Исходя из этого, и учитывая поглощающие свойства сажи, можно предположить, что в атомах углерода, находящихся в несвязанном состоянии (сажа), плоскости электронных орбит смещены от центра атома (ядра), образуя тетраэдр, и практически во всех направлениях соответствуют условиям поглощения фотонов. Такой принцип построения электронных оболочек атомов отстаивает Ф.М. Канарёв [6].

 

При формировании кристаллических структур, электронные оболочки атомов, в том числе углерода, видоизменяются за счет кристаллических связей, в результате плоскости электронов, формирующих поверхностный слой, видимо смещаются к центру атома и устанавливаются ортогонально к поверхности кристалла. Эта конфигурация и обеспечивает практическое отсутствие поглощения на гранях алмаза.

Это краткое отступление в теорию строения атома сделано для подтверждения того, что при переходе электрона с орбиты на орбиту фотон излучается не произвольным образом, а строго ортогонально орбите электрона в этот момент. Такой же вывод можно получить исходя из принципа взаимности. Если фотоны при поглощении раскачивают электроны ортогонально своему направлению, то и излучаются при таких же условиях.

 

Что же такое фотон.

Фотон бессмысленно рассматривать в качестве частицы, т.к. с частицей его роднит единственное свойство – сохранение внутренней структуры во времени.

 

Фотон нельзя рассматривать в качестве элемента поля, т.к. после излучения он существует совершенно независимо от излучателя, и не может быть остановлен для формирования  стационарной конфигурации постоянного поля заряда. Тем более, что электрическое поле заряда подчиняется закону сохранения, т.е. оно не может отрываться от заряда и излучаться.

 

Фотон не разумно рассматривать как бестелесный конгломерат свойств известных природных образований. Предлагаемый дуализм фотона является порождением эклектики, чуждым гармоническому единству природы.

 

Фотон нельзя рассматривать в качестве традиционной волны, т.к. известные типы волн реализуются относительным движением составляющих элементов среды, а квантовые элементы физического вакуума в принципе не могут перемещаться друг относительно друга.

Доказательство последнего утверждения элементарно.

 

Все, признающие квантовую структуру материи, в том числе и физического вакуума, признают неразрывность квантового пространства, образуемого несжимаемыми квантами. Это одно из фундаментальных положений диалектической философии. Механическое перемещение любого квантового объекта (а других нет, и не может быть), даже состоящего из одного кванта, невозможно в таком пространстве, т.к. требует для своего перемещения поочередного смещения бесконечного числа смежных квантов. А т.к. за один квант времени возможен только один акт причинно-следственного смещения, то перемещение любого кванта принципиально невозможно. Вывод однозначен и очевиден (хотя и возмутителен для нашего механистического мышления): все взаимодействующие материальные объекты Вселенной реализуются согласованной передачей возмущенных состояний квантов физического вакуума, без перемещения самих квантов. Кванты при этом остаются взаимно неподвижными и реализуют диалектическое движение, только изменением своей внутренней структуры. Из этого тождественно следует, что все кванты материи идентичны по конструкции и универсальны по своим возможностям, т.е. каждый квант это универсальный трансформер, который в простейшей своей конфигурации (нулевом состоянии) представляет квант свободного пространства. В возбужденном состоянии квант может быть, чем угодно. Более подробно об этом см. [7].

 

Фотон –  специфическое, локальное возбуждение квантовой материи физического вакуума. Фотон это квантовая волна, в которой возбуждение среды не имеет механических признаков. В квантовой волне возмущение (внутреннее изменение структуры кванта) может распространяться только по линии, в силу неделимости (сохранения) кванта. Естественным следствием такого закона распространения является отсутствие затухания в зависимости от расстояния. Таким образом, прямолинейное распространение фотона без затухания прямо указывает на его квантовую природу, не маскируемую от нас промежуточными макроскопическими образованиями. Фотон, видимо, является объектом, состоящим из самого малого количества материальных квантов.

 

Единственным конкурентом для фотона, в этом аспекте, могло  бы быть нейтрино. Но автор считает нейтрино порождением комплекса ошибочных интерпретаций  недостаточно качественных экспериментов, подобно эксперименту Лебедева. Будущее покажет.

 

Предложенный взгляд на принципы, положенные в устройство фотона, ставят перед физиками массу новых и неожиданных вопросов. Ответ на один из таких вопросов помог бы более конкретно понять устройство фотона. Если фотоны, передавая импульс, явно воздействуют на заряженные частицы определенным образом, то как же фотоны взаимодействуют с нейтронами. Достоверный ответ на этот вопрос без эксперимента, видимо, невозможен.

 

Каковы бы ни были ответы на новые вопросы, необходимо сразу признать, что множество современных интерпретаций оптических эффектов являются ошибочными и искажают истинную природу света. Особенно важно это для теории звезд и теории термоядерных реакций, которые практически полностью рушатся без наличия в природе давления света.

А его нет!

 

Итак, перед нами безукоризненное теоретическое доказательство поперечности нулевого фотонного импульса и такое же безупречное его экспериментальное подтверждение.

 

Казалось бы, истина установлена. Но это не так. Знание истины ограниченным кругом людей бессмысленно и бесполезно, если это знание не стало достоянием практики. А здесь на арену выступают человеческий и исторический факторы. Слишком много авторитетов связали свою научную карьеру с продольным импульсом фотона. Огромное количество научных трудов должны потерять свою актуальность. Сопротивление признанию истины будет соответствующим.

 

Но еще никому не удалось остановить ход истории.

Вопрос только во времени задержки.

 

 

Нижний Новгород, декабрь 2013г.

 

Источники информации

 

  1. Физический энциклопедический словарь. М. Советская энциклопедия, 1983.
  2. Вайнберг С., «Свет как фундаментальная частица», пер. с англ., «Успехи физических наук», 1976, т. 120, в. 4.
  3. Гришаев А.А. «О так называемом давлении света», Интернет: http://newfiz.narod.ru .
  4. Лебедев П.Н., «Давление света» Под редакцией П.П.Лазарева и Т.П.Кравца. (М.: Гостехиздат, 1922. — Классики естествознания).
  5. Костюшко В.Е., «Экспериментальная ошибка П.Н. Лебедева – причина ложного вывода об обнаружении им давления света». Русское Физическое Общество Энциклопедия Русской Мысли. Т. XVI, стр. 34, Интернет http://v-kostushko.narod.ru.
  6. Канарёв Ф.М., «Главная теоретическая проблема химиков решена», Интернет http://www.micro-world.su/.
  7. Леонович В.Н., «Концепция физической модели квантовой гравитации», Интернет, сайт: SciTecLibrary — Новости Науки и Техники, http://www.sciteclibrary.ru/rus/catalog/pages/10168.html.